Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Exploring the Mechanism of the Baishao Luoshi Formula against Poststroke Spasticity by Network Pharmacology and Experimental Validation

Author(s): Shanshan Zeng, Le Xie*, Guo Mao, Yao Xie, Sijia Cao, Dong Liu and Dahua Wu*

Volume 18, Issue 7, 2022

Published on: 21 November, 2022

Page: [480 - 492] Pages: 13

DOI: 10.2174/1573409918666220930102601

Price: $65

Abstract

Background: Post-stroke spasticity (PSS) is a major cause of disability, leading to severely impaired upper-limb flexibility and ability to walk and move, significantly affecting the quality of life of cerebral infarction patients. There is currently no recognized effective therapy. Alternatively, Chinese traditional medicine has shown promise for PSS treatment. In this regard, the BSLSF has been reported to be effective; however, its underlying mechanism remains unclear. Objective: The objective of this study is to clarify the main targets and pathways of Baishao Luoshi Formula (BSLSF) during PSS treatment, laying the foundation for further research on its pharmacological effects.

Methods: In this study, network pharmacology and experimental verification were conducted to explore the potential mechanism of BSLSF systematically. After obtaining active ingredients of BSLSF from the TCMSP database, SwissTarget-Prediction and PharMapper were used to uncover BSLSF targets. PSS-related targets were gathered with GeneCards and Online Mendelian Inheritance in Man. The differentially expressed genes between BSLSF and PSS were identified by a Venn plot. The drugactive ingredient-target interaction network and Protein-protein interaction (PPI) were constructed using Cytoscape and further analyzed using the MCC algorithm of CytoHubba plugin. Then, Pathway enrichment and GO biological process enrichment analyses were performed. Subsequently, a mice model of middle cerebral artery occlusion (MCAO) was established for the in vivo experiments.

Results: We found that AKT1, TNF, CASP3, VEGFA, and CREB1 were potential targets during PSS treatment. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses showed that the mechanism of PSS was closely related to synaptic plasticity. And the immunohistochemical staining showed that BSLSF protected against ischemic stroke via the CCR5/CREB signaling pathway and probably affected synaptic plasticity.

Conclusion: our study validated that treatment with BSLSF protected against ischemic stroke via the CCR5/CREB signaling pathway and could affect synaptic plasticity. In a sense, this study provides the basis for further extensive and in-depth analysis of BSLSF, enabling the quest for new drug targets at the same time.

Keywords: Stroke, spasticity, CCR5, CREB, synaptic plasticity, Traditional Chinese Medicine (TCM), network pharmacology.

Graphical Abstract
[1]
Wu, S.; Wu, B.; Liu, M.; Chen, Z.; Wang, W.; Anderson, C.S.; Sandercock, P.; Wang, Y.; Huang, Y.; Cui, L.; Pu, C.; Jia, J.; Zhang, T.; Liu, X.; Zhang, S.; Xie, P.; Fan, D.; Ji, X.; Wong, K.S.L.; Wang, L.; Wu, S.; Wu, B.; Liu, M.; Chen, Z.; Wang, W.; Anderson, C.S.; Sandercock, P.; Wang, Y.; Huang, Y.; Cui, L.; Pu, C.; Jia, J.; Zhang, T.; Liu, X.; Zhang, S.; Xie, P.; Fan, D.; Ji, X.; Wong, K-S.L.; Wang, L.; Wei, C.; Wang, Y.; Cheng, Y.; Liu, Y.; Li, X.; Dong, Q.; Zeng, J.; Peng, B.; Xu, Y.; Yang, Y.; Wang, Y.; Zhao, G.; Wang, W.; Xu, Y.; Yang, Q.; He, Z.; Wang, S.; You, C.; Gao, Y.; Zhou, D.; He, L.; Li, Z.; Yang, J.; Lei, C.; Zhao, Y.; Liu, J.; Zhang, S.; Tao, W.; Hao, Z.; Wang, D.; Zhang, S. Stroke in China: Advances and challenges in epidemiology, prevention, and management. Lancet Neurol., 2019, 18(4), 394-405.
[http://dx.doi.org/10.1016/S1474-4422(18)30500-3] [PMID: 30878104]
[2]
Mohd Nordin, N.A.; Yusoff, N.A.H.; Ajit Singh, D.K. Facilitating exercise engagement among community dwelling stroke survivors: Is a once per week group session sufficient? Int. J. Environ. Res. Public Health, 2019, 16(23), 4746.
[http://dx.doi.org/10.3390/ijerph16234746] [PMID: 31783575]
[3]
Baricich, A.; Picelli, A.; Molteni, F.; Guanziroli, E.; Santamato, A. Post stroke spasticity as a condition: a new perspective on patient evaluation. Funct. Neurol., 2016, 31(3), 179-180.
[PMID: 27678212]
[4]
Zorowitz, R.D.; Gillard, P.J.; Brainin, M. Poststroke spasticity: Sequelae and burden on stroke survivors and caregivers. Neurology, 2013, 80(3)(Suppl. 2), S45-S52.
[http://dx.doi.org/10.1212/WNL.0b013e3182764c86] [PMID: 23319485]
[5]
Thibaut, A.; Chatelle, C.; Ziegler, E.; Bruno, M.A.; Laureys, S.; Gosseries, O. Spasticity after stroke: Physiology, assessment and treatment. Brain Inj., 2013, 27(10), 1093-1105.
[http://dx.doi.org/10.3109/02699052.2013.804202] [PMID: 23885710]
[6]
Xie, L; Dahua, W U Effect of baishao luoshi decoction on spasticity after ischemic stroke. J. Hunan Univ. Nat. Sci., 2018, 38(1), 77-81.
[7]
Xie, L.; Xie, Y.; Mao, G.; Cao, S.; Fang, R.; Zhou, S.; Jiang, J.; Yao, T.; Fan, J.; Liu, D.; Wu, D.; Ge, J. Decreased spasticity of Baishaoluoshi Decoction through the BDNF/TrKB-KCC2 pathway on poststroke spasticity rats. Neuroreport, 2021, 32(14), 1183-1191.
[http://dx.doi.org/10.1097/WNR.0000000000001709] [PMID: 34284448]
[8]
Lv, X.; Xu, Z.; Xu, G.; Li, H.; Wang, C.; Chen, J.; Sun, J. Investigation of the active components and mechanisms of Schisandra chinensis in the treatment of asthma based on a network pharmacology approach and experimental validation. Food Funct., 2020, 11(4), 3032-3042.
[http://dx.doi.org/10.1039/D0FO00087F] [PMID: 32186565]
[9]
Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res., 2019, 47(W1), W357-W364.
[http://dx.doi.org/10.1093/nar/gkz382] [PMID: 31106366]
[10]
Wang, X.; Shen, Y.; Wang, S.; Li, S.; Zhang, W.; Liu, X.; Lai, L.; Pei, J.; Li, H. PharmMapper 2017 update: A web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res., 2017, 45(W1), W356-W360.
[http://dx.doi.org/10.1093/nar/gkx374] [PMID: 28472422]
[11]
Jiang, H.; Li, J.; Wang, L.; Wang, S.; Nie, X.; Chen, Y.; Fu, Q.; Jiang, M.; Fu, C.; He, Y. Total glucosides of paeony: A review of its phytochemistry, role in autoimmune diseases, and mechanisms of action. J. Ethnopharmacol., 2020, 258, 112913.
[http://dx.doi.org/10.1016/j.jep.2020.112913] [PMID: 32371143]
[12]
Hao, L.I.; Zhu, B.B.; Zhi-Yu, X.U. Research status of caulis trachelospermi. Central South Pharmacy, 2014, 12(5), 463-466.
[13]
Haque, M.N.; Bhuiyan, M.M.H.; Moon, I.S. Stigmasterol activates Cdc42-Arp2 and Erk1/2-Creb pathways to enrich glutamatergic synapses in cultures of brain neurons. Nutr. Res., 2018, 56, 71-78.
[http://dx.doi.org/10.1016/j.nutres.2018.04.022] [PMID: 30055776]
[14]
Haque, M.N.; Moon, I.S. Stigmasterol upregulates immediate early genes and promotes neuronal cytoarchitecture in primary hippocampal neurons as revealed by transcriptome analysis. Phytomedicine, 2018, 46, 164-175.
[http://dx.doi.org/10.1016/j.phymed.2018.04.012] [PMID: 30097115]
[15]
Leal, M.B.; Emanuelli, T.; Porciúncula, L.O.; Souza, D.O.; Elisabetsky, E. Ibogaine alters synaptosomal and glial glutamate release and uptake. Neuroreport, 2001, 12(2), 263-267.
[http://dx.doi.org/10.1097/00001756-200102120-00017] [PMID: 11209932]
[16]
Belgers, M.; Leenaars, M.; Homberg, J.R.; Ritskes-Hoitinga, M.; Schellekens, A F A.; Hooijmans, C.R. Ibogaine and addiction in the animal model, a systematic review and meta-analysis. Transl. Psychiatry, 2016, 6(5), e826.
[http://dx.doi.org/10.1038/tp.2016.71] [PMID: 27244235]
[17]
Wang, D.; Liu, L.; Li, S.; Wang, C. Effects of paeoniflorin on neurobehavior, oxidative stress, brain insulin signaling, and synaptic alterations in intracerebroventricular streptozotocin-induced cognitive impairment in mice. Physiol. Behav., 2018, 191, 12-20.
[http://dx.doi.org/10.1016/j.physbeh.2018.03.016] [PMID: 29572012]
[18]
Correia, S.C.; Santos, R.X.; Perry, G.; Zhu, X.; Moreira, P.I.; Smith, M.A. Insulin-resistant brain state: The culprit in sporadic Alzheimer’s disease? Ageing Res. Rev., 2011, 10(2), 264-273.
[http://dx.doi.org/10.1016/j.arr.2011.01.001] [PMID: 21262392]
[19]
Liu, S.C.; Hu, W.Y.; Zhang, W.Y.; Yang, L.; Li, Y.; Xiao, Z.C.; Zhang, M.; He, Z.Y. Paeoniflorin attenuates impairment of spatial learning and hippocampal long term potentiation in mice subjected to chronic unpredictable mild stress. Psychopharmacology (Berl.), 2019, 236(9), 2823-2834.
[http://dx.doi.org/10.1007/s00213-019-05257-5] [PMID: 31115613]
[20]
Buren, C.; Parsons, M.P.; Smith-Dijak, A.; Raymond, L.A. Impaired development of cortico-striatal synaptic connectivity in a cell culture model of Huntington’s disease. Neurobiol. Dis., 2016, 87, 80-90.
[http://dx.doi.org/10.1016/j.nbd.2015.12.009] [PMID: 26711622]
[21]
Yamashita, M.; Nonaka, T.; Hirai, S.; Miwa, A.; Okado, H.; Arai, T.; Hosokawa, M.; Akiyama, H.; Hasegawa, M. Distinct pathways leading to TDP-43-induced cellular dysfunctions. Hum. Mol. Genet., 2014, 23(16), 4345-4356.
[http://dx.doi.org/10.1093/hmg/ddu152] [PMID: 24698978]
[22]
Ahmad, F.; Singh, K.; Das, D.; Gowaikar, R.; Shaw, E.; Ramachandran, A.; Rupanagudi, K.V.; Kommaddi, R.P.; Bennett, D.A.; Ravin-dranath, V. Reactive oxygen species-mediated loss of synaptic Akt1 signaling leads to deficient activity dependent protein translation early in alzheimer’s disease. Antioxid. Redox Signal., 2017, 27(16), 1269-1280.
[http://dx.doi.org/10.1089/ars.2016.6860] [PMID: 28264587]
[23]
Levenga, J.; Wong, H.; Milstead, R.A.; Keller, B.N.; LaPlante, L.E.; Hoeffer, C.A. AKT isoforms have distinct hippocampal expression and roles in synaptic plasticity. eLife, 2017, 6, e30640.
[http://dx.doi.org/10.7554/eLife.30640] [PMID: 29173281]
[24]
Pen, Y.; Borovok, N.; Reichenstein, M.; Sheinin, A.; Michaelevski, I. Membrane-tethered AKT kinase regulates basal synaptic transmission and early phase LTP expression by modulation of post synaptic AMPA receptor level. Hippocampus, 2016, 26(9), 1149-1167.
[http://dx.doi.org/10.1002/hipo.22597] [PMID: 27068236]
[25]
Wang, D.O.; Martin, K.C.; Zukin, R.S. Spatially restricting gene expression by local translation at synapses. Trends Neurosci., 2010, 33(4), 173-182.
[http://dx.doi.org/10.1016/j.tins.2010.01.005] [PMID: 20303187]
[26]
Deyama, S.; Bang, E.; Wohleb, E.S.; Li, X.Y.; Kato, T.; Gerhard, D.M.; Dutheil, S.; Dwyer, J.M.; Taylor, S.R.; Picciotto, M.R.; Duman, R.S. Role of neuronal VEGF signaling in the prefrontal cortex in the rapid antidepressant effects of ketamine. Am. J. Psychiatry, 2019, 176(5), 388-400.
[http://dx.doi.org/10.1176/appi.ajp.2018.17121368] [PMID: 30606046]
[27]
Deyama, S.; Duman, R.S. Neurotrophic mechanisms underlying the rapid and sustained antidepressant actions of ketamine. Pharmacol. Biochem. Behav., 2020, 188, 172837.
[http://dx.doi.org/10.1016/j.pbb.2019.172837] [PMID: 31830487]
[28]
Katow, H.; Kanaya, T.; Ogawa, T.; Egawa, R.; Yawo, H. Regulation of axon arborization pattern in the developing chick ciliary ganglion: Possible involvement of caspase 3. Dev. Growth Differ., 2017, 59(3), 115-128.
[http://dx.doi.org/10.1111/dgd.12346] [PMID: 28430358]
[29]
Jo, J.; Whitcomb, D.J.; Olsen, K.M.; Kerrigan, T.L.; Lo, S.C.; Bru-Mercier, G.; Dickinson, B.; Scullion, S.; Sheng, M.; Collingridge, G.; Cho, K. Aβ1–42 inhibition of LTP is mediated by a signaling pathway involving caspase-3, Akt1 and GSK-3β. Nat. Neurosci., 2011, 14(5), 545-547.
[http://dx.doi.org/10.1038/nn.2785] [PMID: 21441921]
[30]
Li, Z.; Jo, J.; Jia, J.M.; Lo, S.C.; Whitcomb, D.J.; Jiao, S.; Cho, K.; Sheng, M. Caspase-3 activation viamitochondria is required for long-term depression and AMPA receptor internalization. Cell, 2010, 141(5), 859-871.
[http://dx.doi.org/10.1016/j.cell.2010.03.053] [PMID: 20510932]
[31]
D’Amelio, M.; Sheng, M.; Cecconi, F. Caspase-3 in the central nervous system: Beyond apoptosis. Trends Neurosci., 2012, 35(11), 700-709.
[http://dx.doi.org/10.1016/j.tins.2012.06.004] [PMID: 22796265]
[32]
Caracciolo, L.; Marosi, M.; Mazzitelli, J.; Latifi, S.; Sano, Y.; Galvan, L.; Kawaguchi, R.; Holley, S.; Levine, M.S.; Coppola, G.; Portera-Cailliau, C.; Silva, A.J.; Carmichael, S.T. CREB controls cortical circuit plasticity and functional recovery after stroke. Nat. Commun., 2018, 9(1), 2250.
[http://dx.doi.org/10.1038/s41467-018-04445-9] [PMID: 29884780]
[33]
Joy, M.T.; Ben Assayag, E.; Shabashov-Stone, D.; Liraz-Zaltsman, S.; Mazzitelli, J.; Arenas, M.; Abduljawad, N.; Kliper, E.; Korczyn, A.D.; Thareja, N.S.; Kesner, E.L.; Zhou, M.; Huang, S.; Silva, T.K.; Katz, N.; Bornstein, N.M.; Silva, A.J.; Shohami, E.; Carmichael, S.T. CCR5 is a therapeutic target for recovery after stroke and traumatic brain injury. Cell, 2019, 176(5), 1143-1157.e13.
[http://dx.doi.org/10.1016/j.cell.2019.01.044] [PMID: 30794775]
[34]
Li, S. Spasticity, motor recovery, and neural plasticity after stroke. Front. Neurol., 2017, 8, 120.
[http://dx.doi.org/10.3389/fneur.2017.00120] [PMID: 28421032]
[35]
Ward, N.S.; Brown, M.M.; Thompson, A.J.; Frackowiak, R.S. Neural correlates of motor recovery after stroke: A longitudinal fMRI study. Brain, 2003, 126(11), 2476-2496.
[http://dx.doi.org/10.1093/brain/awg245] [PMID: 12937084]
[36]
Boggio, P.S.; Nunes, A.; Rigonatti, S.P.; Nitsche, M.A.; Pascual-Leone, A.; Fregni, F. Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients. Restor. Neurol. Neurosci., 2007, 25(2), 123-129.
[PMID: 17726271]
[37]
Ward, N.S.; Swayne, O.B.C.; Newton, J.M. Age-dependent changes in the neural correlates of force modulation: An fMRI study. Neurobiol. Aging, 2008, 29(9), 1434-1446.
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.04.017] [PMID: 17566608]
[38]
Madhavan, S.; Krishnan, C.; Jayaraman, A.; Rymer, W.Z.; Stinear, J.W. Corticospinal tract integrity correlates with knee extensor weakness in chronic stroke survivors. Clin. Neurophysiol., 2011, 122(8), 1588-1594.
[http://dx.doi.org/10.1016/j.clinph.2011.01.011] [PMID: 21333591]
[39]
Pekna, M.; Pekny, M.; Nilsson, M. Modulation of neural plasticity as a basis for stroke rehabilitation. Stroke, 2012, 43(10), 2819-2828.
[http://dx.doi.org/10.1161/STROKEAHA.112.654228] [PMID: 22923444]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy