Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Selective Adsorption of Iron(III) Ions Based on Nickel(II) Oxide-copper(II) Oxide Nanoparticles

Author(s): Ekram Y. Danish*, Hadi M. Marwani, Kholoud F. Almoslehi, Sher Bahadar Khan*, Esraa M. Bakhsh, Abdullah M. Asiri and Hadeel A. Abozenadah

Volume 18, Issue 7, 2022

Published on: 15 June, 2022

Page: [836 - 844] Pages: 9

DOI: 10.2174/1573411018666220408084509

Price: $65

Abstract

Background: Water contamination and its remediation are currently considered a major concern worldwide. Design of effective methods for water purification is highly demanded for the adsorption and removal of such pollutants.

Objective: This study depicts the effectiveness of nickel oxide-copper oxide nanoparticles (NiO-CuO), which can extract and remediate ferric ions, Fe(III), from aqueous solutions.

Methods: The NiO-CuO nanoparticles were simply prepared by the co-precipitation method and then used as adsorbent with respectable advantages of high uptake capacity and surface area.

Results: Adsorption of Fe(III) onto NiO-CuO nanoparticles showed an uptake capacity of 85.86 mgg-1 at pH 5.0. The obtained data from the carried-out experiment of Fe(III) adsorption onto NiO-CuO nanoparticles were well suited to the Langmuir isotherm and pseudo-second-order kinetic models. Moreover, different coexisting ions did not influence the adsorption of Fe(III) onto NiO-CuO nanoparticles. The recommended methodology was implemented on the adsorption and removal of several environmental water samples with high efficiency.

Conclusion: The designed method displayed that NiO-CuO nanoparticles can be used as a promising material for the adsorptive removal of heavy metals from water.

Keywords: Ferric ions, nanomaterials, NiO-CuO, adsorption capacity, environmental applications, Fe(III) ions.

Graphical Abstract
[1]
Selim, M.K.; Komarneni, S. Equilibrium and kinetic studies for adsorption of iron from aqueous solution by synthetic Na-A zeolites: Statistical modeling and optimization. Microporous Mesoporous Mater., 2016, 228, 266-274.
[http://dx.doi.org/10.1016/j.micromeso.2016.04.010]
[2]
Lunvongsa, S.; Oshima, M.; Motomizu, S. Determination of total and dissolved amount of iron in water samples using catalytic spectro-photometric flow injection analysis. Talanta, 2006, 68(3), 969-973.
[http://dx.doi.org/10.1016/j.talanta.2005.06.067] [PMID: 18970418]
[3]
Aziz, H.A.; Yusoff, M.S.; Adlan, M.N.; Adnan, N.H.; Alias, S. Physico-chemical removal of iron from semi-aerobic landfill leachate by limestone filter. Waste Manag., 2004, 24(4), 353-358.
[http://dx.doi.org/10.1016/j.wasman.2003.10.006] [PMID: 15081062]
[4]
Cai, X.; Wei, B.; Han, J.; Li, Y.; Cui, Y.; Sun, G. Solvent extraction of iron (III) from hydrochloric acid solution by N, N, N′,N′ -tetra-2-ethylhexyldiglycolamide in different diluents. Hydrometallurgy, 2016, 164, 1-6.
[http://dx.doi.org/10.1016/j.hydromet.2016.04.010]
[5]
Tsogas, G.Z.; Giokas, D.L.; Vlessidis, A.G. Ultratrace determination of silver, gold, and iron oxide nanoparticles by micelle mediated preconcentration/selective back-extraction coupled with flow injection chemiluminescence detection. Anal. Chem., 2014, 86(7), 3484-3492.
[http://dx.doi.org/10.1021/ac404071v] [PMID: 24576255]
[6]
Gouda, A.A.; Amin, A.S. Cloud-point extraction, preconcentration and spectrophotometric determination of trace quantities of copper in food, water and biological samples. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 120, 88-96.
[http://dx.doi.org/10.1016/j.saa.2013.09.146] [PMID: 24177875]
[7]
Graser, C-H.; Banik, N.L.; Bender, K.A.; Lagos, M.; Marquardt, C.M.; Marsac, R.; Montoya, V.; Geckeis, H. Sensitive redox speciation of iron, neptunium, and plutonium by capillary electrophoresis hyphenated to inductively coupled plasma sector field mass spectrometry. Anal. Chem., 2015, 87(19), 9786-9794.
[http://dx.doi.org/10.1021/acs.analchem.5b02051] [PMID: 26333389]
[8]
Płotka-Wasylka, J.; Szczepańska, N.; de la Guardia, M.; Namieśnik, J. Modern trends in solid-phase extraction: New sorbent media. Trends Analyt. Chem., 2016, 77, 23-43.
[http://dx.doi.org/10.1016/j.trac.2015.10.010]
[9]
Zygler, A.; Wasik, A.; Namieśnik, J. Retention behaviour of some high-intensity sweeteners on different SPE sorbents. Talanta, 2010, 82(5), 1742-1748.
[http://dx.doi.org/10.1016/j.talanta.2010.07.070] [PMID: 20875571]
[10]
Iwahori, K.; Watanabe, J.; Tani, Y.; Seyama, H.; Miyata, N. Removal of heavy metal cations by biogenic magnetite nanoparticles produced in Fe(III)-reducing microbial enrichment cultures. J. Biosci. Bioeng., 2014, 117(3), 333-335.
[http://dx.doi.org/10.1016/j.jbiosc.2013.08.013] [PMID: 24060652]
[11]
Bhargavi, R.J.; Maheshwari, U.; Gupta, S. Synthesis and use of alumina nanoparticles as an adsorbent for the removal of Zn(II) and CBG dye from wastewater. Inter. J. Industr. Chem., 2015, 6, 31-41.
[http://dx.doi.org/10.1007/s40090-014-0029-1]
[12]
Mubarak, N.; Sahu, J.; Abdullah, E.; Jayakumar, N. Removal of heavy metals from wastewater using carbon nanotubes. Separ. Purif. Rev., 2014, 43(4), 311-338.
[http://dx.doi.org/10.1080/15422119.2013.821996]
[13]
Abid, A.D.; Kanematsu, M.; Young, T.M.; Kennedy, I.M. Arsenic removal from water using flame-synthesized iron oxide nanoparticles with variable oxidation states. Aerosol Sci. Technol., 2013, 47(2), 169-176.
[http://dx.doi.org/10.1080/02786826.2012.735380] [PMID: 23645964]
[14]
Kumar, K.Y.; Muralidhara, H.; Nayaka, Y.A.; Balasubramanyam, J.; Hanumanthappa, H. Low-cost synthesis of metal oxide nanoparticles and their application in adsorption of commercial dye and the heavy metal ion in aqueous solution. Powder Technol., 2013, 246, 125-136.
[http://dx.doi.org/10.1016/j.powtec.2013.05.017]
[15]
Mahdavi, S.; Jalali, M.; Afkhami, A. Heavy metals removal from aqueous solutions by Al2O3 nanoparticles modified with natural and chemical modifiers. Clean Technol. Environ. Policy, 2015, 17(1), 85-102.
[http://dx.doi.org/10.1007/s10098-014-0764-1]
[16]
El-Sayed, M.A. Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res., 2001, 34(4), 257-264.
[http://dx.doi.org/10.1021/ar960016n] [PMID: 11308299]
[17]
Hua, M.; Zhang, S.; Pan, B.; Zhang, W.; Lv, L.; Zhang, Q. Heavy metal removal from water/wastewater by nanosized metal oxides: A re-view. J. Hazard. Mater., 2012, 211-212, 317-331.
[http://dx.doi.org/10.1016/j.jhazmat.2011.10.016] [PMID: 22018872]
[18]
Rahdar, A.; Aliahmad, M.; Azizi, Y.; Keikha, N.; Moudi, M.; Keshavarzi, F. CuO-NiO nanocomposites: Synthesis, characterization, and cytotoxicity ‎evaluation. Nanomed. Res. J., 2017, 2, 78-86.
[19]
Said, A.E-A.A.; El-Wahab, M.M.A.; Soliman, S.A.; Goda, M.N. Synthesis and characterization of nano CuO-NiO mixed oxides. Nanosci. Nanoeng., 2014, 2, 17-28.
[http://dx.doi.org/10.13189/nn.2014.020103]
[20]
Maslamani, N.; Khan, S.B.; Danish, E.Y.; Bakhsh, E.M.; Zakeeruddin, S.M.; Asiri, A.M. Super adsorption performance of carboxymethyl cellulose/copper oxide-nickel oxide nanocomposite toward the removal of organic and inorganic pollutants. Environ. Sci. Pollut. Res. Int., 2021, 28(29), 38476-38496.
[http://dx.doi.org/10.1007/s11356-021-13304-y] [PMID: 33733409]
[21]
Marwani, H.M.; Danish, E.Y.; Almoslehi, K.F.; Khan, S.B.; Bakhsh, E.M.; Asiri, A.M. Removal of hexavalent chromium from aqueous solutions using Ni-SiO2 nanomaterial. Bull. Mater. Sci., 2019, 42(5), 233-241.
[http://dx.doi.org/10.1007/s12034-019-1916-z]
[22]
Marwani, H.M.; Bakhsh, E.M.; Khan, S.B.; Danish, E.Y.; Asiri, A.M. Cerium oxide cadmium oxide nanomaterial as efficient extractant for yttrium ions. J. Mol. Liq., 2018, 269, 252-259.
[http://dx.doi.org/10.1016/j.molliq.2018.08.046]
[23]
Ahalya, N.; Kanamadi, R.D.; Ramachandra, T.V. Cr (VI) and Fe (III) removal using Cajanus cajan husk. J. Environ. Biol., 2007, 28(4), 765-769.
[PMID: 18405110]
[24]
Sheibani, A.; Shishehbor, M.R.; Alaei, H. Removal of Fe(III) ions from aqueous solution by hazelnut hull as an adsorbent. Inter. J. In-dustr. Chem, 2012, 3(1), 4.
[http://dx.doi.org/10.1186/2228-5547-3-4]
[25]
Üçer, A.; Uyanik, A.; Aygün, Ş.F. Immobilisation of tannic acid onto activated carbon to improve Fe(III) adsorption. Separ. Purif. Tech., 2005, 44(1), 11-17.
[http://dx.doi.org/10.1016/j.seppur.2004.11.011]
[26]
He, H.; Gan, Q.; Feng, C. Synthesis and characterization of a surface imprinting silica gel polymer functionalized with phosphonic acid groups for selective adsorption of Fe(III) from aqueous solution. J. Appl. Polym. Sci., 2017, 134(36), 45165.
[http://dx.doi.org/10.1002/app.45165]
[27]
Khalfa, L.; Cervera, M.L.; Souissi-Najjar, S.; Bagane, M. Removal of Fe(III) from synthetic wastewater into raw and modified clay: Exper-iments and models fitting. Sep. Sci. Technol., 2017, 56(4), 1-11.
[28]
Freundlich, H. U¨ ber die adsorption in lo¨sungen (Adsorption in solution). Z. Phys. Chem., 1906, 57, 384-470.
[29]
Langmuir, I. The constitution and fundamental properties of solids and liquids. J. Am. Chem. Soc., 1916, 38(11), 2221-2295.
[http://dx.doi.org/10.1021/ja02268a002]
[30]
Rao, M.M.; Reddy, D.H.K.K.; Venkateswarlu, P.; Seshaiah, K. Removal of mercury from aqueous solutions using activated carbon pre-pared from agricultural by-product/waste. J. Environ. Manage., 2009, 90(1), 634-643.
[http://dx.doi.org/10.1016/j.jenvman.2007.12.019] [PMID: 18313830]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy