Generic placeholder image

Current Chinese Science

Editor-in-Chief

ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Research Article Section: Nanotechnology

Covariance Matching Based Adaptive Attitude Estimation of a Nano- Satellite Using SVD-Aided EKF

Author(s): Chingiz Hajiyev* and Demet Cilden-Guler

Volume 3, Issue 2, 2023

Published on: 17 October, 2022

Page: [154 - 163] Pages: 10

DOI: 10.2174/2210298102666220914094544

Abstract

Background: The covariance matching procedure of the measurement noise covariance, namely the R matrix, was processed in singular value decomposition (SVD), which is one of the single-frame methods.

Aims: Tuning the system noise covariance Q matrix for the single-frame method aided Kalman filtering algorithm.

Objective: Develop the R and Q double covariance matching rule for the single-frame method aided Kalman filtering algorithm.

Methods: The matching procedure of the measurement noise covariance, namely the R matrix, is processed in singular value decomposition (SVD), which is one of the single-frame methods. The second matching rule is defined in the second stage of the proposed EKF design.

Results: The matching rules are run simultaneously, which makes the filter capable of being robust against initialization errors, system noise uncertainties, and measurement malfunctions at the same time without an external filter design necessity.

Conclusion: A single-frame method aided Kalman filtering algorithm based double covariance matching rule is presented in this paper. First, the measurement noise covariance matching is introduced using the SVD method that processes the R-adaptation inherently for the filtering stage. Second, the system noise covariance matching is described so as to have double covariance matching at the same time during the estimation procedure. The SVD-Aided AEKF becomes R- and Qadaptive simultaneously by applying the Q-adaptation rule to the intrinsically R-adaptive SVDaided EKF.

Keywords: Covariance matching, SVD-aided EKF, attitude estimation, nanosatellite, adaptive filter, Single frame methods.

Graphical Abstract
[1]
Sekhavat, P.; Gong, Q.; Ross, I.M. NPSAT 1 parameter estimation using unscented Kalman filter. Proceedings of the 2007 American Control Conference, New York, USA2007, pp. 4445-4451.
[http://dx.doi.org/10.1109/ACC.2007.4283031]
[2]
Hajiyev, C.; Söken, H.E. Estimation of pico-satellite attitude dynamics and external torques via unscented Kalman filter. J. Aerosp. Technol. Manag., 2014, 6(2), 149-157.
[http://dx.doi.org/10.5028/jatm.v6i2.352]
[3]
Vinther, K.; Jensen, K.F.; Larsen, J.A.; Wisniewski, R. Inexpensive cubesat attitude estimation using quaternions and unscented Kalman filtering; Autom Control Aerosp, 2011, p. 4.
[4]
Springmann, J.C.; Cutler, J.W. Flight results of a low-cost attitude determination system. Acta Astronaut., 2014, 99, 201-214.
[http://dx.doi.org/10.1016/j.actaastro.2014.02.026]
[5]
Hajiyev, C.; Cilden Guler, D. Review on gyroless attitude determination methods for small satellites. Prog. Aerosp. Sci., 2017, 90, 54-66.
[http://dx.doi.org/10.1016/j.paerosci.2017.03.003]
[6]
Markley, F.L.; Crassidis, J.L. Fundamentals of Spacecraft Attitude Determination and Control; Springer: New York, 2014.
[http://dx.doi.org/10.1007/978-1-4939-0802-8]
[7]
Ivanov, D.; Ovchinnikov, M.; Roldugin, D. Three-axis attitude determination using magnetorquers. J. Guid. Control Dyn., 2018, 41(11), 2455-2462.
[http://dx.doi.org/10.2514/1.G003698]
[8]
Mashtakov, Y.; Ovchinnikov, M.; Wöske, F.; Rievers, B.; List, M. Attitude determination & control system design for gravity recovery missions like GRACE. Acta Astronaut., 2020, 173, 172-182.
[http://dx.doi.org/10.1016/j.actaastro.2020.04.019]
[9]
Belokonov, I.V.; Kramlikh, A.V.; Melnik, M.E. Application of artificial intelligence technology in the nanosatellite attitude determination problem. IOP Conf. Series Mater. Sci. Eng., 2020, 012036.
[http://dx.doi.org/10.1088/1757-899X/984/1/012036]
[10]
Lee, D.Y.; Park, H.; Romano, M.; Cutler, J. Development and experimental validation of a multi-algorithmic hybrid attitude determination and control system for a small satellite. Aerosp. Sci. Technol., 2018, 78, 494-509.
[http://dx.doi.org/10.1016/j.ast.2018.04.040]
[11]
Hajiyev, C.; Bahar, M. Attitude determination and control system design of the ITU-UUBF LEO1 satellite. Acta Astronaut., 2003, 52(2-6), 493-499.
[http://dx.doi.org/10.1016/S0094-5765(02)00192-3]
[12]
Mimasu, Y.; Van Der Ha, J.C. Attitude Determination Concept for QSAT. Transactions of the japan society for aeronautical and space sciences, space technology japan. 2009, 7(sts26), Pd_63-Pd_68.
[http://dx.doi.org/10.2322/tstj.7.Pd_6]
[13]
Hajiyev, C.; Cilden, D.; Somov, Y. Gyro-free attitude and rate estimation for a small satellite using SVD and EKF. Aerosp. Sci. Technol., 2016, 55, 324-331.
[http://dx.doi.org/10.1016/j.ast.2016.06.004]
[14]
Cilden, D.; Soken, H.E.; Hajiyev, C. Nanosatellite attitude estimation from vector measurements using SVD-AIDED UKF algorithm. Metrol. Meas. Syst., 2017, 24(1), 113-125.
[http://dx.doi.org/10.1515/mms-2017-0011]
[15]
Hajiyev, C. Adaptive filtration algorithm with the filter gain correction applied to integrated INS/radar altimeter. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng., 2007, 221(5), 847-855.
[http://dx.doi.org/10.1243/09544100JAERO173]
[16]
Kang, C.H.; Kim, S.Y.; Park, C.G. A GNSS interference identification and tracking based on adaptive fading kalman filter. IFAC Proc; , 2014, 47, pp. 3250-3255.
[http://dx.doi.org/10.3182/20140824-6-ZA-1003.01374]
[17]
Sun, C.; Zhang, Y.; Wang, G.; Gao, W. A new variational bayesian adaptive extended kalman filter for cooperative navigation. Sensors (Basel), 2018, 18(8), 2538.
[http://dx.doi.org/10.3390/s18082538] [PMID: 30081473]
[18]
Zheng, B.; Fu, P.; Li, B.; Yuan, X. A robust adaptive unscented kalman filter for nonlinear estimation with uncertain noise covariance. Sensors (Basel), 2018, 18(3), 808.
[http://dx.doi.org/10.3390/s18030808] [PMID: 29518960]
[19]
Soken, H.E.; Hajiyev, C. REKF and RUKF for pico satellite attitude estimation in the presence of measurement faults. J. Syst. Eng. Electron., 2014, 25(2), 288-297.
[http://dx.doi.org/10.1109/JSEE.2014.00033]
[20]
Hajiyev, C.; Cilden-Guler, D. Satellite attitude estimation using SVD-Aided EKF with simultaneous process and measurement covariance adaptation. Adv. Space Res., 2021, 68(9), 3875-3890.
[http://dx.doi.org/10.1016/j.asr.2021.07.006]
[21]
Wertz, J.R. Spacecraft Attitude Determination and Control; D. Reidel Publishing Company: Dordrecht, Holland, 2002.
[22]
Thébault, E.; Finlay, C.C.; Beggan, C.D.; Alken, P.; Aubert, J.; Barrois, O.; Bertrand, F.; Bondar, T.; Boness, A.; Brocco, L.; Canet, E.; Chambodut, A.; Chulliat, A.; Coïsson, P.; Civet, F.; Du, A.; Fournier, A.; Fratter, I.; Gillet, N.; Hamilton, B.; Hamoudi, M.; Hulot, G.; Jager, T.; Korte, M.; Kuang, W.; Lalanne, X.; Langlais, B.; Léger, J-M.; Lesur, V.; Lowes, F.J.; Macmillan, S.; Mandea, M.; Manoj, C.; Maus, S.; Olsen, N.; Petrov, V.; Ridley, V.; Rother, M.; Sabaka, T.J.; Saturnino, D.; Schachtschneider, R.; Sirol, O.; Tangborn, A.; Thomson, A.; Tøffner-Clausen, L.; Vigneron, P.; Wardinski, I.; Zvereva, T. International geomagnetic reference field: The 12th generation. Earth Planets Space, 2015, 67(1), 79.
[http://dx.doi.org/10.1186/s40623-015-0228-9]
[23]
Vallado, D.A. Fundamentals of Astrodynamics and Applications, 3rd ed; Microcosm Press: Springer: USA, 2007.
[24]
Wahba, G. Problem 65-1: A least squares estimate of satellite attitude. Soc. Ind. Appl. Math. Rev., 1965, 7, 409.
[25]
Markley, F.L. Attitude determination using vector observations and singular value decomposition. J. Astronaut. Sci., 1988, 36, 245-258.
[26]
Markley, F.L.; Mortari, D. Quaternion attitude estimation using vector observations. J. Astronaut. Sci., 2000, 48(2-3), 359-380.
[http://dx.doi.org/10.1007/BF03546284]
[27]
Guler, D.C.; Conguroglu, E.S.; Hajiyev, C. Single-frame attitude determination methods for nanosatellites. Metrol. Meas. Syst., 2017, 24(2), 313-324.
[http://dx.doi.org/10.1515/mms-2017-0023]
[28]
Hajiyev, C.; Soken, H.E. Robust estimation of UAV dynamics in the presence of measurement faults. J. Aerosp. Eng., 2012, 25(1), 80-89.
[http://dx.doi.org/10.1061/(ASCE)AS.1943-5525.0000095]

© 2024 Bentham Science Publishers | Privacy Policy