Generic placeholder image

Drug Metabolism and Bioanalysis Letters

Editor-in-Chief

ISSN (Print): 2949-6810
ISSN (Online): 2949-6829

Perspective

The Impact of the Coronavirus (COVID-19) Infection on the Drug- Metabolizing Enzymes Cytochrome P450s

Author(s): Imadeldin Elfaki*

Volume 15, Issue 2, 2022

Published on: 30 June, 2022

Page: [71 - 74] Pages: 4

DOI: 10.2174/1872312815666220331142046

Abstract

Coronaviruses cause disease in humans and animals. In 2019 a novel coronavirus was first characterized in Wuhan, China causing acute respiratory disease and designating the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or COVID-19. The COVID-19 spread to all cities of China and in 2020 to the whole world. Patients with COVID-19 may recover without medical treatment. However, some patients need medical care. The Cytochrome p450s (CYP450s) are a large superfamily of enzymes that catalyze the metabolism of endogenous substrates and xenobiotics. CYP450s catalyze the biotransformation of 80% of the drug in clinical use. The CYP450 is present in liver, lungs, intestine and other tissues. COVID-19 has been reported to decrease the activity of certain isoforms of CYP450s in an isoform specific manner. Furthermore, the COVID-19 infection decreases the liver functions including the drug clearance or detoxification medicated by the CYP450s. The healthcare providers should be aware of this disease-drug interaction when prescribing drugs for the treatment of COVID-19 and other comorbidities.

Keywords: Cytochromep450, COVID-19, coronaviruses, personalized medicine, metabolism of xenobiotics, neurotransmitters.

[1]
Upadhyay, R. Aprajita; Srivastava, S.; Raja, A.; Gupta, R.K. Healthcare professionals’ knowledge, attitudes, and practices on coronavirus disease in Western Uttar Pradesh. J. Educ. Health Promot., 2020, 9(1), 359.
[http://dx.doi.org/10.4103/jehp.jehp_622_20] [PMID: 33575395]
[2]
Gautier, J.F.; Ravussin, Y. A New Symptom of COVID-19: Loss of Taste and Smell. Obesity (Silver Spring), 2020, 28(5), 848.
[http://dx.doi.org/10.1002/oby.22809] [PMID: 32237199]
[3]
Kumar, R.; Singh, V.; Mohanty, A.; Bahurupi, Y.; Gupta, P.K. Corona health-care warriors in India: Knowledge, attitude, and practices during COVID-19 outbreak; , 202, 10, 44.
[4]
Veith, A.; Moorthy, B. Role of cytochrome P450s in the generation and metabolism of reactive oxygen species. Curr. Opin. Toxicol., 2018, 7, 44-51.
[http://dx.doi.org/10.1016/j.cotox.2017.10.003] [PMID: 29527583]
[5]
Cook, D.J.; Finnigan, J.D.; Cook, K.; Black, G.W.; Charnock, S.J. Cytochromes P450: History, classes, catalytic mechanism, and industrial application. Adv. Protein Chem. Struct. Biol., 2016, 105, 105-126.
[http://dx.doi.org/10.1016/bs.apcsb.2016.07.003] [PMID: 27567486]
[6]
Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther., 2013, 138(1), 103-141.
[http://dx.doi.org/10.1016/j.pharmthera.2012.12.007] [PMID: 23333322]
[7]
Xiao, Y.; Ge, M.; Xue, X.; Wang, C.; Wang, H.; Wu, X.; Li, L.; Liu, L.; Qi, X.; Zhang, Y.; Li, Y.; Luo, H.; Xie, T.; Gu, J.; Ren, J. Hepatic cytochrome P450s metabolize aristolochic acid and reduce its kidney toxicity. Kidney Int., 2008, 73(11), 1231-1239.
[http://dx.doi.org/10.1038/ki.2008.103] [PMID: 18368031]
[8]
Dong, A.N.; Tan, B.H.; Pan, Y.; Ong, C.E. Cytochrome P450 genotype-guided drug therapies: An update on current states. Clin. Exp. Pharmacol. Physiol., 2018, 45(10), 991-1001.
[http://dx.doi.org/10.1111/1440-1681.12978] [PMID: 29858511]
[9]
Elfaki, I.; Mir, R.; Almutairi, F.M.; Duhier, F.M.A. Cytochrome P450: Polymorphisms and Roles in Cancer, Diabetes and Atherosclerosis. Asian Pac. J. Cancer Prev., 2018, 19(8), 2057-2070.
[PMID: 30139042]
[10]
Elfaki, I.; Almutairi, F.; Mir, R.; Khan, R.; Abu-Duhier, F. Cytochrome P450 CYP1B1*2 gene and its association with T2D in Tabuk population, Northwestern region of saudi arabia. Asian J. Pharm. Clin. Res., 2018, 11(1), 55.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i1.21657]
[11]
Elfaki, I.; Mir, R.; Abu-Duhier, F.M.; Jha, C.K.; Ahmad Al-Alawy, A.I.; Babakr, A.T.; Habib, S.A.E. Analysis of the potential association of drug-metabolizing enzymes CYP2C9*3 and CYP2C19*3 gene variations with type 2 diabetes: A case-control study. Curr. Drug Metab., 2020, 21(14), 1152-1160.
[http://dx.doi.org/10.2174/1389200221999201027200931] [PMID: 33115391]
[12]
Mir, R.; Elfaki, I.; Jha, C.K.; Javid, J.; Babakr, A.T.; Banu, S.; Mir, M.M.; Jamwal, D.; Khullar, N.; Alzahrani, K.J.; Chahal, S.M.S. Biological and clinical implications of TNF-alpha promoter and CYP1B1 gene variations in Coronary Artery Disease susceptibility. Cardiovasc. Hematol. Disord. Drug Targets, 2021, 21(4), 266-277.
[http://dx.doi.org/10.2174/1871529X22666211221151830] [PMID: 34939556]
[13]
Malki, M.A.; Pearson, E.R. Drug-drug-gene interactions and adverse drug reactions. Pharmacogenomics J., 2020, 20(3), 355-366.
[http://dx.doi.org/10.1038/s41397-019-0122-0] [PMID: 31792369]
[14]
Deb, S.; Arrighi, S. Potential effects of covid-19 on cytochrome P450-mediated drug metabolism and disposition in infected patients. Eur. J. Drug Metab. Pharmacokinet., 2021, 46(2), 185-203.
[http://dx.doi.org/10.1007/s13318-020-00668-8] [PMID: 33538960]
[15]
El-Ghiaty, M.A.; Shoieb, S.M.; El-Kadi, A.O.S. Cytochrome P450-mediated drug interactions in COVID-19 patients: Current findings and possible mechanisms. Med. Hypotheses, 2020, 144, 110033.
[http://dx.doi.org/10.1016/j.mehy.2020.110033] [PMID: 32758877]
[16]
Gregoire, M.; Le Turnier, P.; Gaborit, B.J.; Veyrac, G.; Lecomte, R.; Boutoille, D.; Canet, E.; Imbert, B.M.; Bellouard, R.; Raffi, F. Lopinavir pharmacokinetics in COVID-19 patients. J. Antimicrob. Chemother., 2020, 75(9), 2702-2704.
[http://dx.doi.org/10.1093/jac/dkaa195] [PMID: 32443151]
[17]
Lenoir, C.; Terrier, J.; Gloor, Y.; Curtin, F.; Rollason, V.; Desmeules, J.A.; Daali, Y.; Reny, J.L.; Samer, C.F. Impact of SARS-CoV-2 Infection (COVID-19) on Cytochromes P450 Activity Assessed by the Geneva Cocktail. Clin. Pharmacol. Ther., 2021, 110(5), 1358-1367.
[http://dx.doi.org/10.1002/cpt.2412] [PMID: 34473836]
[18]
Marzolini, C.; Stader, F.; Stoeckle, M.; Franzeck, F.; Egli, A.; Bassetti, S.; Hollinger, A.; Osthoff, M.; Weisser, M.; Gebhard, C.E.; Baettig, V.; Geenen, J.; Khanna, N.; Tschudin-Sutter, S.; Mueller, D.; Hirsch, H.H.; Battegay, M.; Sendi, P. Effect of systemic inflammatory response to SARS-CoV-2 on lopinavir and hydroxychloroquine plasma concentrations. Antimicrob. Agents Chemother., 2020, 64(9), e01177-e20.
[http://dx.doi.org/10.1128/AAC.01177-20] [PMID: 32641296]
[19]
Cojutti, P.G.; Londero, A.; Della Siega, P.; Givone, F.; Fabris, M.; Biasizzo, J.; Tascini, C.; Pea, F. Comparative population pharmacokinetics of darunavir in SARS-CoV-2 patients vs. HIV patients: The role of interleukin-6. Clin. Pharmacokinet., 2020, 59(10), 1251-1260.
[http://dx.doi.org/10.1007/s40262-020-00933-8] [PMID: 32856282]
[20]
King, L.M.; Lovegrove, M.C.; Shehab, N.; Tsay, S.; Budnitz, D.S.; Geller, A.I.; Lind, J.N.; Roberts, R.M.; Hicks, L.A.; Kabbani, S. Trends in US outpatient antibiotic prescriptions during the coronavirus disease 2019 pandemic. Clin. Infect. Dis., 2021, 73(3), e652-e660.
[http://dx.doi.org/10.1093/cid/ciaa1896] [PMID: 33373435]
[21]
Li, F.; Lu, J.; Ma, X. CYP3A4-mediated lopinavir bioactivation and its inhibition by ritonavir. Drug Metab. Dispos., 2012, 40(1), 18-24.
[http://dx.doi.org/10.1124/dmd.111.041400] [PMID: 21953914]
[22]
Costanzo, M.; De Giglio, M.A.R.; Roviello, G.N. SARS-CoV-2: Recent reports on antiviral therapies based on lopinavir/ritonavir, darunavir/umifenovir, hydroxychloroquine, remdesivir, favipiravir and other drugs for the treatment of the new coronavirus. Curr. Med. Chem., 2020, 27(27), 4536-4541.
[http://dx.doi.org/10.2174/0929867327666200416131117] [PMID: 32297571]
[23]
Sevrioukova, I.F.; Poulos, T.L. Structure and mechanism of the complex between cytochrome P4503A4 and ritonavir. Proc. Natl. Acad. Sci. USA, 2010, 107(43), 18422-18427.
[http://dx.doi.org/10.1073/pnas.1010693107] [PMID: 20937904]
[24]
Rittweger, M.; Arastéh, K. Clinical pharmacokinetics of darunavir. Clin. Pharmacokinet., 2007, 46(9), 739-756.
[http://dx.doi.org/10.2165/00003088-200746090-00002] [PMID: 17713972]
[25]
Deng, P.; Zhong, D.; Yu, K.; Zhang, Y.; Wang, T.; Chen, X. Pharmacokinetics, metabolism, and excretion of the antiviral drug arbidol in humans. Antimicrob. Agents Chemother., 2013, 57(4), 1743-1755.
[http://dx.doi.org/10.1128/AAC.02282-12] [PMID: 23357765]
[26]
Gottlieb, R.L.; Vaca, C.E.; Paredes, R.; Mera, J.; Webb, B.J.; Perez, G.; Oguchi, G.; Ryan, P.; Nielsen, B.U.; Brown, M. Early remdesivir to prevent progression to severe covid-19 in outpatients. N. Engl. J. Med., 2022, 386, 315.
[PMID: 34937145]
[27]
McCreary, E.K. Pogue, JM Coronavirus disease 2019 treatment: A review of early and emerging options. Open Forum Infect. Dis., 2020, 7(4), ofaa105.
[http://dx.doi.org/10.1093/ofid/ofaa105]
[28]
Gandhi, Z.; Mansuri, Z.; Bansod, S. Potential interactions of remdesivir with pulmonary drugs: A Covid-19 perspective. SN Compr. Clin. Med., 2020, 2(10), 1707-1708.
[http://dx.doi.org/10.1007/s42399-020-00462-2] [PMID: 32864571]
[29]
Patel, A.M.; Shariff, S.; Bailey, D.G.; Juurlink, D.N.; Gandhi, S.; Mamdani, M.; Gomes, T.; Fleet, J.; Hwang, Y.J.; Garg, A.X. Statin toxicity from macrolide antibiotic coprescription: A population-based cohort study. Ann. Intern. Med., 2013, 158(12), 869-876.
[http://dx.doi.org/10.7326/0003-4819-158-12-201306180-00004] [PMID: 23778904]
[30]
Diaz-Arocutipa, C.; Melgar-Talavera, B.; Alvarado-Yarasca, Á.; Saravia-Bartra, M.M.; Cazorla, P.; Belzusarri, I.; Hernandez, A.V. Statins reduce mortality in patients with COVID-19: An updated meta-analysis of 147 824 patients. Int. J. Infect. Dis., 2021, 110, 374-381.
[http://dx.doi.org/10.1016/j.ijid.2021.08.004] [PMID: 34375760]
[31]
Wright, A.J.; Gomes, T.; Mamdani, M.M.; Horn, J.R.; Juurlink, D.N. The risk of hypotension following co-prescription of macrolide antibiotics and calcium-channel blockers. CMAJ, 2011, 183(3), 303-307.
[http://dx.doi.org/10.1503/cmaj.100702] [PMID: 21242274]
[32]
Alguwaihes, A.M.; Al-Sofiani, M.E.; Megdad, M.; Albader, S.S.; Alsari, M.H.; Alelayan, A.; Alzahrani, S.H.; Sabico, S.; Al-Daghri, N.M.; Jammah, A.A. Diabetes and Covid-19 among hospitalized patients in Saudi Arabia: A single-centre retrospective study. Cardiovasc. Diabetol., 2020, 19(1), 205.
[http://dx.doi.org/10.1186/s12933-020-01184-4] [PMID: 33278893]
[33]
Jiang, X.L.; Samant, S.; Lesko, L.J.; Schmidt, S. Clinical pharmacokinetics and pharmacodynamics of clopidogrel. Clin. Pharmacokinet., 2015, 54(2), 147-166.
[http://dx.doi.org/10.1007/s40262-014-0230-6] [PMID: 25559342]
[34]
Williams, D.M. Clinical pharmacology of corticosteroids. Respir. Care, 2018, 63(6), 655-670.
[http://dx.doi.org/10.4187/respcare.06314] [PMID: 29794202]
[35]
Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; Elmahi, E.; Prudon, B.; Green, C.; Felton, T.; Chadwick, D.; Rege, K.; Fegan, C.; Chappell, L.C.; Faust, S.N.; Jaki, T.; Jeffery, K.; Montgomery, A.; Rowan, K.; Juszczak, E.; Baillie, J.K.; Haynes, R.; Landray, M.J. Dexamethasone in hospitalized patients with Covid-19. N. Engl. J. Med., 2021, 384(8), 693-704.
[http://dx.doi.org/10.1056/NEJMoa2021436] [PMID: 32678530]
[36]
Wyatt, J.E.; Pettit, W.L.; Harirforoosh, S. Pharmacogenetics of nonsteroidal anti-inflammatory drugs. Pharmacogenomics J., 2012, 12(6), 462-467.
[http://dx.doi.org/10.1038/tpj.2012.40] [PMID: 23044603]
[37]
Chow, J.H.; Khanna, A.K.; Kethireddy, S.; Yamane, D.; Levine, A.; Jackson, A.M.; McCurdy, M.T.; Tabatabai, A.; Kumar, G.; Park, P.; Benjenk, I.; Menaker, J.; Ahmed, N.; Glidewell, E.; Presutto, E.; Cain, S.; Haridasa, N.; Field, W.; Fowler, J.G.; Trinh, D.; Johnson, K.N.; Kaur, A.; Lee, A.; Sebastian, K.; Ulrich, A.; Peña, S.; Carpenter, R.; Sudhakar, S.; Uppal, P.; Fedeles, B.T.; Sachs, A.; Dahbour, L.; Teeter, W.; Tanaka, K.; Galvagno, S.M.; Herr, D.L.; Scalea, T.M.; Mazzeffi, M.A. Aspirin use is associated with decreased mechanical ventilation, intensive care unit admission, and in-hospital mortality in hospitalized patients with coronavirus disease 2019. Anesth. Analg., 2021, 132(4), 930-941.
[http://dx.doi.org/10.1213/ANE.0000000000005292] [PMID: 33093359]
[38]
Rinott, E.; Kozer, E.; Shapira, Y.; Bar-Haim, A.; Youngster, I. Ibuprofen use and clinical outcomes in COVID-19 patients. Clin. Microbiol. Infect., 2020, 26(9), e1255-e1259.
[http://dx.doi.org/10.1016/j.cmi.2020.06.003]
[39]
Mazaleuskaya, L.L.; Theken, K.N.; Gong, L.; Thorn, C.F.; FitzGerald, G.A.; Altman, R.B.; Klein, T.E. PharmGKB summary: Ibuprofen pathways. Pharmacogenet. Genomics, 2015, 25(2), 96-106.
[http://dx.doi.org/10.1097/FPC.0000000000000113] [PMID: 25502615]
[40]
Holstein, A.; Hahn, M.; Patzer, O.; Seeringer, A.; Kovacs, P.; Stingl, J. Impact of clinical factors and CYP2C9 variants for the risk of severe sulfonylurea-induced hypoglycemia. Eur. J. Clin. Pharmacol., 2011, 67(5), 471-476.
[http://dx.doi.org/10.1007/s00228-010-0976-1] [PMID: 21213107]
[41]
Wang, J.; Ji, H.; Jia, H.; Guan, D. Association between CYP3A4 gene rs4646437 polymorphism and the risk of hypertension in Chinese population: A case-control study. Biosci. Rep., 2019, 39(4), BSR20190296.
[http://dx.doi.org/10.1042/BSR20190296] [PMID: 30910847]
[42]
de Jong, L.M.; Jiskoot, W.; Swen, J.J.; Manson, M.L. Distinct effects of inflammation on cytochrome P450 regulation and drug metabolism: Lessons from experimental models and a potential role for pharmacogenetics. Genes (Basel), 2020, 11(12), E1509.
[http://dx.doi.org/10.3390/genes11121509] [PMID: 33339226]
[43]
Lymperopoulos, A.; McCrink, K.A.; Brill, A. Impact of CYP2D6 genetic variation on the response of the cardiovascular patient to carvedilol and metoprolol. Curr. Drug Metab., 2015, 17(1), 30-36.
[http://dx.doi.org/10.2174/1389200217666151105125425] [PMID: 26537419]
[44]
Saberi, M.; Ramazani, Z.; Rashidi, H.; Saberi, A. The effect of CYP2C9 genotype variants in type 2 diabetes on the pharmacological effectiveness of sulfonylureas, diabetic retinopathy, and nephropathy. Vasc. Health Risk Manag., 2020, 16, 241-248.
[http://dx.doi.org/10.2147/VHRM.S230639] [PMID: 32606720]
[45]
Sun, Y.; Lu, Q.; Tao, X.; Cheng, B.; Yang, G. Cyp2C19*2 Polymorphism related to clopidogrel resistance in patients with coronary heart disease, especially in the asian population: A systematic review and meta-analysis. Front. Genet., 2020, 11, 576046.
[http://dx.doi.org/10.3389/fgene.2020.576046] [PMID: 33414804]

© 2024 Bentham Science Publishers | Privacy Policy