Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Titanium Dioxide and its Modified Forms as Photocatalysts for Air Treatment

Author(s): Rattana Muangmora, Patiya Kemacheevakul and Surawut Chuangchote*

Volume 17, Issue 2, 2021

Published on: 31 January, 2020

Page: [185 - 201] Pages: 17

DOI: 10.2174/1573411016666200131130152

Price: $65

Abstract

Background: TiO2 has been proved as an effective photocatalyst for air purification that can produce hydroxyl radicals and superoxide radicals by the illumination of light with suitable energy. These radicals are extremely powerful agents in the degradation of gaseous pollutants. A major drawback of TiO2 is its wide energy band gaps of 3.2 and 3.0 eV for anatase and rutile phases, respectively, which are mostly equivalent to the photon wavelength absorption in the range of UV region.

Methods: The modification strategies of TiO2 as photocatalysts for air treatment, such as metal doping, non-metal doping, co-doping, and coupling with other semiconductors are discussed. The photocatalytic performance of the pristine TiO2 and modified TiO2 for degradations of gaseous pollutants are reviewed.

Results: Various parameters can affect the photocatalytic removal efficiencies of gaseous pollutants, such as the initial concentration of pollutants, relative humidity, light source, irradiation time, and the preparation of TiO2 photocatalysts. The optimal content of dopants and the combinedsemiconductors should be considered for preventing the recombination of electrons and holes during irradiation.

Conclusion: Doping with heteroatoms and coupling could enhance the photocatalytic activity of TiO2. The modified photocatalysts could be applied for photocatalytic degradation of gaseous pollutants, including volatile organic compounds (VOCs), nitrogen oxides (NOx), and sulfur oxides (SOx).

Keywords: Air treatment, coupling, doping, gaseous pollutants, photocatalysis, titanium dioxide.

Graphical Abstract
[1]
Salvador, P. Ozone, SOx and NOx, Particulate Matter, and Urban Air. Encyclopedia of the Anthropocene; Elsevier Inc: Madrid, 2018, Vol. 5, pp. 7-21.
[http://dx.doi.org/10.1016/B978-0-12-809665-9.09975-4]
[2]
Boyjoo, Y.; Sun, H.Q.; Liu, J.; Pareek, V.K.; Wang, S.B. A review on photocatalysis for air treatment: From catalyst development to reactor design. Chem. Eng. J., 2017, 310, 537-559.
[http://dx.doi.org/10.1016/j.cej.2016.06.090]
[4]
Rai, R.; Rajput, M.; Agrawal, M.; Agrawal, S. Gaseous air pollutants: A review on current and future trends of emissions and impact on agriculture. J. Sci. Res., 2011, 55, 77-102.
[5]
Mayer, H. Air pollution in cities. Atmos. Environ., 1999, 33, 4029-4037.
[http://dx.doi.org/10.1016/S1352-2310(99)00144-2]
[6]
De Marco, A.; Proietti, C.; Anav, A.; Ciancarella, L.; D’Elia, I.; Fares, S.; Fornasier, M.F.; Fusaro, L.; Gualtieri, M.; Manes, F.; Marchetto, A.; Mircea, M.; Paoletti, E.; Piersanti, A.; Rogora, M.; Salvati, L.; Salvatori, E.; Screpanti, A.; Vialetto, G.; Vitale, M.; Leonardi, C. Impacts of air pollution on human and ecosystem health, and implications for the National Emission Ceilings Directive: Insights from Italy. Environ. Int., 2019, 125, 320-333.
[http://dx.doi.org/10.1016/j.envint.2019.01.064] [PMID: 30739052]
[7]
Xie, H.; Liu, B.S.; Zhao, X.J. Facile process to greatly improve the photocatalytic activity of the TiO2 thin film on window glass for the photodegradation of acetone and benzene. Chem. Eng. J., 2016, 284, 1156-1164.
[http://dx.doi.org/10.1016/j.cej.2015.09.049]
[8]
Najjar, Y.S. Gaseous pollutants formation and their harmful effects on health and environment. Innovat. Energ. Polic., 2011, 1, 1-9.
[http://dx.doi.org/10.4303/iep/E101203]
[9]
Boonen, E.; Beeldens, A. Recent Photocatalytic Applications for Air Purification in Belgium. Coatings, 2014, 4(3), 553-573.
[http://dx.doi.org/10.3390/coatings4030553]
[10]
Pham, T.D.; Lee, B.K.; Lee, C.H. The advanced removal of benzene from aerosols by photocatalytic oxidation and adsorption of Cu-TiO2/PU under visible light irradiation. Appl. Catal. B, 2016, 182, 172-183.
[http://dx.doi.org/10.1016/j.apcatb.2015.09.023]
[11]
Shayegan, Z.; Lee, C.S.; Haghighat, F. TiO2 photocatalyst for removal of volatile organic compounds in gas phase - A review. Chem. Eng. J., 2018, 334, 2408-2439.
[http://dx.doi.org/10.1016/j.cej.2017.09.153]
[12]
Yasmina, M.; Mourad, K.; Mohammed, S.H.; Khaoula, C. Treatment heterogeneous photocatalysis; factors influencing the photocatalytic degradation by TiO2. Energy Procedia, 2014, 50, 559-566.
[http://dx.doi.org/10.1016/j.egypro.2014.06.068]
[13]
Ibhadon, A.O.; Fitzpatrick, P. Heterogeneous photocatalysis: Recent advances and applications. Catalysts, 2013, 3(1), 189-218.
[http://dx.doi.org/10.3390/catal3010189]
[14]
Binas, V.; Venieri, D.; Kotzias, D.; Kiriakidis, G. Modified TiO2 based photocatalysts for improved air and health quality. J. Materiomics, 2017, 3(1), 3-16.
[http://dx.doi.org/10.1016/j.jmat.2016.11.002]
[15]
Tasbihi, M.; Calin, I.; Suligoj, A.; Fanetti, M.; Stangar, U.L. Photocatalytic degradation of gaseous toluene by using TiO2 nanoparticles immobilized on fiberglass cloth. J. Photochem. Photobiol. Chem., 2017, 336, 89-97.
[http://dx.doi.org/10.1016/j.jphotochem.2016.12.025]
[16]
Kamaei, M.; Rashedi, H.; Dastgheib, S.M.M.; Tasharrofi, S. Comparing photocatalytic degradation of gaseous ethylbenzene using N-doped and pure TiO2 nano-catalysts coated on glass beads under both uv and visible light irradiation. Catalysts, 2018, 8(10), 19.
[http://dx.doi.org/10.3390/catal8100466]
[17]
Kang, X.L.; Liu, S.H.; Dai, Z.D.; He, Y.P.; Song, X.Z.; Tan, Z.Q. titanium dioxide: From engineering to applications. Catalysts, 2019, 9(2), 32.
[http://dx.doi.org/10.3390/catal9020191]
[18]
Jo, W.K.; Kim, J.T. Photocatalysis of low concentration of gaseous-phase benzene using visible-light irradiated N-doped and S-doped titanium dioxide. Environ. Eng. Res., 2008, 13(4), 171-176.
[http://dx.doi.org/10.4491/eer.2008.13.4.171]
[19]
Yang, G.D.; Jiang, Z.; Shi, H.H.; Xiao, T.C.; Yan, Z.F. Preparation of highly visible-light active N-doped TiO2 photocatalyst. J. Mater. Chem., 2010, 20(25), 5301-5309.
[http://dx.doi.org/10.1039/c0jm00376j]
[20]
Tasbihi, M.; Bendyna, J.K.; Notten, P.H.L.; Hintzen, H.T. A Short review on photocatalytic degradation of formaldehyde. J. Nanosci. Nanotechnol., 2015, 15(9), 6386-6396.
[http://dx.doi.org/10.1166/jnn.2015.10872] [PMID: 26716192]
[21]
Das, J.; Rene, E.R.; Krishnan, J. Photocatalytic degradation of volatile pollutants. J. Environ. Chem. Toxicol, 2018, 2(2), 57-59.
[22]
Ahmed, S.N.; Haider, W. Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: a review. Nanotechnology, 2018, 29(34)342001
[http://dx.doi.org/10.1088/1361-6528/aac6ea]] [PMID: 29786601]
[23]
Belver, C.; Bedia, J.; Gómez-Avilés, A.; Peñas-Garzón, M.; Rodriguez, J.J. Semiconductor Photocatalysis for water purification. Nanoscale Materials in Water Purification; Elsevier, 2019, pp. 581-651.
[http://dx.doi.org/10.1016/B978-0-12-813926-4.00028-8]
[24]
Demeestere, K.; Dewulf, J.; Van Langenhove, H. Heterogeneous photocatalysis as an advanced oxidation process for the abatement of chlorinated, monocyclic aromatic and sulfurous volatile organic compounds in air: State of the art. Crit. Rev. Environ. Sci. Technol., 2007, 37(6), 489-538.
[http://dx.doi.org/10.1080/10643380600966467]
[25]
Ola, O.; Maroto-Valer, M.M. Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. J. Photochem. Photobiol. Photochem. Rev., 2015, 24, 16-42.
[http://dx.doi.org/10.1016/j.jphotochemrev.2015.06.001]
[26]
Zaleska, A. Doped-TiO2: A review. Recent Pat. Eng., 2008, 2(3), 157-164.
[http://dx.doi.org/10.2174/187221208786306289]
[27]
Mishra, N.S.; Reddy, R.; Kuila, A.; Rani, A.; Mukherjee, P.; Nawaz, A.; Pichiah, S. A review on advanced oxidation processes for effective water treatment. Curr. World Environ., 2017, 12(3), 470-490.
[http://dx.doi.org/10.12944/CWE.12.3.02]
[28]
Moma, J.; Baloyi, J. Modified Titanium Dioxide for Photocatalytic Applications. Photocatalysts-Applications and Attributes; 2018.Available from: dx.doi.org/10.5772/intechopen.79374;
[29]
Chauhan, A.; Rastogi, M.; Scheier, P.; Bowen, C.; Kumar, R.V.; Vaish, R. Janus nanostructures for heterogeneous photocatalysis. Appl. Phys. Rev., 2018, 5(4), 1-26.
[http://dx.doi.org/10.1063/1.5039926]
[30]
Kozlov, D. Titanium dioxide in gas-phase photocatalytic oxidation of aromatic and heteroatom organic substances: deactivation and reactivation of photocatalyst. Theor. Exp. Chem., 2014, 50(3), 133-154.
[http://dx.doi.org/10.1007/s11237-014-9358-6]
[31]
Anandan, S.; Ikuma, Y.; Niwa, K. An overview of semi-conductor photocatalysis: modification of TiO2 nanomaterials; Publ, T.., Ed.; Solid State Phenomena; , 2010, pp. 239-260.
[32]
Hamid, S.B.A.; Teh, S.J.; Lai, C.W. Photocatalytic water oxidation on ZnO: A review. J. Catal., 2017, 7(3), 93.
[33]
Mamaghani, A.H.; Haghighat, F.; Lee, C-S. Photocatalytic oxidation technology for indoor environment air purification: The state-of-the-art. Appl. Catal. B, 2017, 203, 247-269.
[http://dx.doi.org/10.1016/j.apcatb.2016.10.037]
[34]
Valencia, S.; Marín, J. M.; Restrepo, G. Study of the band gap of synthesized titanium dioxide nanoparticules using the sol-gel method and a hydrothermal treatment., Open Mater. Sci., 2009, 4(1).
[35]
Mital, G.S.; Manoj, T. A review of TiO2 nanoparticles. Phys. Chem., 2011, 56(16), 1639-1657.
[36]
Noman, M.T.; Ashraf, M.A.; Ali, A. Synthesis and applications of nano-TiO2: A review. Environ. Sci. Pollut. Res. Int., 2019, 26(4), 3262-3291.
[http://dx.doi.org/10.1007/s11356-018-3884-z] [PMID: 30523526]
[37]
Gemmellaro, P.; Ciliberto, E.; Wojcieszak, D.; Mazur, M.; Kaczmarek, D. Synthesis and photocatalytic activity of undoped and doped TiO2 nanopowders., IEEE, 2011, 2011, 38-42..
[38]
Haghighatmamaghani, A.; Haghighat, F.; Lee, C.S. Performance of various commercial TiO2 in photocatalytic degradation of a mixture of indoor air pollutants: Effect of photocatalyst and operating parameters. Sci. Technol. Built Environ., 2019, 25(5), 600-614.
[http://dx.doi.org/10.1080/23744731.2018.1556051]
[39]
Siah, W.R.; Lintang, H.O.; Shamsuddin, M.; Yuliati, L. IOP Conf. Series Materials Science and Engineering, 2016, 1-8.
[40]
Montes-Navajas, P.; Serra, M.; Corma, A.; Garcia, H. Contrasting photocatalytic activity of commercial TiO2 samples for hydrogen generation. Catal. Today, 2014, 225, 52-54.
[http://dx.doi.org/10.1016/j.cattod.2013.09.025]
[41]
Ohtani, B.; Prieto-Mahaney, O.O.; Li, D.; Abe, R. What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. J. Photochem. Photobiol. Chem., 2010, 216, 179-182.
[http://dx.doi.org/10.1016/j.jphotochem.2010.07.024]
[42]
Abbas, N.; Hussain, M.; Russo, N.; Saracco, G. Studies on the activity and deactivation of novel optimized TiO2 nanoparticles for the abatement of VOCs. Chem. Eng. J., 2011, 175, 330-340.
[http://dx.doi.org/10.1016/j.cej.2011.09.115]
[43]
Hussain, M.; Russo, N.; Saracco, G. Photocatalytic abatement of VOCs by novel optimized TiO2 nanoparticles. Chem. Eng. J., 2011, 166(1), 138-149.
[http://dx.doi.org/10.1016/j.cej.2010.10.040]
[44]
Bianchi, C.L.; Gatto, S.; Pirola, C.; Naldoni, A.; Di Michele, A.; Cerrato, G.; Crocella, V.; Capucci, V. Photocatalytic degradation of acetone, acetaldehyde and toluene in gas-phase: Comparison between nano and micro-sized TiO2. Appl. Catal. B, 2014, 146, 123-130.
[http://dx.doi.org/10.1016/j.apcatb.2013.02.047]
[45]
Alireza, K.; Ali, M.G. Nanostructured titanium dioxide materials: Properties, preparation and applications; World Scientific, 2011.
[46]
Ohno, T.; Sarukawa, K.; Tokieda, K.; Matsumura, M. Morphology of a TiO2 photocatalyst (Degussa, P-25) consisting of anatase and rutile crystalline phases. J. Catal., 2001, 203(1), 82-86.
[http://dx.doi.org/10.1006/jcat.2001.3316]
[47]
Mamaghani, A.H.; Haghighat, F.; Lee, C.S. Hydrothermal/solvothermal synthesis and treatment of TiO2 for photocatalytic degradation of air pollutants: Preparation, characterization, properties, and performance. Chemosphere, 2019, 219, 804-825.
[http://dx.doi.org/10.1016/j.chemosphere.2018.12.029 PMID: 30572234]
[48]
Dislich, H.; Hinz, P. History and principles of the sol-gel process, and some new multicomponent oxide coatings. J. Non-Cryst. Solids, 1982, 48(1), 11-16.
[http://dx.doi.org/10.1016/0022-3093(82)90242-3]
[49]
Liang, Y.; Sun, S.; Deng, T.; Ding, H.; Chen, W.; Chen, Y. The preparation of TiO2 film by the sol-gel method and evaluation of its self-cleaning property. Materials (Basel), 2018, 11(3), 12.
[http://dx.doi.org/10.3390/ma11030450] [PMID: 29562717]
[50]
Akpan, U.G.; Hameed, B.H. The advancements in sol-gel method of doped-TiO2 photocatalysts. Appl. Catal. A Gen., 2010, 375(1), 1-11.
[http://dx.doi.org/10.1016/j.apcata.2009.12.023]
[51]
Kaygili, O.; Bulut, N.; Tatar, C.; Ates, T.; İnce, T. Sol-gel synthesis and characterization of TiO2 powder. Int. J. Innov. Eng. Appl., 2017, 2, 38-40.
[52]
Malekshahi Byranvand, M.; Nemati Kharat, A.; Fatholahi, L.; Malekshahi Beiranvand, Z. A review on synthesis of nano-TiO2 via different methods. J. Nanostructures, 2013, 3(1), 1-9.
[53]
Ullattil, S.G.; Periyat, P. Sol-gel synthesis of titanium dioxide. Sol-Gel Materials for Energy, Environment and Electronic Applications; Springer, 2017, pp. 271-283.
[http://dx.doi.org/10.1007/978-3-319-50144-4_9]
[54]
Hayle, S.T.; Gonfa, G.G. Synthesis and characterization of titanium oxide nanomaterials using sol-gel method. Am. J. Nanosci. Nanotechnol., 2014, 2(1), 1-7.
[http://dx.doi.org/10.11648/j.nano.20140201.11]
[55]
Tejasvi, R.; Sharma, M.; Upadhyay, K. Passive photo-catalytic destruction of air-borne VOCs in high traffic areas using TiO2-coated flexible PVC sheet. Chem. Eng. J., 2015, 262, 875-881.
[http://dx.doi.org/10.1016/j.cej.2014.10.040]
[56]
Nor, A.M.; Achoi, M.F.; Mamat, M.H.; Zabidi, M.M.; Abdullah, S.; Mahmood, M.R. Synthesis of TiO2 nanowires via hydrothermal method. Jpn. J. Appl. Phys., 2012, 51(6), 4.
[57]
Nyamukamba, P.; Okoh, O.; Mungondori, H.; Taziwa, R.; Zinya, S. Synthetic methods for titanium dioxide nanoparticles: A review., Titanium Dioxide: Material for a Sustainable Environment, 2018.Available from: dx.doi.org/10.5772/intechopen.75425.
[58]
Kumar, A.; Pandey, G. Different methods used for the synthesis of tio2 based nanomaterials: A review. Am. J. Nano Res. Appl., 2018, 6(1), 1.
[http://dx.doi.org/10.11648/j.nano.20180601.11]
[59]
Chen, K.; Zhu, L.; Yang, K. Tricrystalline TiO2 with enhanced photocatalytic activity and durability for removing volatile organic compounds from indoor air. J. Environ. Sci. (China), 2015, 32, 189-195.
[http://dx.doi.org/10.1016/j.jes.2014.10.023] [PMID: 26040745]
[60]
Nguyen, N.H.; Bai, H. Photocatalytic removal of NO and NO2 using titania nanotubes synthesized by hydrothermal method. J. Environ. Sci. (China), 2014, 26(5), 1180-1187.
[http://dx.doi.org/10.1016/S1001-0742(13)60544-6 PMID: 25079649]
[61]
Wang, L.Q.; Yang, X.N.; Zhao, X.L.; Zhang, R.J.; Yang, Y.L. Preparation of TiO2 nanoparticles in the solvothermal method; Publ, T; , Ed.;Key Engineering Materials,. , 2011, pp. 1672-1677.
[62]
He, F.; Li, J.L.; Li, T.; Li, G.X. Solvothermal synthesis of mesoporous TiO2: The effect of morphology, size and calcination progress on photocatalytic activity in the degradation of gaseous benzene. Chem. Eng. J., 2014, 237, 312-321.
[http://dx.doi.org/10.1016/j.cej.2013.10.028]
[63]
Giesz, P.; Celichowski, G.; Puchowicz, D.; Kamińska, I.; Grobelny, J.; Batory, D.; Cieślak, M. Microwave-assisted TiO2: Anatase formation on cotton and viscose fabric surfaces. Cellulose, 2016, 23(3), 2143-2159.
[http://dx.doi.org/10.1007/s10570-016-0916-z]
[64]
Liu, Y.; Li, Y.; Wang, Y.; Xie, L.; Zheng, J.; Li, X. Sonochemical synthesis and photocatalytic activity of meso- and macro-porous TiO(2) for oxidation of toluene. J. Hazard. Mater., 2008, 150(1), 153-157.
[http://dx.doi.org/10.1016/j.jhazmat.2007.04.088] [PMID: 17560714]
[65]
Leng, J.; Wang, Z.; Wang, J.; Wu, H-H.; Yan, G.; Li, X.; Guo, H.; Liu, Y.; Zhang, Q.; Guo, Z. Advances in nanostructures fabricated via spray pyrolysis and their applications in energy storage and conversion. Chem. Soc. Rev., 2019, 48(11), 3015-3072.
[http://dx.doi.org/10.1039/C8CS00904J] [PMID: 31098599]
[66]
Zhu, X.; Chang, D-L.; Li, X-S.; Sun, Z-G.; Deng, X-Q.; Zhu, A-M. Inherent rate constants and humidity impact factors of anatase TiO2 film in photocatalytic removal of formaldehyde from air. Chem. Eng. J., 2015, 279, 897-903.
[http://dx.doi.org/10.1016/j.cej.2015.05.095]
[67]
Weon, S.; Choi, E.; Kim, H.; Kim, J.Y.; Park, H-J.; Kim, S.M.; Kim, W.; Choi, W. Active 001 facet exposed TiO2 nanotubes photocatalyst filter for volatile organic compounds removal: from material development to commercial indoor air cleaner application. Environ. Sci. Technol., 2018, 52(16), 9330-9340.
[http://dx.doi.org/10.1021/acs.est.8b02282] [PMID: 30001490]
[68]
Lu, X.; Hu, Y. Layer-by-layer deposition of TiO2 nanoparticles in the wood surface and its superhydrophobic performance. BioResources, 2016, 11(2), 4605-4620.
[http://dx.doi.org/10.15376/biores.11.2.4605-4620]
[69]
Kim, S-W.; Kang, M.; Choung, S-J. Preparation of a TiO2 film using a TEOS binder and its application to the photodegradation of benzene. J. Ind. Eng. Chem., 2005, 11(3), 416-424.
[70]
Ge, J.; Zhang, Y.; Heo, Y.J.; Park, S.J. Advanced design and synthesis of composite photocatalysts for the remediation of wastewater: A review. Catalysts, 2019, 9(2), 32.
[http://dx.doi.org/10.3390/catal9020122]
[71]
Huang, F.; Yan, A.; Zhao, H. Influences of doping on photocatalytic properties of TiO2 photocatalyst. In: Semiconductor Photocatalysis-Materials; Mechanisms and Applications: Cao, W, 2016, pp. 31-80.
[72]
Pham, T.D.; Lee, B.K. Novel adsorption and photocatalytic oxidation for removal of gaseous toluene by V-doped TiO2/PU under visible light. J. Hazard. Mater., 2015, 300, 493-503.
[http://dx.doi.org/10.1016/j.jhazmat.2015.07.048] [PMID: 26247377]
[73]
Sun, S.; Ding, J.J.; Bao, J.; Gao, C.; Qi, Z.M.; Yang, X.Y.; He, B.; Li, C.X. Photocatalytic degradation of gaseous toluene on Fe-TiO2 under visible light irradiation: A study on the structure, activity and deactivation mechanism. Appl. Surf. Sci., 2012, 258(12), 5031-5037.
[http://dx.doi.org/10.1016/j.apsusc.2012.01.075]
[74]
Stucchi, M.; Bianchi, C.; Pirola, C.; Vitali, S.; Cerrato, G.; Morandi, S.; Argirusis, C.; Sourkouni, G.; Sakkas, P.; Capucci, V. Surface decoration of commercial micro-sized TiO2 by means of high energy ultrasound: A way to enhance its photocatalytic activity under visible light. Appl. Catal. B, 2015, 178, 124-132.
[http://dx.doi.org/10.1016/j.apcatb.2014.10.004]
[75]
Khan, R.; Kim, T.J. Preparation and application of visible-light-responsive Ni-doped and SnO2-coupled TiO2 nanocomposite photocatalysts. J. Hazard. Mater., 2009, 163(2-3), 1179-1184.
[http://dx.doi.org/10.1016/j.jhazmat.2008.07.078] [PMID: 18755539]
[76]
Hu, Y.; Song, X.; Jiang, S.M.; Wei, C.H. Enhanced photocatalytic activity of Pt-doped TiO2 for NOx oxidation both under UV and visible light irradiation: A synergistic effect of lattice Pt4+ and surface PtO. Chem. Eng. J., 2015, 274, 102-112.
[http://dx.doi.org/10.1016/j.cej.2015.03.135]
[77]
Peerakiatkhajorn, P.; Chawengkijwanich, C.; Onreabroy, W.; Chiarakorn, S. In: Novel photocatalytic Ag/TiO2 thin film on polyvinyl chloride for gaseous BTEX treatment, Materials Science Forum, Trans Tech Pub: 2012; pp. 133-145..
[78]
Klein, M.; Grabowska, E.; Zaleska, A. Noble metal modified TiO2 for photocatalytic air purification. Physicochem. Probl. Miner. Proces., 2015, 51(1), 49-57.
[79]
Menendez-Flores, V.M.; Ohno, T. High visible-light active Ir-doped-TiO2 brookite photocatalyst synthesized by hydrothermal microwave-assisted process. Catal. Today, 2014, 230, 214-220.
[http://dx.doi.org/10.1016/j.cattod.2014.01.032]
[80]
Ansari, S.A.; Khan, M.M.; Ansaric, M.O.; Cho, M.H. Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis. New J. Chem., 2016, 40(4), 3000-3009.
[http://dx.doi.org/10.1039/C5NJ03478G]
[81]
Nasirian, M.; Lin, Y.P.; Bustillo-Lecompte, C.F.; Mehrvar, M. Enhancement of photocatalytic activity of titanium dioxide using non-metal doping methods under visible light: A review. Int. J. Environ. Sci. Technol., 2018, 15(9), 2009-2032.
[http://dx.doi.org/10.1007/s13762-017-1618-2]
[82]
Teka, T. Current state of doped-TiO2 photocatalysts and synthesis methods to prepare TiO2 films: A review. Int. J. Technol. Enhanc. Merg. Eng. Res., 2015, 3, 14-18.
[83]
Sato, S. Photocatalytic activity of NOx-doped TiO2 in the visible light region. Chem. Phys. Lett., 1986, 123, 126-128.
[http://dx.doi.org/10.1016/0009-2614(86)87026-9]
[84]
Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293(5528), 269-271.
[http://dx.doi.org/10.1126/science.1061051] [PMID: 11452117]
[85]
Zhang, M.; Dai, Y.; Zhang, S.J.; Chen, W. Highly efficient photocatalytic activity of boron-doped TiO2 for gas phase degradation of benzene. Rare Met., 2011, 30, 243-248.
[http://dx.doi.org/10.1007/s12598-011-0278-5]
[86]
Wan-Kuen, J.; Hyun-Jung, K. LED irradiation of a photocatalyst for benzene, toluene, ethyl benzene, and xylene decomposition. Chin. J. Catal., 2012, 33(9-10), 1672-1680.
[http://dx.doi.org/10.1016/S1872-2067(11)60446-4]
[87]
Zeng, L.; Song, W.; Li, M.; Jie, X.; Zeng, D.; Xie, C. Comparative study on the visible light driven photocatalytic activity between substitutional nitrogen doped and interstitial nitrogen doped TiO2. Appl. Catal., 2014, 488, 239-247.
[http://dx.doi.org/10.1016/j.apcata.2014.09.041]
[88]
Ballari, M.; Carballada, J.; Minen, R.I.; Salvadores, F.; Brouwers, H.; Alfano, O.M.; Cassano, A.E. Visible light TiO2 photocatalysts assessment for air decontamination. Process Saf. Environ. Prot., 2016, 101, 124-133.
[http://dx.doi.org/10.1016/j.psep.2015.08.003]
[89]
Zeng, L.; Lu, Z.; Li, M.; Yang, J.; Song, W.; Zeng, D.; Xie, C. A modular calcination method to prepare modified N-doped TiO2 nanoparticle with high photocatalytic activity. Appl. Catal. B, 2016, 183, 308-316.
[http://dx.doi.org/10.1016/j.apcatb.2015.10.048]
[90]
Khalilzadeh, A.; Fatemi, S. Spouted bed reactor for VOC removal by modified nano-TiO2 photocatalytic particles. Chem. Eng. Res. Des., 2016, 115, 241-250.
[http://dx.doi.org/10.1016/j.cherd.2016.10.004]
[91]
Y.-H., Hsueh, H.-T.; Chang, C.-W.; Chu, H., The visible light-driven photodegradation of dimethyl sulfide on S-doped TiO2: Characterization, kinetics, and reaction pathways. Appl. Catal. B, 2016, 199, 1-10.
[http://dx.doi.org/10.1016/j.apcatb.2016.06.024]
[92]
Huang, Y.; Ho, W.; Ai, Z.; Song, X.; Zhang, L.; Lee, S. Aerosol-assisted flow synthesis of B-doped, Ni-doped and B–Ni-codoped TiO2 solid and hollow microspheres for photocatalytic removal of NO. Appl. Catal. B, 2009, 89(3-4), 398-405.
[http://dx.doi.org/10.1016/j.apcatb.2008.12.020]
[93]
Zhang, X.; Liu, Q.Q. Visible-light-induced degradation of formaldehyde over titania photocatalyst co-doped with nitrogen and nickel. Appl. Surf. Sci., 2008, 254(15), 4780-4785.
[http://dx.doi.org/10.1016/j.apsusc.2008.01.094]
[94]
Pham, T.D.; Lee, B.K. Selective removal of polar VOCs by novel photocatalytic activity of metals co-doped TiO2/PU under visible light. Chem. Eng. J., 2017, 307, 63-73.
[http://dx.doi.org/10.1016/j.cej.2016.08.068]
[95]
Cheng, Z.; Gu, Z.; Chen, J.; Yu, J.; Zhou, L. Synthesis, characterization, and photocatalytic activity of porous La-N-co-doped TiO2 nanotubes for gaseous chlorobenzene oxidation. J. Environ. Sci. (China), 2016, 46, 203-213.
[http://dx.doi.org/10.1016/j.jes.2015.09.026] [PMID: 27521952]
[96]
Duan, B.; Zhou, Y.; Huang, C.; Huang, Q.; Chen, Y.; Xu, H.; Shen, S. Impact of Zr-Doped TiO2 photocatalyst on formaldehyde degradation by Na addition. Ind. Eng. Chem. Res., 2018, 57(42), 14044-14051.
[http://dx.doi.org/10.1021/acs.iecr.8b03016]
[97]
Zhou, M.; Yu, J. Preparation and enhanced daylight-induced photocatalytic activity of C,N,S-tridoped titanium dioxide powders. J. Hazard. Mater., 2008, 152(3), 1229-1236.
[http://dx.doi.org/10.1016/j.jhazmat.2007.07.113] [PMID: 17826901]
[98]
Marschall, R. Semiconductor composites: Strategies for enhancing charge carrier separation to improve photocatalytic activity. Adv. Funct. Mater., 2014, 24(17), 2421-2440.
[http://dx.doi.org/10.1002/adfm.201303214]
[99]
Truppi, A.; Petronella, F.; Placido, T.; Striccoli, M.; Agostiano, A.; Curri, M.L.; Comparelli, R. Visible-Light-Active TiO2-Based Hybrid nanocatalysts for environmental applications. Catalysts, 2017, 7(4), 33.
[http://dx.doi.org/10.3390/catal7040100]
[100]
Wang, J.X.; Ruan, H.; Li, W.J.; Li, D.Z.; Hu, Y.; Chen, J.; Shao, Y.; Zheng, Y. Highly efficient oxidation of gaseous benzene on Novel Ag3VO4/TiO2 nanocomposite photocatalysts under visible and simulated solar light irradiation. J. Phys. Chem., 2012, 116(26), 13935-13943.
[101]
Lee, J.Y.; Jo, W.K. Heterojunction-based two-dimensional N-doped TiO(2)/WO(3) composite architectures for photocatalytic treatment of hazardous organic vapor. J. Hazard. Mater., 2016, 314, 22-31.
[http://dx.doi.org/10.1016/j.jhazmat.2016.04.012] [PMID: 27107232]
[102]
WHO guidelines for indoor air quality: Selected pollutants,2010.
[103]
He, F.; Ma, F.; Li, T.; Li, G.X. Solvothermal synthesis of N-doped TiO2 nanoparticles using different nitrogen sources, and their photocatalytic activity for degradation of benzene. Chin. J. Catal., 2013, 34(12), 2263-2270.
[http://dx.doi.org/10.1016/S1872-2067(12)60722-0]
[104]
Wallace, L.A. Major sources of benzene exposure. Environ. Health Perspect., 1989, 82, 165-169.
[http://dx.doi.org/10.1289/ehp.8982165] [PMID: 2477239]
[105]
Reddy, P.; Kim, K-H.; Kim, Y-H. A review of photocatalytic treatment for various air pollutants. Asian J. Atmos. Environ., 2011, 5(3), 181-188.
[http://dx.doi.org/10.5572/ajae.2011.5.3.181]
[106]
Du, J.J.; Chen, W.; Zhang, C.; Liu, Y.; Zhao, C.X.; Dai, Y. Hydrothermal synthesis of porous TiO2 microspheres and their photocatalytic degradation of gaseous benzene. Chem. Eng. J., 2011, 170(1), 53-58.
[http://dx.doi.org/10.1016/j.cej.2011.03.027]
[107]
Wang, C.; Wu, T. TiO2 nanoparticles with efficient photocatalytic activity towards gaseous benzene degradation. Ceram. Int., 2015, 41(2), 2836-2839.
[http://dx.doi.org/10.1016/j.ceramint.2014.10.104]
[108]
Yadav, H.M.; Kim, J.S. Solvothermal synthesis of anatase TiO2-graphene oxide nanocomposites and their photocatalytic performance. J. Alloys Compd., 2016, 688, 123-129.
[http://dx.doi.org/10.1016/j.jallcom.2016.07.133]
[109]
Xie, H.; Zhu, L.; Wang, L.; Chen, S.; Yang, D.; Yang, L.; Gao, G.; Yuan, H. Photodegradation of benzene by TiO2 nanoparticles prepared by flame CVD process. Particuology, 2011, 9(1), 75-79.
[http://dx.doi.org/10.1016/j.partic.2010.05.010]
[110]
Binas, V.; Stefanopoulos, V.; Kiriakidis, G.; Papagiannakopoulos, P. Photocatalytic oxidation of gaseous benzene, toluene and xylene under UV and visible irradiation over Mn-doped TiO2 nanoparticles. J. Materiomics, 2019, 5(1), 56-65.
[http://dx.doi.org/10.1016/j.jmat.2018.12.003]
[111]
Liu, Y.L.; Shu, W.; Chen, K.Q.; Peng, Z.Y.; Chen, W. Enhanced photothermocatalytic synergetic activity toward gaseous benzene for Mo plus C-Codoped titanate nanobelts. ACS Catal., 2012, 2(12), 2557-2565.
[http://dx.doi.org/10.1021/cs300501e]
[112]
Hu, Y.; Chen, W.; Fu, J.P.; Ba, M.W.; Sun, F.Q.; Zhang, P.; Zou, J.Y. Hydrothermal synthesis of BiVO4/TiO2 composites and their application for degradation of gaseous benzene under visible light irradiation. Appl. Surf. Sci., 2018, 436, 319-326.
[http://dx.doi.org/10.1016/j.apsusc.2017.12.054]
[113]
Ren, C.J.; Qiu, W.; Zhang, H.L.; He, Z.J.; Chen, Y.Q. Degradation of benzene on TiO2/SiO2/Bi2O3 photocatalysts under UV and visible light. J. Mol. Catal. Chem., 2015, 398, 215-222.
[http://dx.doi.org/10.1016/j.molcata.2014.12.007]
[114]
Kim, M.S.; Liu, G.; Nam, W.K.; Kim, B.W. Preparation of porous carbon-doped TiO2 film by sol-gel method and its application for the removal of gaseous toluene in the optical fiber reactor. J. Ind. Eng. Chem., 2011, 17(2), 223-228.
[http://dx.doi.org/10.1016/j.jiec.2011.02.010]
[115]
Vulimiri, S.V.; Pratt, M.M.; Kulkarni, S.; Beedanagari, S.; Mahadevan, B. Reproductive and developmental toxicology: toxic solvents and gases. Reproductive and Developmental Toxicology; Elsevier, 2011, pp. 303-315.
[http://dx.doi.org/10.1016/B978-0-12-382032-7.10023-2]
[116]
McGregor, D. The genetic toxicology of toluene. Mutat. Res., 1994, 317(3), 213-228.
[http://dx.doi.org/10.1016/0165-1110(94)90003-5] [PMID: 7515155]
[117]
Lin, C.H.; Chang, C.Y.; Chang, Y.J.; Lee, J.W.; Hwa, M.Y.; Lee, Y.C. Glass fibers covered with TiO2 thin films by sol-gel method as a photocatalyst reactor to degradation toluene; Publ, T., Ed.; Advanced Materials Research, 2009, pp. 927-930.
[118]
Koli, V.B.; Kim, J.S. Photocatalytic oxidation for removal of gases toluene by TiO2-CeO2 nanocomposites under UV light irradiation. Mater. Sci. Semicond. Process., 2019, 94, 70-79.
[http://dx.doi.org/10.1016/j.mssp.2019.01.032]
[119]
Qiu, L.; Wang, Y.N.; Li, H.L.; Cao, G.; Ouyang, F.; Zhu, R.S. Photocatalytic oxidation of toluene on fluorine doped TiO2/SiO2 catalyst under simulant sunlight in a flat reactor. Catalysts, 2018, 8(12), 12.
[http://dx.doi.org/10.3390/catal8120596]
[120]
Kannangara, Y.Y.; Wijesena, R.; Rajapakse, R.; de Silva, K.N. Heterogeneous photocatalytic degradation of toluene in static environment employing thin films of nitrogen-doped nano-titanium dioxide. Int. Nano Lett., 2018, 8(1), 31-39.
[http://dx.doi.org/10.1007/s40089-018-0230-x]
[121]
Li, J-J.; Cai, S-C.; Xu, Z.; Chen, X.; Chen, J.; Jia, H-P.; Chen, J. Solvothermal syntheses of Bi and Zn co-doped TiO2 with enhanced electron-hole separation and efficient photodegradation of gaseous toluene under visible-light. J. Hazard. Mater., 2017, 325, 261-270.
[http://dx.doi.org/10.1016/j.jhazmat.2016.12.004] [PMID: 27940115]
[122]
Cheng, Y.Q.; Gao, X.; Zhang, X.X.; Su, J.X.; Wang, G.Q.; Wang, L.Y. Synthesis of a TiO2-Cu2O composite catalyst with enhanced visible light photocatalytic activity for gas-phase toluene. New J. Chem., 2018, 42(11), 9252-9259.
[http://dx.doi.org/10.1039/C8NJ00409A]
[123]
Huang, Y.; Ho, S.S.H.; Lu, Y.; Niu, R.; Xu, L.; Cao, J.; Lee, S. Removal of indoor volatile organic compounds via photocatalytic oxidation: A short review and prospect. Molecules, 2016, 21(1), 56.
[http://dx.doi.org/10.3390/molecules21010056] [PMID: 26742024]
[124]
Shie, J.L.; Lee, C.H.; Chiou, C.S.; Chang, C.T.; Chang, C.C.; Chang, C.Y. Photodegradation kinetics of formaldehyde using light sources of UVA, UVC and UVLED in the presence of composed silver titanium oxide photocatalyst. J. Hazard. Mater., 2008, 155(1-2), 164-172.
[http://dx.doi.org/10.1016/j.jhazmat.2007.11.043] [PMID: 18155832]
[125]
Han, Z.A.; Chang, V.W.C.; Zhang, L.; Tse, M.S.; Tan, O.K.; Hildemann, L.M. Preparation of TiO2-coated polyester fiber filter by spray-coating and its photocatalytic degradation of gaseous formaldehyde. Aerosol Air Qual. Res., 2012, 12(6), 1327-1335.
[http://dx.doi.org/10.4209/aaqr.2012.05.0114]
[126]
Liang, W.J.; Li, J.; Jin, Y.Q. Photo-catalytic degradation of gaseous formaldehyde by TiO2/UV, Ag/TiO2/UV and Ce/TiO2/UV. Build. Environ., 2012, 51, 345-350.
[http://dx.doi.org/10.1016/j.buildenv.2011.12.007]
[127]
Han, Z.N.; Chang, V.W.; Wang, X.P.; Lim, T.T.; Hildemann, L. Experimental study on visible-light induced photocatalytic oxidation of gaseous formaldehyde by polyester fiber supported photocatalysts. Chem. Eng. J., 2013, 218, 9-18.
[http://dx.doi.org/10.1016/j.cej.2012.12.025]
[128]
Yu, L.; Wang, L.; Sun, X.; Ye, D. Enhanced photocatalytic activity of rGO/TiO2 for the decomposition of formaldehyde under visible light irradiation. J. Environ. Sci. (China), 2018, 73, 138-146.
[http://dx.doi.org/10.1016/j.jes.2018.01.022] [PMID: 30290862]
[129]
Li, C.Y.; Jia, Y.R.; Zhang, X.C.; Zhang, S.Y.; Tang, A.D. Photocatalytic degradation of formaldehyde using mesoporous TiO2 prepared by evaporation-induced self-assembly. J. Cent. South Univ., 2014, 21(11), 4066-4070.
[http://dx.doi.org/10.1007/s11771-014-2398-1]
[130]
Gao, L.K.; Gan, W.T.; Xiao, S.L.; Zhan, X.X.; Li, J. Enhancement of photo-catalytic degradation of formaldehyde through loading anatase TiO2 and silver nanoparticle films on wood substrates. RSC Advances, 2015, 5(65), 52985-52992.
[http://dx.doi.org/10.1039/C5RA06390F]
[131]
Lee, S.S.; Lu, C.Y.; Wu, M.C. Study of the structure and characteristics of mesoporous TiO2 photocatalyst, and evaluation of its factors on gaseous formaldehyde removal by the analysis of ANOVA and S/N ratio. RSC Advances, 2018, 8(39), 22199-22215.
[http://dx.doi.org/10.1039/C8RA03557A]
[132]
Qu, X.G.; Liu, W.X.; Ma, J.; Cao, W.B. Research on photodegradation of formaldehyde by nanocrystalline N-TiO2 powders under visible light irradiation. Res. Chem. Intermed., 2009, 35(3), 313-320.
[http://dx.doi.org/10.1007/s11164-009-0026-8]
[133]
Zhou, Y.; Zhang, L.; Cheng, Z. Removal of organic pollutants from aqueous solution using agricultural wastes: A review. J. Mol. Liq., 2015, 212, 739-762.
[http://dx.doi.org/10.1016/j.molliq.2015.10.023]
[134]
Huang, Y.; Cao, J.J.; Kang, F.; You, S.J.; Chang, C.W.; Wang, Y.F. High selectivity of visible-light-driven La-doped TiO2 photocatalysts for NO removal. Aerosol Air Qual. Res., 2017, 17(10), 2555-2565.
[http://dx.doi.org/10.4209/aaqr.2017.08.0282]
[135]
Majidi, R.; Parhizkar, J.; Karamian, E. Photocatalytic removal of NOx gas from air by TiO2/Polymer composite nanofibers. Nanochem. Res., 2018, 3(2), 212-218.
[136]
Yao, J.; Zhang, Y.F.; Wang, Y.W.; Chen, M.J.; Huang, Y.; Cao, J.J.; Ho, W.K.; Lee, S.C. Enhanced photocatalytic removal of NO over titania/hydroxyapatite (TiO2/HAp) composites with improved adsorption and charge mobility ability. RSC Advances, 2017, 7(40), 24683-24689.
[http://dx.doi.org/10.1039/C7RA02157G]
[137]
Zhu, W.; Xiao, S.; Zhang, D.; Liu, P.; Zhou, H.; Dai, W.; Liu, F.; Li, H. Highly efficient and stable Au/CeO2-TiO2 photocatalyst for nitric oxide abatement: Potential application in flue gas treatment. Langmuir, 2015, 31(39), 10822-10830.
[http://dx.doi.org/10.1021/acs.langmuir.5b02232] [PMID: 26390086]
[138]
Lasek, J.; Yu, Y-H.; Wu, J.C. Removal of NOx by photocatalytic processes. J. Photochem. Photobiol. Photochem. Rev., 2013, 14, 29-52.
[http://dx.doi.org/10.1016/j.jphotochemrev.2012.08.002]
[139]
Nguyen, N.H.; Wu, H.Y.; Bai, H.L. Photocatalytic reduction of NO2 and CO2 using molybdenum-doped titania nanotubes. Chem. Eng. J., 2015, 269, 60-66.
[http://dx.doi.org/10.1016/j.cej.2015.01.099]
[140]
Nuño, M.; Ball, R.J.; Bowen, C.R.; Kurchania, R.; Sharma, G. Photocatalytic activity of electrophoretically deposited (EPD) TiO 2 coatings. J. Mater. Sci., 2015, 50(14), 4822-4835.
[http://dx.doi.org/10.1007/s10853-015-9022-0]
[141]
Pan, X. Sulfur oxides: Sources, exposures and health effects; Elsevier, 2011.
[142]
Bao, J.J.; Dai, Y.; Liu, H.; Yang, L.J. Photocatalytic removal of SO2 over Mn doped titanium dioxide supported by multi-walled carbon nanotubes. Int. J. Hydrogen Energy, 2016, 41(35), 15688-15695.
[http://dx.doi.org/10.1016/j.ijhydene.2016.03.174]
[143]
Wang, H.M.; You, C.F. Photocatalytic removal of low concentration SO2 by titanium dioxide. Chem. Eng. J., 2016, 292, 199-206.
[http://dx.doi.org/10.1016/j.cej.2016.02.017]
[144]
Dean, S.W. Natural Atmospheres: Corrosion In: Encyclopedia of Materials: Science and Technology; 2001; pp. 5930-5938..
[145]
Yuan, Y.; Zhang, J.Y.; Li, H.L.; Li, Y.; Zhao, Y.C.; Zheng, C.G. Simultaneous removal of SO2, NO and mercury using TiO2-aluminum silicate fiber by photocatalysis. Chem. Eng. J., 2012, 192, 21-28.
[http://dx.doi.org/10.1016/j.cej.2012.03.043]
[146]
Szatmary, L.; Subrt, J.; Kalousek, V.; Mosinger, J.; Lang, K. Low-temperature deposition of anatase on nanofiber materials for photocatalytic NOx removal. Catal. Today, 2014, 230, 74-78.
[http://dx.doi.org/10.1016/j.cattod.2013.09.023]
[147]
Suave, J.; Amorim, S.M.; Angelo, J.; Andrade, L.; Mendes, A.; Moreira, R. TiO2/reduced graphene oxide composites for photocatalytic degradation in aqueous and gaseous medium. J. Photochem. Photobiol. Chem., 2017, 348, 326-336.
[http://dx.doi.org/10.1016/j.jphotochem.2017.08.064]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy