Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Network Pharmacology and Intestinal Microbiota Analysis Revealing the Mechanism of Punicalagin Improving Bacterial Enteritis

Author(s): Shuyun Huang, Ying Wang, Qingsong Zhu, Hongmin Guo, Zongyuan Hong and Shuzhi Zhong*

Volume 20, Issue 2, 2024

Published on: 15 June, 2023

Page: [104 - 120] Pages: 17

DOI: 10.2174/1573409919666230526165501

open access plus

Abstract

Background: The Chinese medicine punicalagin (Pun), the most important active ingredient in pomegranate peel, has significant bacteriostatic and anti-inflammatory properties. The potential mechanisms of Pun for bacterial enteritis, however, are unknown.

Objective: The goal of our research is to investigate the mechanism of Pun in the treatment of bacterial enteritis using computer-aided drug technology, as well as to investigate the intervention effect of Pun on mice with bacterial enteritis using intestinal flora sequencing.

Methods: The targets of Pun and Bacterial enteritis were obtained by using the specific database, and cross-targets were screened among these targets, followed by PPI and enrichment analysis of the targets. Furthermore, the degree of binding between Pun and key targets was predicted through molecular docking. After successfully establishing the bacterial enteritis model in vivo, mice were randomly assigned to groups. They were treated for 7 days, the symptoms were observed daily, and the daily DAI and body weight change rate were calculated. Following administration, the intestinal tissue was removed, and the contents were separated. The tight junction protein expression was detected in the small intestine by the immunohistochemical method; ELISA and Western Blot (WB) were performed to detect the expressions of tumor necrosis factor-α (TNF-α) and interleukin- 6 (IL-6) in the serum and intestinal wall of mice. The 16S rRNA sequence was used to determine the composition and diversity of the intestinal flora of mice.

Results: In total, 130 intersection targets of Pun and disease were screened by network pharmacology. The enrichment analysis showed cross genes were closely related and enriched in the cancer regulation and the TNF signal pathway. The active components of Pun could specifically bind to the core targets TNF, IL-6, etc., determined from molecular docking results. In vivo experiment results showed that the symptoms in the PUN group mice were alleviated, and the expression levels of TNF-α and IL-6 were significantly reduced. A Pun can cause substantial changes in the intestinal flora of mice in terms of structure and function.

Conclusion: Pun plays a multi-target role in alleviating bacterial enteritis by regulating intestinal flora.

Keywords: Punicalagin, bacterial enteritis, network pharmacology, intestinal flora, molecular docking, anti-inflammatory.

Next »
[1]
Ashkenazi, S.; Schwartz, E. Traveler’s diarrhea in children: New insights and existing gaps. Travel Med. Infect. Dis., 2020, 34, 101503.
[http://dx.doi.org/10.1016/j.tmaid.2019.101503] [PMID: 31654742]
[2]
Bi, C.; Jing, W.; Xie, X.; Liu, Y. Efficacy and mechanism of traditional Chinese medicine in relieving antibiotic-resistant bacterial diarrhea in children: Study protocol for a randomized controlled trial. Trials, 2021, 22(1), 426.
[http://dx.doi.org/10.1186/s13063-021-05381-8] [PMID: 34187535]
[3]
Westermarck, E. Chronic diarrhea in dogs: What do we actually know about it? Top. Companion Anim. Med., 2016, 31(2), 78-84.
[http://dx.doi.org/10.1053/j.tcam.2016.03.001] [PMID: 27968758]
[4]
Li, G.; Feng, Y.; Xu, Y.; Wu, Q.; Han, Q.; Liang, X.; Yang, B.; Wang, X.; Xia, X. The anti-infective activity of punicalagin against Salmonella enterica subsp. enterica serovar typhimurium in mice. Food Funct., 2015, 6(7), 2357-2364.
[http://dx.doi.org/10.1039/C5FO00053J] [PMID: 26084785]
[5]
Bialonska, D.; Kasimsetty, S.G.; Schrader, K.K.; Ferreira, D. The effect of pomegranate (Punica granatum L.) byproducts and ellagitannins on the growth of human gut bacteria. J. Agric. Food Chem., 2009, 57(18), 8344-8349.
[http://dx.doi.org/10.1021/jf901931b] [PMID: 19705832]
[6]
Brighenti, V.; Iseppi, R.; Pinzi, L.; Mincuzzi, A.; Ippolito, A.; Messi, P.; Sanzani, S.M.; Rastelli, G.; Pellati, F. Antifungal activity and DNA topoisomerase inhibition of hydrolysable tannins from Punica granatum L. Int. J. Mol. Sci., 2021, 22(8), 4175.
[http://dx.doi.org/10.3390/ijms22084175] [PMID: 33920681]
[7]
Neyrinck, A.M.; Van Hée, V.F.; Bindels, L.B.; De Backer, F.; Cani, P.D.; Delzenne, N.M. Polyphenol-rich extract of pomegranate peel alleviates tissue inflammation and hypercholesterolaemia in high-fat diet-induced obese mice: potential implication of the gut microbiota. Br. J. Nutr., 2013, 109(5), 802-809.
[http://dx.doi.org/10.1017/S0007114512002206] [PMID: 22676910]
[8]
Akdis, C.A. Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions? Nat. Rev. Immunol., 2021, 21(11), 739-751.
[http://dx.doi.org/10.1038/s41577-021-00538-7] [PMID: 33846604]
[9]
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: A data-base of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[10]
Guo, W.; Huang, J.; Wang, N.; Tan, H.Y.; Cheung, F.; Chen, F.; Feng, Y. Integrating network pharmacology and pharmacological evaluation for deciphering the action mechanism of herbal formula zuojin pill in suppressing hepatocellular carcinoma. Front. Pharmacol., 2019, 10, 1185.
[http://dx.doi.org/10.3389/fphar.2019.01185] [PMID: 31649545]
[11]
Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res., 2021, 49(D1), D605-D612.
[http://dx.doi.org/10.1093/nar/gkaa1074] [PMID: 33237311]
[12]
The Gene Ontology Consortium. Expansion of the Gene Ontology knowledgebase and resources. Nucleic Acids Res., 2017, 45(D1), D331-D338.
[http://dx.doi.org/10.1093/nar/gkw1108] [PMID: 27899567]
[13]
Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res., 2017, 45(D1), D353-D361.
[http://dx.doi.org/10.1093/nar/gkw1092] [PMID: 27899662]
[14]
Aucar, M.G.; Cavasotto, C.N. Molecular docking using quantum mechanical-based methods. Methods Mol. Biol., 2020, 2114, 269-284.
[http://dx.doi.org/10.1007/978-1-0716-0282-9_17] [PMID: 32016899]
[15]
Xu, B.; Yan, Y.; Huang, J.; Yin, B.; Pan, Y.; Ma, L. Cortex Phellodendri extract's anti-diarrhea effect in mice related to its modification of gut microbiota. Biomedecine & pharmacotherapie, 2020, 123, 109720.
[http://dx.doi.org/10.1016/j.biopha.2019.109720]
[16]
Chen, R.; Wang, J.; Zhan, R.; Zhang, L.; Wang, X. Fecal metabonomics combined with 16S rRNA gene sequencing to analyze the changes of gut microbiota in rats with kidney-yang deficiency syndrome and the intervention effect of You-gui pill. J. Ethnopharmacol., 2019, 244, 112139.
[http://dx.doi.org/10.1016/j.jep.2019.112139] [PMID: 31401318]
[17]
Hsin, K.Y.; Ghosh, S.; Kitano, H. Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology. PLoS One, 2013, 8(12), e83922.
[http://dx.doi.org/10.1371/journal.pone.0083922] [PMID: 24391846]
[18]
Wu, H.; Chen, Q. Y.; Wang, W. Z.; Chu, S.; Liu, X. X.; Liu, Y. J.; Tan, C.; Zhu, F.; Deng, S. J.; Dong, Y. L.; Yu, T.; Gao, F.; He, H. X.; Leng, X. Y.; Fan, H. Compound sophorae decoction enhances intestinal barrier function of dextran sodium sulfate induced colitis via regulating notch signaling pathway in mice. Biomedecine & pharmacotherapie, 2021, 133, 110937.
[http://dx.doi.org/10.1016/j.biopha.2020.110937]
[19]
Bandsma, R.H.J.; Sadiq, K.; Bhutta, Z.A. Persistent diarrhoea: Current knowledge and novel concepts. Paediatr. Int. Child Health, 2019, 39(1), 41-47.
[http://dx.doi.org/10.1080/20469047.2018.1504412] [PMID: 30079818]
[20]
Arasaradnam, R.P.; Brown, S.; Forbes, A.; Fox, M.R.; Hungin, P.; Kelman, L.; Major, G.; O’Connor, M.; Sanders, D.S.; Sinha, R.; Smith, S.C.; Thomas, P.; Walters, J.R.F. Guidelines for the investigation of chronic diarrhoea in adults: British Society of Gastroenterology, 3rd edition. Gut, 2018, 67(8), 1380-1399.2018.
[http://dx.doi.org/10.1136/gutjnl-2017-315909] [PMID: 29653941]
[21]
Szajewska, H.; Kołodziej, M. Systematic review with meta-analysis: Saccharomyces boulardii in the prevention of antibiotic-associated diarrhoea. Aliment. Pharmacol. Ther., 2015, 42(7), 793-801.
[http://dx.doi.org/10.1111/apt.13344] [PMID: 26216624]
[22]
Chen, T.; Zhang, X.; Zhu, G.; Liu, H.; Chen, J.; Wang, Y.; He, X. Quercetin inhibits TNF-α induced HUVECs apoptosis and inflammation via downregulating NF-kB and AP-1 signaling pathway in vitro. Medicine, 2020, 99(38), e22241.
[http://dx.doi.org/10.1097/MD.0000000000022241] [PMID: 32957369]
[23]
Jing, B.; Wang, T.; Sun, B.; Xu, J.; Xu, D.; Liao, Y.; Song, H.; Guo, W.; Li, K.; Hu, M.; Zhang, S.; Ling, J.; Kuang, Y.; Zhang, T.; Zhou, B.P.; Yao, F.; Deng, J. IL6/STAT3 signaling orchestrates premetastatic niche formation and immunosuppressive traits in lung. Cancer Res., 2020, 80(4), 784-797.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-2013] [PMID: 31848193]
[24]
Cao, Y.; Chen, J.; Ren, G.; Zhang, Y.; Tan, X.; Yang, L. Punicalagin prevents inflammation in LPS-induced RAW264.7 macrophages by inhibiting FoxO3a/Autophagy signaling pathway. Nutrients, 2019, 11(11), 2794.
[http://dx.doi.org/10.3390/nu11112794] [PMID: 31731808]
[25]
Peng, L.; Wen, L.; Shi, Q.F.; Gao, F.; Huang, B.; Meng, J.; Hu, C.P.; Wang, C.M. Scutellarin ameliorates pulmonary fibrosis through inhibiting NF-κB/NLRP3-mediated epithelial–mesenchymal transition and inflammation. Cell Death Dis., 2020, 11(11), 978.
[http://dx.doi.org/10.1038/s41419-020-03178-2] [PMID: 33188176]
[26]
Donehower, L.A.; Soussi, T.; Korkut, A.; Liu, Y.; Schultz, A.; Cardenas, M.; Li, X.; Babur, O.; Hsu, T.K.; Lichtarge, O.; Weinstein, J.N.; Akbani, R.; Wheeler, D.A. Integrated analysis of TP53 gene and pathway alterations in the cancer genome atlas. Cell Rep., 2019, 28(5), 1370-1384.e5.
[http://dx.doi.org/10.1016/j.celrep.2019.07.001] [PMID: 31365877]
[27]
Vila Ellis, L.; Cain, M.P.; Hutchison, V.; Flodby, P.; Crandall, E.D.; Borok, Z.; Zhou, B.; Ostrin, E.J.; Wythe, J.D.; Chen, J. Epithelial vegfa specifies a distinct endothelial population in the mouse lung. Dev. Cell, 2020, 52(5), 617-630.e6.
[http://dx.doi.org/10.1016/j.devcel.2020.01.009] [PMID: 32059772]
[28]
Hu, L.; Chen, M.; Chen, X.; Zhao, C.; Fang, Z.; Wang, H.; Dai, H. Chemotherapy-induced pyroptosis is mediated by BAK/BAX-caspase-3-GSDME pathway and inhibited by 2-bromopalmitate. Cell Death Dis., 2020, 11(4), 281.
[http://dx.doi.org/10.1038/s41419-020-2476-2] [PMID: 32332857]
[29]
Kuo, W.T.; Shen, L.; Zuo, L.; Shashikanth, N.; Ong, M.L.D.M.; Wu, L.; Zha, J.; Edelblum, K.L.; Wang, Y.; Wang, Y.; Nilsen, S.P.; Turner, J.R. Inflammation-induced occludin downregulation limits epithelial apoptosis by suppressing Caspase-3 expression. Gastroenterology, 2019, 157(5), 1323-1337.
[http://dx.doi.org/10.1053/j.gastro.2019.07.058] [PMID: 31401143]
[30]
Sheahan, B.J.; Freeman, A.N.; Keeley, T.M.; Samuelson, L.C.; Roper, J.; Hasapis, S.; Lee, C.L.; Dekaney, C.M. Epithelial regeneration after doxorubicin arises primarily from early progeny of active intestinal stem cells. Cell. Mol. Gastroenterol. Hepatol., 2021, 12(1), 119-140.
[http://dx.doi.org/10.1016/j.jcmgh.2021.01.015] [PMID: 33571711]
[31]
Siersbæk, R.; Scabia, V.; Nagarajan, S.; Chernukhin, I.; Papachristou, E.K.; Broome, R.; Johnston, S.J.; Joosten, S.E.P.; Green, A.R.; Kumar, S.; Jones, J.; Omarjee, S.; Alvarez-Fernandez, R.; Glont, S.; Aitken, S.J.; Kishore, K.; Cheeseman, D.; Rakha, E.A.; D’Santos, C.; Zwart, W.; Russell, A.; Brisken, C.; Carroll, J.S. IL6/STAT3 signaling hijacks estrogen receptor α enhancers to drive breast cancer metastasis. Cancer Cell, 2020, 38(3), 412-423.e9.
[http://dx.doi.org/10.1016/j.ccell.2020.06.007] [PMID: 32679107]
[32]
Jia, X.; Wen, Z.; Sun, Q.; Zhao, X.; Yang, H.; Shi, X.; Xin, T. Apatinib suppresses the proliferation and apoptosis of gastric cancer cells via the PI3K/Akt signaling pathway. J. BUON, 2019, 24(5), 1985-1991.
[PMID: 31786865]
[33]
Chen, Y.H.; Yang, S.F.; Yang, C.K.; Tsai, H.D.; Chen, T.H.; Chou, M.C.; Hsiao, Y.H. Metformin induces apoptosis and inhibits migration by activating the AMPK/p53 axis and suppressing PI3K/AKT signaling in human cervical cancer cells. Mol. Med. Rep., 2020, 23(1), 88.
[http://dx.doi.org/10.3892/mmr.2020.11725] [PMID: 33236135]
[34]
Li, S.; Dai, Q.; Zhang, S.; Liu, Y.; Yu, Q.; Tan, F.; Lu, S.; Wang, Q.; Chen, J.; Huang, H.; Liu, P.; Li, M. Ulinastatin attenuates LPS-induced inflammation in mouse macrophage RAW264.7 cells by inhibiting the JNK/NF-κB signaling pathway and activating the PI3K/Akt/Nrf2 pathway. Acta Pharmacol. Sin., 2018, 39(8), 1294-1304.
[http://dx.doi.org/10.1038/aps.2017.143] [PMID: 29323338]
[35]
Zhang, X.; Hu, F.; Li, G.; Li, G.; Yang, X.; Liu, L.; Zhang, R.; Zhang, B.; Feng, Y. Human colorectal cancer-derived mesenchymal stem cells promote colorectal cancer progression through IL-6/JAK2/STAT3 signaling. Cell Death Dis., 2018, 9(2), 25.
[http://dx.doi.org/10.1038/s41419-017-0176-3] [PMID: 29348540]
[36]
Tuganbaev, T.; Mor, U.; Bashiardes, S.; Liwinski, T.; Nobs, S.P.; Leshem, A.; Dori-Bachash, M.; Thaiss, C.A.; Pinker, E.Y.; Ratiner, K.; Adlung, L.; Federici, S.; Kleimeyer, C.; Moresi, C.; Yamada, T.; Cohen, Y.; Zhang, X.; Massalha, H.; Massasa, E.; Kuperman, Y.; Koni, P.A.; Harmelin, A.; Gao, N.; Itzkovitz, S.; Honda, K.; Shapiro, H.; Elinav, E. Diet diurnally regulates small intestinal microbiome-epithelial-immune homeostasis and enteritis. Cell, 2020, 182(6), 1441-1459.e21.
[http://dx.doi.org/10.1016/j.cell.2020.08.027] [PMID: 32888430]
[37]
Zihni, C.; Mills, C.; Matter, K.; Balda, M.S. Tight junctions: from simple barriers to multifunctional molecular gates. Nat. Rev. Mol. Cell Biol., 2016, 17(9), 564-580.
[http://dx.doi.org/10.1038/nrm.2016.80] [PMID: 27353478]
[38]
Kim, S.; Kim, G.H. Roles of claudin-2, ZO-1 and occludin in leaky HK-2 cells. PLoS One, 2017, 12(12), e0189221.
[http://dx.doi.org/10.1371/journal.pone.0189221] [PMID: 29252987]
[39]
Gomes, A.C.; Hoffmann, C.; Mota, J.F. The human gut microbiota: Metabolism and perspective in obesity. Gut Microbes, 2018, 9(4), 1-18.
[http://dx.doi.org/10.1080/19490976.2018.1465157] [PMID: 29667480]
[40]
Camilleri, M.; Madsen, K.; Spiller, R.; Van Meerveld, B.G.; Verne, G.N. Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterol. Motil., 2012, 24(6), 503-512.
[http://dx.doi.org/10.1111/j.1365-2982.2012.01921.x] [PMID: 22583600]
[41]
Wisniewski, P.J.; Dowden, R.A.; Campbell, S.C. Role of dietary lipids in modulating inflammation through the gut microbiota. Nutrients, 2019, 11(1), 117.
[http://dx.doi.org/10.3390/nu11010117] [PMID: 30626117]
[42]
Laudadio, I.; Fulci, V.; Palone, F.; Stronati, L.; Cucchiara, S.; Carissimi, C. Quantitative assessment of shotgun metagenomics and 16S rDNA amplicon sequencing in the study of human gut microbiome. OMICS, 2018, 22(4), 248-254.
[http://dx.doi.org/10.1089/omi.2018.0013] [PMID: 29652573]
[43]
Pei, Z.; Xiaowei, W.; Yajuan, L.; Yuanhong, X. Exploring the characteristics of intestinal microbiota in hematologic malignancy patients via 16s rDNA high-throughput sequencing. Clin. Lab., 2021, 67(02/2021)
[http://dx.doi.org/10.7754/Clin.Lab.2020.200448] [PMID: 33616341]
[44]
Dong, S.; jiao, J.; Jia, S.; Li, G.; Zhang, W.; Yang, K.; Wang, Z.; Liu, C.; Li, D.; Wang, X. 16S rDNA full-length assembly sequencing technology analysis of intestinal microbiome in polycystic ovary syndrome. Front. Cell. Infect. Microbiol., 2021, 11, 634981.
[http://dx.doi.org/10.3389/fcimb.2021.634981] [PMID: 34041041]
[45]
Mun, S.H.; Kang, O.H.; Kong, R.; Zhou, T.; Kim, S.A.; Shin, D.W.; Kwon, D.Y. Punicalagin suppresses methicillin resistance of Staphylococcus aureus to oxacillin. J. Pharmacol. Sci., 2018, 137(4), 317-323.
[http://dx.doi.org/10.1016/j.jphs.2017.10.008] [PMID: 30150143]
[46]
Megrian, D.; Taib, N.; Witwinowski, J.; Beloin, C.; Gribaldo, S. One or two membranes? Diderm Firmicutes challenge the Gram‐positive/Gram‐negative divide. Mol. Microbiol., 2020, 113(3), 659-671.
[http://dx.doi.org/10.1111/mmi.14469] [PMID: 31975449]
[47]
Larsbrink, J.; McKee, L.S. Bacteroidetes bacteria in the soil: Glycan acquisition, enzyme secretion, and gliding motility. Adv. Appl. Microbiol., 2020, 110, 63-98.
[http://dx.doi.org/10.1016/bs.aambs.2019.11.001] [PMID: 32386606]
[48]
Yan, X.; Jin, J.; Su, X.; Yin, X.; Gao, J.; Wang, X.; Zhang, S.; Bu, P.; Wang, M.; Zhang, Y.; Wang, Z.; Zhang, Q. Intestinal flora modulates blood pressure by regulating the synthesis of intestinal-derived corticosterone in high salt-induced hypertension. Circ. Res., 2020, 126(7), 839-853.
[http://dx.doi.org/10.1161/CIRCRESAHA.119.316394] [PMID: 32078445]
[49]
Milani, C.; Duranti, S.; Bottacini, F.; Casey, E.; Turroni, F.; Mahony, J.; Belzer, C.; Delgado Palacio, S.; Arboleya Montes, S.; Mancabelli, L.; Lugli, G.A.; Rodriguez, J.M.; Bode, L.; de Vos, W.; Gueimonde, M.; Margolles, A.; van Sinderen, D.; Ventura, M. The first microbial colonizers of the human gut: Composition, activities, and health implications of the infant gut microbiota. Microbiol. Mol. Biol. Rev., 2017, 81(4), e00036-e17.
[http://dx.doi.org/10.1128/MMBR.00036-17] [PMID: 29118049]
[50]
Shin, N.R.; Whon, T.W.; Bae, J.W. Proteobacteria: Microbial signature of dysbiosis in gut microbiota. Trends Biotechnol., 2015, 33(9), 496-503.
[http://dx.doi.org/10.1016/j.tibtech.2015.06.011] [PMID: 26210164]
[51]
Gresse, R.; Chaucheyras-Durand, F.; Fleury, M.A.; Van de Wiele, T.; Forano, E.; Blanquet-Diot, S. Gut microbiota dysbiosis in postweaning piglets: Understanding the keys to health. Trends Microbiol., 2017, 25(10), 851-873.
[http://dx.doi.org/10.1016/j.tim.2017.05.004] [PMID: 28602521]

© 2024 Bentham Science Publishers | Privacy Policy