Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

General Research Article

Variations in Mineral/heavy Metals Profiling and Preventive Role of Trichomes in Peach Fruits Treated with CaC2

Author(s): Muhammad Irfan, Safdar Abbas, Beenish Jehan Azhar, Shakeel Ahmad, Hafsah Muhammad*, Ishaq Ahmed, Javed Hussain and Samina N. Shakeel

Volume 24, Issue 4, 2021

Published on: 08 August, 2020

Page: [598 - 604] Pages: 7

DOI: 10.2174/1386207323666200808175723

Price: $65

Abstract

Background: Phytonutrients in peach fruits have health-promoting antioxidants against various chronic diseases. However, there is no extensive data to show the nutritional values of Local peach cultivars after post-harvest treatments.

Objective: Mainly this study was objective to determine the effect of calcium carbide on nutritional value and quality of fruits of Pakistani peach cultivars.

Methods: The peach fruits were collected from three different peach orchids of KPK and the fruits were divided into 4 groups while 5th group was collected from a local fruit shop. Each experimental group was treated with different concentrations of calcium carbide whereas control group was not treated. The peel and pulp samples were oven dried and ground to fine powder separately. The elemental compositions were determined using Particle Induced X-ray emission and Pelletron Tandem Accelerator.

Results: Sixteen elements were identified in peach fruits and the elements were Al, P, S, Cl, K, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, and Se. In peel, the concentration of some elements increased or decreased after treatment with CaC2 while in pulp the conc. of nearly all detected elements was increased in treated samples. We found a significantly higher amount of heavy metals traces, including As, Se, Co, Si, and P in peach fruits treated with CaC2. Interestingly, the presence of trichomes in peach skin prevents the transfer of these heavy metals deep into the pulp which was also verified by the elemental profiling of nectarines.

Conclusion: Conclusively, the artificial ripening with CaC2 changed the nutritional value of peach fruits that has higher health risks if consume with the peel. According to our best knowledge, this is the first report that highlights the effects of CaC2 which deteriorate the nutritional value of peach fruits in Pakistan.

Keywords: Phytonutrients, minerals, fruits, peach, artificial ripening, calcium carbide.

« Previous
[1]
Asif, M. Physico-chemical properties and toxic effect of fruit-ripening agent calcium carbide. Ann. Trop. Med. PH., 2012, 5(3), 150.
[http://dx.doi.org/10.4103/1755-6783.98602]
[2]
Medlicott, A.; Bhogal, M.; Reynolds, S. Changes in peel pigmentation during ripening of mango fruit (Mangifera indica var. Tommy Atkins). Ann. Appl. Biol., 1986, 109(3), 651-656.
[http://dx.doi.org/10.1111/j.1744-7348.1986.tb03222.x]
[3]
Kumar, B.; Sajwan, K.; Mukherjee, D. Distribution of heavy metals in valuable coastal fishes from North East Coast of India. Turk. J. Fish. Aquat. Sci., 2012, 12(1), 81-88.
[4]
Wasim, M.P. Trends, growth and variability of major fruit crops in Balochistan, Pakistan: 1989-2009. J. Agric. Biol. Sci., 2011, 6(12), 27-36.
[5]
Ceccarelli, A.; Farneti, B.; Frisina, C.; Allen, D.; Donati, I.; Cellini, A.; Costa, G.; Spinelli, F.; Stefanelli, D. Harvest maturity stage and cold storage length influence on flavour development in peach fruit. Agron., 2019, 9(1), 10.
[http://dx.doi.org/10.3390/agronomy9010010]
[6]
Yangılar, F. Production and evaluation of mineral and nutrient contents, chemical composition, and sensory properties of ice creams fortified with laboratory-prepared peach fibre. Food Nutr. Res., 2016, 60(1), 31882.
[http://dx.doi.org/10.3402/fnr.v60.31882] [PMID: 27814781]
[7]
Iordănescu, O.A.; Alexa, E.; Radulov, I.; Costea, A.; Dobrei, A.; Dobrei, A. Minerals and amino acids in peach (Prunus persica L.) cultivars and hybrids belonging to world germoplasm collection in the conditions of West Romania. Agric. Agric. Sci. Procedia, 2015, 6, 145-150.
[http://dx.doi.org/10.1016/j.aaspro.2015.08.051]
[8]
Boretti, A.; Banik, B.K. Intravenous Vitamin C for reduction of cytokines storm in Acute Respiratory Distress Syndrome. PharmaNutrition, 2020, 12100190
[http://dx.doi.org/10.1016/j.phanu.2020.100190] [PMID: 32322486]
[9]
Vinholes, J.; Gelain, D.; Vizzotto, M. Stone Fruits as a Source of Bioactive Compounds. Embrapa Clima Temperado-Capítulo em livro científico; ALICE, 2016, pp. 110-142.
[10]
Mitić, S.S.; Stojanović, B.T.; Pavlović, A.N.; Mitić, M.N.; Stojković, M.B. The phenol content, antioxidant activity and metal composition of the Serbian vineyard peach. Rev. Roum. Chim., 2013, 58, 533-541.
[11]
Tsantili, E.; Shin, Y.; Nock, J.F.; Watkins, C.B. Antioxidant concentrations during chilling injury development in peaches. Postharvest BioL Tech., 2010, 57(1), 27-34.
[http://dx.doi.org/10.1016/j.postharvbio.2010.02.002]
[12]
Ngo, B.; Van Riper, J.M.; Cantley, L.C.; Yun, J.; Yun, J. Targeting cancer vulnerabilities with high-dose vitamin C. Nat. Rev. Cancer, 2019, 19(5), 271-282.
[http://dx.doi.org/10.1038/s41568-019-0135-7] [PMID: 30967651]
[13]
Hussain, S.; Dar, K.R.; Kumar, A.; Maqbool, S.; Mehdi, Z.; Dar, M. Effect of different pruning intensities on growth and yield of nectarine (Prunus persica L. var. nucipersica) cv. snow queen. Int. J. Curr. Microbiol. Appl. Sci., 2019, 8(5), 639-643.
[http://dx.doi.org/10.20546/ijcmas.2019.805.074]
[14]
Minorsky, P.V. On the inside. Plant Physiol., 2008, 146(3), 1020-1021.
[http://dx.doi.org/10.1104/pp.104.900251]
[15]
Järup, L. Hazards of heavy metal contamination. Br. Med. Bull., 2003, 68(1), 167-182.
[http://dx.doi.org/10.1093/bmb/ldg032] [PMID: 14757716]
[16]
Bissen, M.; Frimmel, F.H. Arsenic—a review. Part I: occurrence, toxicity, speciation, mobility. Acta Hydrochim. Hydrobiol., 2003, 31(1), 9-18.
[http://dx.doi.org/10.1002/aheh.200390025]
[17]
Paul, S.K.; Islam, M.S.; Hasibuzzaman, M.M.; Hossain, F.; Anjum, A.; Saud, Z.A.; Haque, M.M.; Sultana, P.; Haque, A.; Andric, K.B.; Rahman, A.; Karim, M.R.; Siddique, A.E.; Karim, Y.; Rahman, M.; Miyataka, H.; Xin, L.; Himeno, S.; Hossain, K. Higher risk of hyperglycemia with greater susceptibility in females in chronic arsenic-exposed individuals in Bangladesh. Sci. Total Environ., 2019, 668, 1004-1012.
[http://dx.doi.org/10.1016/j.scitotenv.2019.03.029] [PMID: 31018442]
[18]
Liu, J.; Waalkes, M.P. Liver is a target of arsenic carcinogenesis. Toxicol. Sci., 2008, 105(1), 24-32.
[http://dx.doi.org/10.1093/toxsci/kfn120] [PMID: 18566022]
[19]
Siddique, A.E.; Rahman, M.; Hossain, M.I.; Karim, Y.; Hasibuzzaman, M.M.; Biswas, S.; Islam, M.S.; Rahman, A.; Hossen, F.; Mondal, V.; Banna, H.U.; Huda, N.; Hossain, M.; Sultana, P.; Nikkon, F.; Saud, Z.A.; Haque, A.; Nohara, K.; Xin, L.; Himeno, S.; Hossain, K. Association between chronic arsenic exposure and the characteristic features of asthma. Chemosphere, 2020, 246125790
[http://dx.doi.org/10.1016/j.chemosphere.2019.125790] [PMID: 31918100]
[20]
States, J.C.; Barchowsky, A.; Cartwright, I.L.; Reichard, J.F.; Futscher, B.W.; Lantz, R.C. Arsenic toxicology: translating between experimental models and human pathology. Environ. Health Perspect., 2011, 119(10), 1356-1363.
[http://dx.doi.org/10.1289/ehp.1103441] [PMID: 21684831]
[21]
Bronstein, A.C.; Spyker, D.A.; Cantilena, L.R., Jr; Green, J.L.; Rumack, B.H.; Dart, R.C. 2010 Annual Report of the American Association of Poison Control Centers’ National Poison Data System (NPDS): 28th Annual Report. Clin. Toxicol. (Phila.), 2011, 49(10), 910-941.
[http://dx.doi.org/10.3109/15563650.2011.635149] [PMID: 22165864]
[22]
Medda, N.; Patra, R.; Ghosh, T.K.; Maiti, S. Neurotoxic Mechanism of Arsenic: Synergistic Effect of Mitochondrial Instability, Oxidative Stress, and Hormonal-Neurotransmitter Impairment. Biol. Trace Elem. Res., 2020, 198(1), 8-15.
[http://dx.doi.org/10.1007/s12011-020-02044-8] [PMID: 31939057]
[23]
Naujokas, M.F.; Anderson, B.; Ahsan, H.; Aposhian, H.V.; Graziano, J.H.; Thompson, C.; Suk, W.A. The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environ. Health Perspect., 2013, 121(3), 295-302.
[http://dx.doi.org/10.1289/ehp.1205875] [PMID: 23458756]
[24]
Calvo, M.S.; Moshfegh, A.J.; Tucker, K.L. Assessing the health impact of phosphorus in the food supply: issues and considerations. Adv. Nutr., 2014, 5(1), 104-113.
[http://dx.doi.org/10.3945/an.113.004861] [PMID: 24425729]
[25]
Flocchini, R.; Feeney, P.; Sommerville, R.; Cahill, T. Sensitivity versus target backings for elemental analysis by alpha excited X-ray emission. Nucl. Instrum. Methods, 1972, 100(3), 397-402.
[http://dx.doi.org/10.1016/0029-554X(72)90813-0]
[26]
Pantelica, A.; Ene, A.; Gugiu, M.; Ciortea, C.; Constantinescu, O. PIXE analysis of some vegetable species. Rom. Rep. Phys., 2011, 63(4), 997-1008.
[27]
Kamal, F.M. Ahmed, N.; Mohee, F.; Abedin, M.; Shariff, A.; Saadat, A.; Hoque, A. F., Trace Element Analysis by PIXE in Soil Samples of Hazaribagh Tannery Area. J. Environ. Sci. (China), 2007, 5, 31-36.
[28]
Bertrand, M.; Weber, G.; Schoefs, B.T. Metal determination and quantification in biological material using particle-induced X-ray emission. Trends Analyt. Chem., 2003, 22(4), 254-262.
[http://dx.doi.org/10.1016/S0165-9936(03)00405-9]
[29]
Liao, X.; Greenspan, P.; Pegg, R.B. Characterizing the phenolic constituents and antioxidant capacity of Georgia peaches. Food Chem., 2019, 271, 345-353.
[http://dx.doi.org/10.1016/j.foodchem.2018.07.163] [PMID: 30236686]
[30]
Manzoor, M.; Anwar, F.; Mahmood, Z.; Rashid, U.; Ashraf, M. Variation in minerals, phenolics and antioxidant activity of peel and pulp of different varieties of peach (Prunus persica L.) fruit from Pakistan. Molecules, 2012, 17(6), 6491-6506.
[http://dx.doi.org/10.3390/molecules17066491] [PMID: 22728349]
[31]
Irniza, R.; Sarva, M.; Emilia, Z. calcium carbide (CaC2) exposure from fruit ripening process and health effects among fruit farmers: a research review. Int. J. Pub. Heal. Clin. Sci., 2018, 5(2), 91-101.
[32]
Hossain, M.; Akhtar, S.; Anwar, M. Health hazards posed by the consumption of artificially ripened fruits in Bangladesh. Int. Food Res. J., 2015, 22(5), 1755.
[33]
Bingham, E.; Cohrssen, B.; Powell, C. Patty’s toxicology. toxicology issues, inorganic particulates, dusts, products of biological origin and pathogens; John Wiley and Sons, 2001. 1.
[http://dx.doi.org/10.1002/0471125474]
[34]
Ur-Rahman, A.; Chowdhury, F.R.; Alam, M.B. Artificial ripening: what we are eating. J. Med., 2008, 9(1), 42-44.
[http://dx.doi.org/10.3329/jom.v9i1.1425]
[35]
Srivastava, S. Food adulteration affecting the nutrition and health of human beings. Journal of Biol. Sci. Med., 2015, 1(1), 65-70.
[36]
Siddiqui, M.W.; Dhua, R. Eating artificially ripened fruits is harmful; Cur. Sci, 2010, pp. 1664-1668.
[37]
Chandel, R.; Sharma, P.; Gupta, A. Method for detection and removal of arsenic residues in calcium carbide ripened mangoes. J. Food Process. Preserv., 2018, 42(2)e13420
[http://dx.doi.org/10.1111/jfpp.13420]
[38]
Haturusihghe, L.; De Silva, D.; Wimlasena, S. Quantification of arsenic and phosphorus in calcium carbide treated mangoes Proc. Adv. Sci., 2004, 60.
[39]
Hassan, S.; Mazhar, W.; Farooq, S.; Ali, A.; Musharraf, S.G. Assessment of heavy metals in calcium carbide treated mangoes by inductively coupled plasma-mass spectrometry (ICP-MS). Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2019, 36(12), 1769-1776.
[http://dx.doi.org/10.1080/19440049.2019.1671990] [PMID: 31603735]
[40]
Dabbou, S.; Maatallah, S.; Castagna, A.; Guizani, M.; Sghaeir, W.; Hajlaoui, H.; Ranieri, A. Carotenoids, phenolic profile, mineral content and antioxidant properties in flesh and peel of Prunus persica fruits during two maturation stages. Plant Foods Hum. Nutr., 2017, 72(1), 103-110.
[http://dx.doi.org/10.1007/s11130-016-0585-y] [PMID: 27812831]
[41]
Hussain, A.; Yasmin, A.; Ali, J. Comparative study of chemical composition of some dried apricot varieties grown in northern areas of Pakistan. Pak. J. Bot., 2010, 42(4), 2497-2502.
[42]
Per, H.; Kurtoğlu, S.; Yağmur, F.; Gümüş, H.; Kumandaş, S.; Poyrazoğlu, M.H. Calcium carbide poisoning via food in childhood. J. Emerg. Med., 2007, 32(2), 179-180.
[http://dx.doi.org/10.1016/j.jemermed.2006.05.049] [PMID: 17307629]
[43]
Jeffree, C.E. The fine structure of the plant cuticle: Biology of the plant cuticle. Ann. Plant Rev., 2006, 23, 11-125.
[44]
Stavrianakou, S.; Liakopoulos, G.; Miltiadou, D.; Markoglou, A.N.; Ziogas, B.N.; Karabourniotis, G. Antifungal and antibacterial capacity of extracted material from non-glandular and glandular leaf hairs applied at physiological concentrations. Plant Stress, 2010, 4(1), 25-30.
[45]
Karabourniotis, G.; Liakopoulos, G.; Nikolopoulos, D.; Bresta, P. Protective and defensive roles of non-glandular trichomes against multiple stresses: structure–function coordination. J. For. Res., 2020, 31, 1-12.
[http://dx.doi.org/10.1007/s11676-019-01034-4]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy