Review Article

基于纳米技术的病原病毒传感比色方法综述

卷 29, 期 15, 2022

发表于: 14 July, 2021

页: [2691 - 2718] 页: 28

弟呕挨: 10.2174/0929867328666210714154051

价格: $65

摘要

快速而廉价的病毒识别方案对于阻止大流行性疾病的增加,最大限度地减少经济和社会损害以及加快适当的临床康复至关重要。到目前为止,已经开发了各种生物传感器来鉴定致病颗粒。但是,它们提供了许多限制。纳米技术克服了这些困难,并允许实时直接鉴定致病物种。其中,基于纳米材料的肉眼识别致病病毒的比色传感方法因其简单、快速、低成本等特点而备受关注。本文综述了利用比色学概念检测致病病毒的最新趋势和进展。我们关注并重新考虑使用独特的纳米材料,如金属纳米颗粒,碳纳米管,氧化石墨烯和导电聚合物来形成比色致病病毒传感器。

关键词: 病原体,病毒,比色法,探针,传感器,纳米材料,检测。

[1]
Verma, M.S.; Rogowski, J.L.; Jones, L.; Gu, F.X. Colorimetric biosensing of pathogens using gold nanoparticles. Biotechnol. Adv., 2015, 33(6 Pt 1), 666-680.
[http://dx.doi.org/10.1016/j.biotechadv.2015.03.003] [PMID: 25792228]
[2]
Kaittanis, C.; Santra, S.; Perez, J.M. Emerging nanotechnology-based strategies for the identification of microbial pathogenesis. Adv. Drug Deliv. Rev., 2010, 62(4-5), 408-423.
[http://dx.doi.org/10.1016/j.addr.2009.11.013] [PMID: 19914316]
[3]
Tallury, P.; Malhotra, A.; Byrne, L.M.; Santra, S. Nanobioimaging and sensing of infectious diseases. Adv. Drug Deliv. Rev., 2010, 62(4-5), 424-437.
[http://dx.doi.org/10.1016/j.addr.2009.11.014] [PMID: 19931579]
[4]
Kadri, K. Polymerase chain reaction (PCR): principle and applications. In: Synth. Biol. - New Interdisciplinary Sci; IntechOpen: London, 2020.
[http://dx.doi.org/10.5772/intechopen.86491]
[5]
Joshi, M.; Deshpande, J.D. Polymerase chain reaction: methods, principles and application. Int. J. Biomed. Res., 2011, 2(1), 81-97.
[http://dx.doi.org/10.7439/ijbr.v2i1.83]
[6]
Artika, I.M.; Wiyatno, A.; Ma’roef, C.N. Pathogenic viruses: molecular detection and characterization. Infect. Genet. Evol., 2020, 81104215
[http://dx.doi.org/10.1016/j.meegid.2020.104215] [PMID: 32006706]
[7]
Nii-Trebi, N.I. Emerging and neglected infectious diseases: insights, advances, and challenges. BioMed Res. Int., 2017, 20175245021
[http://dx.doi.org/10.1155/2017/5245021] [PMID: 28286767]
[8]
Ribeiro, B.V.; Cordeiro, T.A.R.; Oliveira e Freitas, G.R.; Ferreira, L.F.; Franco, D.L. Biosensors for the detection of respiratory viruses: a review. Talanta Open, 2020, 2100007
[http://dx.doi.org/10.1016/j.talo.2020.100007]
[9]
Mokhtarzadeh, A.; Eivazzadeh-Keihan, R.; Pashazadeh, P.; Hejazi, M.; Gharaatifar, N.; Hasanzadeh, M.; Baradaran, B.; de la Guardia, M. Nanomaterial-based biosensors for detection of pathogenic virus. Trends Analyt. Chem., 2017, 97, 445-457.
[http://dx.doi.org/10.1016/j.trac.2017.10.005] [PMID: 32287543]
[10]
Ye, J.; Xu, M.; Tian, X.; Cai, S.; Zeng, S. Research advances in the detection of miRNA. J. Pharm. Anal., 2019, 9(4), 217-226.
[http://dx.doi.org/10.1016/j.jpha.2019.05.004] [PMID: 31452959]
[11]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[12]
Chu, D.K.W.; Pan, Y.; Cheng, S.M.S.; Hui, K.P.Y.; Krishnan, P.; Liu, Y.; Ng, D.Y.M.; Wan, C.K.C.; Yang, P.; Wang, Q.; Peiris, M.; Poon, L.L.M. Molecular diagnosis of a novel coronavirus (2019-nCoV) causing an outbreak of pneumonia. Clin. Chem., 2020, 66(4), 549-555.
[http://dx.doi.org/10.1093/clinchem/hvaa029] [PMID: 32031583]
[13]
Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.W.; Bleicker, T.; Brünink, S.; Schneider, J.; Schmidt, M.L.; Mulders, D.G.J.C.; Haagmans, B.L.; van der Veer, B.; van den Brink, S.; Wijsman, L.; Goderski, G.; Romette, J.L.; Ellis, J.; Zambon, M.; Peiris, M.; Goossens, H.; Reusken, C.; Koopmans, M.P.G.; Drosten, C. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill., 2020, 25(3)2000045
[http://dx.doi.org/10.2807/1560-7917.ES.2020.25.3.2000045] [PMID: 31992387]
[14]
Pereira-Gómez, M.; Fajardo, Á.; Echeverría, N.; López-Tort, F.; Perbolianachis, P.; Costábile, A.; Aldunate, F.; Moreno, P.; Moratorio, G. Evaluation of SYBR green real time PCR for detecting SARS-CoV-2 from clinical samples. J. Virol. Methods, 2021, 289114035
[http://dx.doi.org/10.1016/j.jviromet.2020.114035] [PMID: 33285190]
[15]
WHO. Laboratory testing for 2019 novel coronavirus (2019-nCoV) in suspected human cases, 2019. Available at: https://www.who.int/publications/i/item/10665-331501 (Accessed date: February 3, 2021)
[16]
Wacker, M.J.; Godard, M.P. Analysis of one-step and two-step real-time RT-PCR using SuperScript III. J. Biomol. Tech., 2005, 16(3), 266-271.
[PMID: 16461951]
[17]
Singh, J.; Birbian, N.; Sinha, S.; Goswami, A. A critical review on PCR, its types and applications. Int. J. Adv. Res. Biol. Sci., 2014, 1(7), 65-80.
[18]
VanDevanter, D.R.; Warrener, P.; Bennett, L.; Schultz, E.R.; Coulter, S.; Garber, R.L.; Rose, T.M. Detection and analysis of diverse herpesviral species by consensus primer PCR. J. Clin. Microbiol., 1996, 34(7), 1666-1671.
[http://dx.doi.org/10.1128/JCM.34.7.1666-1671.1996] [PMID: 8784566]
[19]
Jensen, M.A.; Fukushima, M.; Davis, R.W. DMSO and betaine greatly improve amplification of GC-rich constructs in de novo synthesis. PLoS One, 2010, 5(6)e11024
[http://dx.doi.org/10.1371/journal.pone.0011024] [PMID: 20552011]
[20]
Wang, Y.; Wang, F.; Wang, H.; Song, M. Graphene oxide enhances the specificity of the polymerase chain reaction by modifying primer-template matching. Sci. Rep., 2017, 7(1), 16510.
[http://dx.doi.org/10.1038/s41598-017-16836-x] [PMID: 29184216]
[21]
Zhong, Y.; Huang, L.; Zhang, Z.; Xiong, Y.; Sun, L.; Weng, J. Enhancing the specificity of polymerase chain reaction by graphene oxide through surface modification: zwitterionic polymer is superior to other polymers with different charges. Int. J. Nanomedicine, 2016, 11, 5989-6002.
[http://dx.doi.org/10.2147/IJN.S120659] [PMID: 27956830]
[22]
Smith, C.J.; Osborn, A.M. Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiol. Ecol., 2009, 67(1), 6-20.
[http://dx.doi.org/10.1111/j.1574-6941.2008.00629.x] [PMID: 19120456]
[23]
Watzinger, F.; Ebner, K.; Lion, T. Detection and monitoring of virus infections by real-time PCR. Mol. Aspects Med., 2006, 27(2-3), 254-298.
[http://dx.doi.org/10.1016/j.mam.2005.12.001] [PMID: 16481036]
[24]
Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res., 2000, 28(12)e63
[http://dx.doi.org/10.1093/nar/28.12.e63] [PMID: 10871386]
[25]
Vanzha, E.; Pylaev, T.; Khanadeev, V.; Konnova, S.; Fedorova, V.; Khlebtsov, N. Gold nanoparticle-assisted polymerase chain reaction: effects of surface ligands, nanoparticle shape and material. RSC Advances, 2016, 6(111), 110146-110154.
[http://dx.doi.org/10.1039/C6RA20472D]
[26]
Tomita, N.; Mori, Y.; Kanda, H.; Notomi, T. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat. Protoc., 2008, 3(5), 877-882.
[http://dx.doi.org/10.1038/nprot.2008.57] [PMID: 18451795]
[27]
Becherer, L.; Borst, N.; Bakheit, M.; Frischmann, S.; Zengerle, R.; Von Stetten, F. Loop-mediated isothermal amplification (LAMP)-review and classification of methods for sequence-specific detection. Anal. Methods, 2020, 12(6), 717-746.
[http://dx.doi.org/10.1039/C9AY02246E]
[28]
Kundapur, R.R.; Nema, V.; Tompkins, S.M. Loop-mediated isothermal amplification: beyond microbial identification. Cogent Biol., 2016, 2(1)1137110
[http://dx.doi.org/10.1080/23312025.2015.1137110]
[29]
Zhu, X.; Wang, X.; Han, L.; Chen, T.; Wang, L.; Li, H.; Li, S.; He, L.; Fu, X.; Chen, S.; Xing, M.; Chen, H.; Wang, Y. Multiplex reverse transcription loop-mediated isothermal amplification combined with nanoparticle-based lateral flow biosensor for the diagnosis of COVID-19. Biosens. Bioelectron., 2020, 166112437
[http://dx.doi.org/10.1016/j.bios.2020.112437] [PMID: 32692666]
[30]
Martzy, R.; Kolm, C.; Krska, R.; Mach, R.L.; Farnleitner, A.H.; Reischer, G.H. Challenges and perspectives in the application of isothermal DNA amplification methods for food and water analysis. Anal. Bioanal. Chem., 2019, 411(9), 1695-1702.
[http://dx.doi.org/10.1007/s00216-018-1553-1] [PMID: 30617408]
[31]
Mori, Y.; Kanda, H.; Notomi, T. Loop-mediated isothermal amplification (LAMP): recent progress in research and development. J. Infect. Chemother., 2013, 19(3), 404-411.
[http://dx.doi.org/10.1007/s10156-013-0590-0] [PMID: 23539453]
[32]
Tasrip, N.A.; Khairil Mokhtar, N.F.; Hanapi, U.K.; Abdul Manaf, Y.N.; Ali, M.E.; Cheah, Y.K.; Mustafa, S.; Mohd Desa, M.N. Loop mediated isothermal amplification; a review on its application and strategy in animal species authentication of meat based food products. Int. Food Res. J., 2019, 26(1), 1-10.
[33]
Calvert, A.E.; Biggerstaff, B.J.; Tanner, N.A.; Lauterbach, M.; Lanciotti, R.S. Rapid colorimetric detection of zika virus from serum and urine specimens by reverse transcription loop-mediated isothermal amplification (RT-LAMP). PLoS One, 2017, 12(9)e0185340
[http://dx.doi.org/10.1371/journal.pone.0185340] [PMID: 28945787]
[34]
WHO. Infection prevention and control of epidemic-and pandemic prone acute respiratory infections in health care - WHO Guidelines (2014). Available at: https://www.who.int/publications/i/item/infection-prevention-and-control-of-epidemic-and-pandemic-prone-acute-respiratory-infections-in-health-care (Accessed Date: August 4, 2021).
[35]
Rauf, S.; Lahcen, A.A.; Aljedaibi, A.; Beduk, T.; Ilton de Oliveira Filho, J.; Salama, K.N. Gold nanostructured laser-scribed graphene: a new electrochemical biosensing platform for potential point-of-care testing of disease biomarkers. Biosens. Bioelectron., 2021, 180113116
[http://dx.doi.org/10.1016/j.bios.2021.113116] [PMID: 33662847]
[36]
Yu, L.; Song, Z.; Peng, J.; Yang, M.; Zhi, H.; He, H. Progress of gold nanomaterials for colorimetric sensing based on different strategies. Trends Analyt. Chem., 2020, 127115880
[http://dx.doi.org/10.1016/j.trac.2020.115880]
[37]
Ramanathan, S.; Gopinath, S.C.B.; Arshad, M.K.M.; Poopalan, P.; Anbu, P. A DNA based visual and colorimetric aggregation assay for the early growth factor receptor (EGFR) mutation by using unmodified gold nanoparticles. Mikrochim. Acta, 2019, 186(8), 546.
[http://dx.doi.org/10.1007/s00604-019-3696-y] [PMID: 31321546]
[38]
Hamdy, M.E.; Del Carlo, M.; Hussein, H.A.; Salah, T.A.; El-Deeb, A.H.; Emara, M.M.; Pezzoni, G.; Compagnone, D. Development of gold nanoparticles biosensor for ultrasensitive diagnosis of foot and mouth disease virus. J. Nanobiotechnology, 2018, 16(1), 48.
[http://dx.doi.org/10.1186/s12951-018-0374-x] [PMID: 29751767]
[39]
Jans, H.; Huo, Q. Gold nanoparticle-enabled biological and chemical detection and analysis. Chem. Soc. Rev., 2012, 41(7), 2849-2866.
[http://dx.doi.org/10.1039/C1CS15280G] [PMID: 22182959]
[40]
Elahi, N.; Kamali, M.; Baghersad, M.H. Recent biomedical applications of gold nanoparticles: a review. Talanta, 2018, 184, 537-556.
[http://dx.doi.org/10.1016/j.talanta.2018.02.088] [PMID: 29674080]
[41]
Chang, C-C.; Chen, C-P.; Wu, T-H.; Yang, C-H.; Lin, C-W.; Chen, C-Y. Gold nanoparticle-based colorimetric strategies for chemical and biological sensing applications. Nanomaterials (Basel), 2019, 9(6), 861.
[http://dx.doi.org/10.3390/nano9060861] [PMID: 31174348]
[42]
Jazayeri, M.H.; Aghaie, T.; Avan, A.; Vatankhah, A.; Ghaffari, M.R.S. Colorimetric detection based on gold nano particles (GNPs): an easy, fast, inexpensive, low-cost and short time method in detection of analytes (protein, DNA, and ion). Sens. Biosensing Res., 2018, 20, 1-8.
[http://dx.doi.org/10.1016/j.sbsr.2018.05.002]
[43]
Amendola, V.; Pilot, R.; Frasconi, M.; Maragò, O.M.; Iatì, M.A. Surface plasmon resonance in gold nanoparticles: a review. J. Phys. Condens. Matter, 2017, 29(20)203002
[http://dx.doi.org/10.1088/1361-648X/aa60f3] [PMID: 28426435]
[44]
Aldewachi, H.; Chalati, T.; Woodroofe, M.N.; Bricklebank, N.; Sharrack, B.; Gardiner, P. Gold nanoparticle-based colorimetric biosensors. Nanoscale, 2017, 10(1), 18-33.
[http://dx.doi.org/10.1039/C7NR06367A] [PMID: 29211091]
[45]
Radwan, S.H.; Azzazy, H.M.E. Gold nanoparticles for molecular diagnostics. Expert Rev. Mol. Diagn., 2009, 9(5), 511-524.
[http://dx.doi.org/10.1586/erm.09.33] [PMID: 19580434]
[46]
Zeng, S.; Yong, K.T.; Roy, I.; Dinh, X.Q.; Yu, X.; Luan, F. A review on functionalized gold nanoparticles for biosensing applications. Plasmonics, 2011, 6(3), 491-506.
[http://dx.doi.org/10.1007/s11468-011-9228-1]
[47]
Zhao, W.; Brook, M.A.; Li, Y. Design of gold nanoparticle-based colorimetric biosensing assays. ChemBioChem, 2008, 9(15), 2363-2371.
[http://dx.doi.org/10.1002/cbic.200800282] [PMID: 18821551]
[48]
Zhao, V.X.T.; Wong, T.I.; Zheng, X.T.; Tan, Y.N.; Zhou, X. Colorimetric biosensors for point-of-care virus detections. Mater. Sci. Energy Technol., 2020, 3, 237-249.
[http://dx.doi.org/10.1016/j.mset.2019.10.002] [PMID: 33604529]
[49]
Wang, L.; He, K.; Sadak, O.; Wang, X.; Wang, Q.; Xu, X. Visual detection of in vitro nucleic acid replication by submicro- and nano-sized materials. Biosens. Bioelectron., 2020, 169112602
[http://dx.doi.org/10.1016/j.bios.2020.112602] [PMID: 32947078]
[50]
Sun, C.; Cheng, Y.; Pan, Y.; Yang, J.; Wang, X.; Xia, F. Efficient polymerase chain reaction assisted by metal-organic frameworks. Chem. Sci. (Camb.), 2020, 11(3), 797-802.
[http://dx.doi.org/10.1039/C9SC03202A] [PMID: 34123055]
[51]
Arduini, F.; Cinti, S.; Scognamiglio, V.; Moscone, D. Nanomaterial-based sensors. In: Handbook of Nanomaterials in Analytical Chemistry; Hussain, C.M., Ed.; Elsevier: Amsterdam, 2019, pp. 329-359.
[http://dx.doi.org/10.1016/B978-0-12-816699-4.00013-X ]
[52]
Draz, M.S.; Shafiee, H. Applications of gold nanoparticles in virus detection. Theranostics, 2018, 8(7), 1985-2017.
[http://dx.doi.org/10.7150/thno.23856] [PMID: 29556369]
[53]
Choi, Y.; Hwang, J.H.; Lee, S.Y. Recent trends in nanomaterials-based colorimetric detection of pathogenic bacteria and viruses. Small Methods, 2018, 2(4)1700351
[http://dx.doi.org/10.1002/smtd.201700351] [PMID: 32328530]
[54]
Singh, P.; Kakkar, S. Bharti; Kumar, R.; Bhalla, V. Rapid and sensitive colorimetric detection of pathogens based on silver-urease interactions. Chem. Commun. (Camb.), 2019, 55(33), 4765-4768.
[http://dx.doi.org/10.1039/C9CC00225A] [PMID: 30882114]
[55]
Peng, H.; Chen, I.A. Rapid colorimetric detection of bacterial species through the capture of gold nanoparticles by chimeric phages. ACS Nano, 2019, 13(2), 1244-1252.
[http://dx.doi.org/10.1021/acsnano.8b06395] [PMID: 30586498]
[56]
Yoo, S.M.; Lee, S.Y. Optical biosensors for the detection of pathogenic microorganisms. Trends Biotechnol., 2016, 34(1), 7-25.
[http://dx.doi.org/10.1016/j.tibtech.2015.09.012] [PMID: 26506111]
[57]
Li, J.; Zhu, Y.; Wu, X.; Hoffmann, M.R. Rapid detection methods for bacterial pathogens in ambient waters at the point of sample collection: a brief review. Clin. Infect. Dis., 2020, 71(Suppl. 2), S84-S90.
[http://dx.doi.org/10.1093/cid/ciaa498] [PMID: 32725238]
[58]
Lou, U.K.; Wong, C.H.; Chen, Y. A simple and rapid colorimetric detection of serum lncRNA biomarkers for diagnosis of pancreatic cancer. RSC Advances, 2020, 10(14), 8087-8092.
[http://dx.doi.org/10.1039/C9RA07858D]
[59]
Song, M.; Yang, M.; Hao, J. Pathogenic virus detection by optical nanobiosensors. Cell Rep. Phys Sci., 2021, 2(1)100288
[http://dx.doi.org/10.1016/j.xcrp.2020.100288] [PMID: 33432308]
[60]
Vermisoglou, E.; Panáček, D.; Jayaramulu, K.; Pykal, M.; Frébort, I.; Kolář, M.; Hajdúch, M.; Zbořil, R.; Otyepka, M. Human virus detection with graphene-based materials. Biosens. Bioelectron., 2020, 166112436
[http://dx.doi.org/10.1016/j.bios.2020.112436] [PMID: 32750677]
[61]
Ehtesabi, H. Application of carbon nanomaterials in human virus detection. J. Sci. Adv. Mater. Devices, 2020, 5(4), 436-450.
[http://dx.doi.org/10.1016/j.jsamd.2020.09.005]
[62]
Innocenzi, P.; Stagi, L. Carbon-based antiviral nanomaterials: graphene, C-dots, and fullerenes. A perspective. Chem. Sci. (Camb.), 2020, 11(26), 6606-6622.
[http://dx.doi.org/10.1039/D0SC02658A] [PMID: 33033592]
[63]
Turnage, N.L.; Gibson, K.E. Sampling methods for recovery of human enteric viruses from environmental surfaces. J. Virol. Methods, 2017, 248, 31-38.
[http://dx.doi.org/10.1016/j.jviromet.2017.06.008] [PMID: 28633964]
[64]
Danovaro, R.; Middelboe, M. Chapter 8 - Separation of free virus particles from sediments in aquatic systems. In: Manual of Aquatic Viral Ecology; Wilhelm, S.W.; Weinbauer, M.G.; Suttle, C.A., Eds.; ASLO: Waco, 2010, pp. 74-81.
[http://dx.doi.org/10.4319/mave.2010.978-0-9845591-0-7.74]
[65]
McNamara, R.P.; Dittmer, D.P. Modern techniques for the isolation of extracellular vesicles and viruses. J. Neuroimmune Pharmacol., 2020, 15(3), 459-472.
[http://dx.doi.org/10.1007/s11481-019-09874-x] [PMID: 31512168]
[66]
Iwai, K.; Minamisawa, T.; Suga, K.; Yajima, Y.; Shiba, K. Isolation of human salivary extracellular vesicles by iodixanol density gradient ultracentrifugation and their characterizations. J. Extracell. Vesicles, 2016, 5(1), 30829.
[http://dx.doi.org/10.3402/jev.v5.30829] [PMID: 27193612]
[67]
Espy, M.J.; Patel, R.; Paya, C.V.; Smith, T.F. Comparison of three methods for extraction of viral nucleic acids from blood cultures. J. Clin. Microbiol., 1995, 33(1), 41-44.
[http://dx.doi.org/10.1128/JCM.33.1.41-44.1995] [PMID: 7699063]
[68]
Alygizakis, N.; Markou, A.N.; Rousis, N.I.; Galani, A.; Avgeris, M.; Adamopoulos, P.G.; Scorilas, A.; Lianidou, E.S.; Paraskevis, D.; Tsiodras, S.; Tsakris, A.; Dimopoulos, M.A.; Thomaidis, N.S. Analytical methodologies for the detection of SARS-CoV-2 in wastewater: protocols and future perspectives. Trends Analyt. Chem., 2021, 134116125
[http://dx.doi.org/10.1016/j.trac.2020.116125] [PMID: 33235400]
[69]
Lodish, H.; Berk, A.; Zipursky, S.L.; Matsudaira, P.; Baltimore, D. Darnell, J. Molecular Cell Biology, 4th ed; W.H. Freeman: New York, 2000.
[70]
Gould, E.A. Methods for long-term virus preservation. Mol. Biotechnol., 1999, 13(1), 57-66.
[http://dx.doi.org/10.1385/MB:13:1:57] [PMID: 10934522]
[71]
Bhat, A.I.; Rao, G.P. Storage and preservation of plant virus cultures. In: Characterization of Plant Viruses; Bhat, A.I.; Rao, G.P., Eds.; Humana: New York, NY, 2020, pp. 125-131.
[http://dx.doi.org/10.1007/978-1-0716-0334-5_20]
[72]
Yaqoob, S.B.; Adnan, R.; Rameez Khan, R.M.; Rashid, M. Gold, silver, and palladium nanoparticles: a chemical tool for biomedical applications. Front Chem., 2020, 8, 376.
[http://dx.doi.org/10.3389/fchem.2020.00376] [PMID: 32582621]
[73]
Zhang, Y.; Chen, L.M.; He, M.; Hepatitis, C.; Hepatitis, C. Virus in mainland China with an emphasis on genotype and subtype distribution. Virol. J., 2017, 14(1), 41.
[http://dx.doi.org/10.1186/s12985-017-0710-z] [PMID: 28231805]
[74]
Gao, T.; Chai, W.; Shi, L.; Shi, H.; Sheng, A.; Yang, J.; Li, G. A new colorimetric assay method for the detection of anti-hepatitis C virus antibody with high sensitivity. Analyst (Lond.), 2019, 144(21), 6365-6370.
[http://dx.doi.org/10.1039/C9AN01466G] [PMID: 31566645]
[75]
Cheng, Y.H.; Tang, H.; Jiang, J.H. Enzyme mediated assembly of gold nanoparticles for ultrasensitive colorimetric detection of hepatitis C virus antibody. Anal. Methods, 2017, 9(25), 3777-3781.
[http://dx.doi.org/10.1039/C7AY01086A]
[76]
Gotesman, M.; Kattlun, J.; Bergmann, S.M.; El-Matbouli, M. CyHV-3: the third cyprinid herpesvirus. Dis. Aquat. Organ., 2013, 105(2), 163-174.
[http://dx.doi.org/10.3354/dao02614] [PMID: 23872859]
[77]
Saleh, M.; El-Matbouli, M. Rapid detection of Cyprinid herpesvirus-3 (CyHV-3) using a gold nanoparticle-based hybridization assay. J. Virol. Methods, 2015, 217, 50-54.
[http://dx.doi.org/10.1016/j.jviromet.2015.02.021] [PMID: 25738211]
[78]
Hou, P.; Xu, Y.; Wang, H.; He, H. Detection of bovine viral diarrhea virus genotype 1 in aerosol by a real time RT-PCR assay. BMC Vet. Res., 2020, 16(1), 114.
[http://dx.doi.org/10.1186/s12917-020-02330-6] [PMID: 32295612]
[79]
Hou, P.; Zhao, G.; Wang, H.; He, C.; He, H. Rapid detection of bovine viral diarrhea virus using recombinase polymerase amplification combined with lateral flow dipstick assays in bulk milk. Vet. Arh., 2018, 88(5), 627-642.
[http://dx.doi.org/10.24099/vet.arhiv.0145]
[80]
Askaravi, M.; Rezatofighi, S.E.; Rastegarzadeh, S.; Seifi Abad Shapouri, M.R. Development of a new method based on unmodified gold nanoparticles and peptide nucleic acids for detecting bovine viral diarrhea virus-RNA. AMB Express, 2017, 7(1), 137.
[http://dx.doi.org/10.1186/s13568-017-0432-z] [PMID: 28655215]
[81]
Ghasemi Monjezi, S.; Rezatofighi, S.E.; Mirzadeh, K.; Rastegarzadeh, S. Enzyme-free amplification and detection of bovine viral diarrhea virus RNA using hybridization chain reaction and gold nanoparticles. Appl. Microbiol. Biotechnol., 2016, 100(20), 8913-8921.
[http://dx.doi.org/10.1007/s00253-016-7785-0] [PMID: 27535242]
[82]
Stott, D.I. Immunoblotting and dot blotting. J. Immunol. Methods, 1989, 119(2), 153-187.
[http://dx.doi.org/10.1016/0022-1759(89)90394-3] [PMID: 2656867]
[83]
Kim, M.W.; Park, H.J.; Park, C.Y.; Kim, J.H.; Cho, C.H.; Phan, L.M.T.; Park, J.P.; Kailasa, S.K.; Lee, C.H.; Park, T.J. Fabrication of a paper strip for facile and rapid detection of bovine viral diarrhea virus: via signal enhancement by copper polyhedral nanoshells. RSC Advances, 2020, 10(50), 29759-29764.
[http://dx.doi.org/10.1039/D0RA03677C]
[84]
Heidari, Z.; Rezatofighi, S.E.; Rastegarzadeh, S. A novel unmodified gold nanoparticles-based assay for direct detection of unamplified bovine viral diarrhea virus-RNA. J. Nanosci. Nanotechnol., 2016, 16(12), 12344-12350.
[http://dx.doi.org/10.1166/jnn.2016.13752]
[85]
Crespo, O.; Janssen, D.; Robles, C.; Ruiz, L. Resistance to cucumber green mottle mosaic virus in Cucumis sativus. Euphytica, 2018, 214(11), 201.
[http://dx.doi.org/10.1007/s10681-018-2286-0]
[86]
Wang, L.; Liu, Z.; Xia, X.; Yang, C.; Huang, J.; Wan, S. Colorimetric detection of cucumber green mottle mosaic virus using unmodified gold nanoparticles as colorimetric probes. J. Virol. Methods, 2017, 243, 113-119.
[http://dx.doi.org/10.1016/j.jviromet.2017.01.010] [PMID: 28109844]
[87]
Dang, M.; Cheng, Q.; Hu, Y.; Wu, J.; Zhou, X.; Qian, Y. Proteomic changes during MCMV infection revealed by iTRAQ quantitative proteomic analysis in maize. Int. J. Mol. Sci., 2019, 21(1), 35.
[http://dx.doi.org/10.3390/ijms21010035] [PMID: 31861651]
[88]
Wang, L.; Liu, Z.; Xia, X.; Huang, J. Visual detection of: maize chlorotic mottle virus by asymmetric polymerase chain reaction with unmodified gold nanoparticles as the colorimetric probe. Anal. Methods, 2016, 8(38), 6959-6964.
[http://dx.doi.org/10.1039/C6AY02116F]
[89]
Liu, Z.; Xia, X.; Yang, C.; Wang, L. Visual detection of maize chlorotic mottle virus using unmodified gold nanoparticles. RSC Advances, 2015, 5(122), 100891-100897.
[http://dx.doi.org/10.1039/C5RA16326A] [PMID: 26989479]
[90]
Petrova, V.; Kristiansen, P.; Norheim, G.; Yimer, S.A. Rift valley fever: diagnostic challenges and investment needs for vaccine development. BMJ Glob. Health, 2020, 5(8), 2694.
[http://dx.doi.org/10.1136/bmjgh-2020-002694] [PMID: 32816810]
[91]
Zaher, M.R.; Ahmed, H.A.; Hamada, K.E.Z.; Tammam, R.H. Colorimetric detection of unamplified rift valley fever virus genetic material using unmodified gold nanoparticles. Appl. Biochem. Biotechnol., 2018, 184(3), 898-908.
[http://dx.doi.org/10.1007/s12010-017-2592-3] [PMID: 28918558]
[92]
Glass, R.I.; Parashar, U.D.; Estes, M.K. Norovirus gastroenteritis. N. Engl. J. Med., 2009, 361(18), 1776-1785.
[http://dx.doi.org/10.1056/NEJMra0804575] [PMID: 19864676]
[93]
Bull, R.A.; Tanaka, M.M.; White, P.A. Norovirus recombination. J. Gen. Virol., 2007, 88(Pt 12), 3347-3359.
[http://dx.doi.org/10.1099/vir.0.83321-0] [PMID: 18024905]
[94]
Weerathunge, P.; Ramanathan, R.; Torok, V.A.; Hodgson, K.; Xu, Y.; Goodacre, R.; Behera, B.K.; Bansal, V. Ultrasensitive colorimetric detection of murine norovirus using nanoZyme aptasensor. Anal. Chem., 2019, 91(5), 3270-3276.
[http://dx.doi.org/10.1021/acs.analchem.8b03300] [PMID: 30642158]
[95]
Mahato, K.; Nagpal, S.; Shah, M.A.; Srivastava, A.; Maurya, P.K.; Roy, S.; Jaiswal, A.; Singh, R.; Chandra, P. Gold nanoparticle surface engineering strategies and their applications in biomedicine and diagnostics. 3 Biotech, 2019, 9(2), 57.
[http://dx.doi.org/10.1007/s13205-019-1577-z] [PMID: 30729081]
[96]
Ventura, B.D.; Cennamo, M.; Minopoli, A.; Campanile, R.; Censi, S.B.; Terracciano, D.; Portella, G.; Velotta, R. Colorimetric test for fast detection of SARS-COV-2 in nasal and throat swabs. ACS Sens., 2020, 5(10), 3043-3048.
[http://dx.doi.org/10.1021/acssensors.0c01742] [PMID: 32989986]
[97]
Moghadami, M. A narrative review of influenza: a seasonal and pandemic disease. Iran. J. Med. Sci., 2017, 42(1), 2-13.
[PMID: 28293045]
[98]
Krammer, F.; Smith, G.J.D.; Fouchier, R.A.M.; Peiris, M.; Kedzierska, K.; Doherty, P.C.; Palese, P.; Shaw, M.L.; Treanor, J.; Webster, R.G.; García-Sastre, A. Influenza. Nat. Rev. Dis. Primers, 2018, 4(1), 3.
[http://dx.doi.org/10.1038/s41572-018-0002-y] [PMID: 29955068]
[99]
Liu, Y.; Zhang, L.; Wei, W.; Zhao, H.; Zhou, Z.; Zhang, Y.; Liu, S. Colorimetric detection of influenza A virus using antibody-functionalized gold nanoparticles. Analyst (Lond.), 2015, 140(12), 3989-3995.
[http://dx.doi.org/10.1039/C5AN00407A] [PMID: 25899840]
[100]
Zong, J.; Cobb, S.L.; Cameron, N.R. Peptide-functionalized gold nanoparticles: versatile biomaterials for diagnostic and therapeutic applications. Biomater. Sci., 2017, 5(5), 872-886.
[http://dx.doi.org/10.1039/C7BM00006E] [PMID: 28304023]
[101]
Pigliacelli, C.; Sánchez-Fernández, R.; García, M.D.; Peinador, C.; Pazos, E. Self-assembled peptide-inorganic nanoparticle superstructures: from component design to applications. Chem. Commun. (Camb.), 2020, 56(58), 8000-8014.
[http://dx.doi.org/10.1039/D0CC02914A] [PMID: 32495761]
[102]
Sajjanar, B.; Kakodia, B.; Bisht, D.; Saxena, S.; Singh, A.K.; Joshi, V.; Tiwari, A.K.; Kumar, S. Peptide-activated gold nanoparticles for selective visual sensing of virus. J. Nanopart. Res., 2015, 17(5), 234.
[http://dx.doi.org/10.1007/s11051-015-3043-0]
[103]
Lee, C.; Gaston, M.A.; Weiss, A.A.; Zhang, P. Colorimetric viral detection based on sialic acid stabilized gold nanoparticles. Biosens. Bioelectron., 2013, 42(1), 236-241.
[http://dx.doi.org/10.1016/j.bios.2012.10.067] [PMID: 23208092]
[104]
Zheng, L.; Wei, J.; Lv, X.; Bi, Y.; Wu, P.; Zhang, Z.; Wang, P.; Liu, R.; Jiang, J.; Cong, H.; Liang, J.; Chen, W.; Cao, H.; Liu, W.; Gao, G.F.; Du, Y.; Jiang, X.; Li, X. Detection and differentiation of influenza viruses with glycan-functionalized gold nanoparticles. Biosens. Bioelectron., 2017, 91, 46-52.
[http://dx.doi.org/10.1016/j.bios.2016.12.037] [PMID: 27987410]
[105]
Ghosh, S.; Jaiswal, A. Peroxidase-like activity of metal nanoparticles for biomedical applications. In: Nanobiomaterial engineering; Chandra, P.; Prakash, R., Eds.; Springer: Singapore, 2020, pp. 109-126.
[http://dx.doi.org/10.1007/978-981-32-9840-8_6]
[106]
Khoris, I.M.; Takemura, K.; Lee, J.; Hara, T.; Abe, F.; Suzuki, T.; Park, E.Y. Enhanced colorimetric detection of norovirus using in-situ growth of Ag shell on Au NPs. Biosens. Bioelectron., 2019, 126, 425-432.
[http://dx.doi.org/10.1016/j.bios.2018.10.067] [PMID: 30471568]
[107]
Smith, I. Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin. Microbiol. Rev., 2003, 16(3), 463-496.
[http://dx.doi.org/10.1128/CMR.16.3.463-496.2003] [PMID: 12857778]
[108]
Burd, E.M. Human papillomavirus and cervical cancer. Clin. Microbiol. Rev., 2003, 16(1), 1-17.
[http://dx.doi.org/10.1128/CMR.16.1.1-17.2003] [PMID: 12525422]
[109]
de Wit, E.; Rasmussen, A.L.; Falzarano, D.; Bushmaker, T.; Feldmann, F.; Brining, D.L.; Fischer, E.R.; Martellaro, C.; Okumura, A.; Chang, J.; Scott, D.; Benecke, A.G.; Katze, M.G.; Feldmann, H.; Munster, V.J. Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques. Proc. Natl. Acad. Sci. USA, 2013, 110(41), 16598-16603.
[http://dx.doi.org/10.1073/pnas.1310744110] [PMID: 24062443]
[110]
Teengam, P.; Siangproh, W.; Tuantranont, A.; Vilaivan, T.; Chailapakul, O.; Henry, C.S. Multiplex paper-based colorimetric DNA sensor using pyrrolidinyl peptide nucleic acid-induced AgNPs aggregation for detecting MERS-CoV, MTB, and HPV oligonucleotides. Anal. Chem., 2017, 89(10), 5428-5435.
[http://dx.doi.org/10.1021/acs.analchem.7b00255] [PMID: 28394582]
[111]
Petryayeva, E.; Krull, U.J. Localized surface plasmon resonance: nanostructures, bioassays and biosensing-a review. Anal. Chim. Acta, 2011, 706(1), 8-24.
[http://dx.doi.org/10.1016/j.aca.2011.08.020] [PMID: 21995909]
[112]
Mayer, K.M.; Hafner, J.H. Localized surface plasmon resonance sensors. Chem. Rev., 2011, 111(6), 3828-3857.
[http://dx.doi.org/10.1021/cr100313v] [PMID: 21648956]
[113]
Kim, H.; Park, M.; Hwang, J.; Kim, J.H.; Chung, D.R.; Lee, K.S.; Kang, M. Development of label-free colorimetric assay for MERS-CoV using gold nanoparticles. ACS Sens., 2019, 4(5), 1306-1312.
[http://dx.doi.org/10.1021/acssensors.9b00175] [PMID: 31062580]
[114]
Shawky, S.M.; Awad, A.M.; Allam, W.; Alkordi, M.H.; El-Khamisy, S.F. Gold aggregating gold: a novel nanoparticle biosensor approach for the direct quantification of hepatitis C virus RNA in clinical samples. Biosens. Bioelectron., 2017, 92, 349-356.
[http://dx.doi.org/10.1016/j.bios.2016.11.001] [PMID: 27836599]
[115]
Wang, B.; Brand-Miller, J. The role and potential of sialic acid in human nutrition. Eur. J. Clin. Nutr., 2003, 57(11), 1351-1369.
[http://dx.doi.org/10.1038/sj.ejcn.1601704] [PMID: 14576748]
[116]
Marín, M.J.; Rashid, A.; Rejzek, M.; Fairhurst, S.A.; Wharton, S.A.; Martin, S.R.; McCauley, J.W.; Wileman, T.; Field, R.A.; Russell, D.A. Glyconanoparticles for the plasmonic detection and discrimination between human and avian influenza virus. Org. Biomol. Chem., 2013, 11(41), 7101-7107.
[http://dx.doi.org/10.1039/c3ob41703d] [PMID: 24057694]
[117]
Lee, J.; Ahmed, S.R.; Oh, S.; Kim, J.; Suzuki, T.; Parmar, K.; Park, S.S.; Lee, J.; Park, E.Y. A plasmon-assisted fluoro-immunoassay using gold nanoparticle-decorated carbon nanotubes for monitoring the influenza virus. Biosens. Bioelectron., 2015, 64, 311-317.
[http://dx.doi.org/10.1016/j.bios.2014.09.021] [PMID: 25240957]
[118]
Zhang, Y.; Xu, C.; Li, B.; Li, Y. In situ growth of positively-charged gold nanoparticles on single-walled carbon nanotubes as a highly active peroxidase mimetic and its application in biosensing. Biosens. Bioelectron., 2013, 43(1), 205-210.
[http://dx.doi.org/10.1016/j.bios.2012.12.016] [PMID: 23313702]
[119]
Ahmed, S.R.; Kim, J.; Suzuki, T.; Lee, J.; Park, E.Y. Enhanced catalytic activity of gold nanoparticle-carbon nanotube hybrids for influenza virus detection. Biosens. Bioelectron., 2016, 85, 503-508.
[http://dx.doi.org/10.1016/j.bios.2016.05.050] [PMID: 27209577]
[120]
Yin, P.T.; Shah, S.; Chhowalla, M.; Lee, K.B. Design, synthesis, and characterization of graphene-nanoparticle hybrid materials for bioapplications. Chem. Rev., 2015, 115(7), 2483-2531.
[http://dx.doi.org/10.1021/cr500537t] [PMID: 25692385]
[121]
Parnianchi, F.; Nazari, M.; Maleki, J.; Mohebi, M. Combination of graphene and graphene oxide with metal and metal oxide nanoparticles in fabrication of electrochemical enzymatic biosensors. Int. Nano Lett., 2018, 8(4), 229-239.
[http://dx.doi.org/10.1007/s40089-018-0253-3]
[122]
Ahmed, S.R.; Takemeura, K.; Li, T.C.; Kitamoto, N.; Tanaka, T.; Suzuki, T.; Park, E.Y. Size-controlled preparation of peroxidase-like graphene-gold nanoparticle hybrids for the visible detection of norovirus-like particles. Biosens. Bioelectron., 2017, 87, 558-565.
[http://dx.doi.org/10.1016/j.bios.2016.08.101] [PMID: 27611475]
[123]
Gao, X.; Liu, Q.; Zhao, Y.; Li, Z.; Wang, Y.; Zhou, D.; Jiang, K.; Luo, C. Influences of gold and silver nanoparticles in loop-mediated isothermal amplification reactions. J. Exp. Nanosci., 2014, 9(9), 922-930.
[http://dx.doi.org/10.1080/17458080.2012.743684]
[124]
Carlos, F.F.; Veigas, B.; Matias, A.S.; Doria, G.; Flores, O.; Baptista, P.V. Allele specific LAMP- gold nanoparticle for characterization of single nucleotide polymorphisms. Biotechnol. Rep. (Amst.), 2017, 16, 21-25.
[http://dx.doi.org/10.1016/j.btre.2017.10.003] [PMID: 29124021]
[125]
Seetang-Nun, Y.; Jaroenram, W.; Sriurairatana, S.; Suebsing, R.; Kiatpathomchai, W. Visual detection of white spot syndrome virus using DNA-functionalized gold nanoparticles as probes combined with loop-mediated isothermal amplification. Mol. Cell. Probes, 2013, 27(2), 71-79.
[http://dx.doi.org/10.1016/j.mcp.2012.11.005] [PMID: 23211683]
[126]
Kumvongpin, R.; Jearanaikool, P.; Wilailuckana, C.; Sae-Ung, N.; Prasongdee, P.; Daduang, S.; Wongsena, M.; Boonsiri, P.; Kiatpathomchai, W.; Swangvaree, S.S.; Sandee, A.; Daduang, J. High sensitivity, loop-mediated isothermal amplification combined with colorimetric gold-nanoparticle probes for visual detection of high risk human papillomavirus genotypes 16 and 18. J. Virol. Methods, 2016, 234, 90-95.
[http://dx.doi.org/10.1016/j.jviromet.2016.04.008] [PMID: 27086727]
[127]
Balbin, M.M.; Lertanantawong, B.; Suraruengchai, W.; Mingala, C.N. Colorimetric detection of caprine arthritis encephalitis virus (CAEV) through loop-mediated isothermal amplification (LAMP) with gold nanoprobes. Small Rumin. Res., 2017, 147, 48-55.
[http://dx.doi.org/10.1016/j.smallrumres.2016.11.021]
[128]
Phromjai, J.; Mathuros, T.; Phokharatkul, D.; Prombun, P.; Suebsing, R.; Tuantranont, A.; Kiatpathomchai, W. RT-LAMP detection of shrimp taura syndrome virus (TSV) by combination with a nanogold-oligo probe. Aquacult. Res., 2015, 46(8), 1902-1913.
[http://dx.doi.org/10.1111/are.12345]
[129]
Jaroenram, W.; Arunrut, N.; Kiatpathomchai, W. Rapid and sensitive detection of shrimp yellow head virus using loop-mediated isothermal amplification and a colorogenic nanogold hybridization probe. J. Virol. Methods, 2012, 186(1-2), 36-42.
[http://dx.doi.org/10.1016/j.jviromet.2012.08.013] [PMID: 22960564]
[130]
Arunrut, N.; Kampeera, J.; Suebsing, R.; Kiatpathomchai, W. Rapid and sensitive detection of shrimp infectious myonecrosis virus using a reverse transcription loop-mediated isothermal amplification and visual colorogenic nanogold hybridization probe assay. J. Virol. Methods, 2013, 193(2), 542-547.
[http://dx.doi.org/10.1016/j.jviromet.2013.07.017] [PMID: 23876366]
[131]
Kim, Y.T.; Chen, Y.; Choi, J.Y.; Kim, W.J.; Dae, H.M.; Jung, J.; Seo, T.S. Integrated microdevice of reverse transcription-polymerase chain reaction with colorimetric immunochromatographic detection for rapid gene expression analysis of influenza A H1N1 virus. Biosens. Bioelectron., 2012, 33(1), 88-94.
[http://dx.doi.org/10.1016/j.bios.2011.12.024] [PMID: 22265877]
[132]
Hwang, S.G.; Ha, K.; Guk, K.; Lee, D.K.; Eom, G.; Song, S.; Kang, T.; Park, H.; Jung, J.; Lim, E.K. Rapid and simple detection of tamiflu-resistant influenza virus: development of oseltamivir derivative-based lateral flow biosensor for point-of-care (POC) diagnostics. Sci. Rep., 2018, 8(1), 12999.
[http://dx.doi.org/10.1038/s41598-018-31311-x] [PMID: 30158601]
[133]
Gao, Y.; Zhou, Y.; Chandrawati, R. Metal and metal oxide nanoparticles to enhance the performance of enzyme-linked immunosorbent assay (ELISA). ACS Appl. Nano Mater., 2020, 3(1), 1-21.
[http://dx.doi.org/10.1021/acsanm.9b02003]
[134]
Yu, X.; Zhang, Z.L.; Zheng, S.Y. Highly sensitive DNA detection using cascade amplification strategy based on hybridization chain reaction and enzyme-induced metallization. Biosens. Bioelectron., 2015, 66, 520-526.
[http://dx.doi.org/10.1016/j.bios.2014.11.035] [PMID: 25500528]
[135]
Zhou, C.H.; Zhao, J.Y.; Pang, D.W.; Zhang, Z.L. Enzyme-induced metallization as a signal amplification strategy for highly sensitive colorimetric detection of avian influenza virus particles. Anal. Chem., 2014, 86(5), 2752-2759.
[http://dx.doi.org/10.1021/ac404177c] [PMID: 24475750]
[136]
Mancuso, M.; Jiang, L.; Cesarman, E.; Erickson, D. Multiplexed colorimetric detection of Kaposi’s sarcoma associated herpesvirus and Bartonella DNA using gold and silver nanoparticles. Nanoscale, 2013, 5(4), 1678-1686.
[http://dx.doi.org/10.1039/c3nr33492a] [PMID: 23340972]
[137]
Thompson, D.G.; Enright, A.; Faulds, K.; Smith, W.E.; Graham, D. Ultrasensitive DNA detection using oligonucleotide-silver nanoparticle conjugates. Anal. Chem., 2008, 80(8), 2805-2810.
[http://dx.doi.org/10.1021/ac702403w] [PMID: 18307361]
[138]
Storhoff, J.J.; Elghanian, R.; Mucic, R.C.; Mirkin, C.A.; Letsinger, R.L. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc., 1998, 120(9), 1959-1964.
[http://dx.doi.org/10.1021/ja972332i]
[139]
Wu, K.; Cheeran, M.C.J.; Wang, J.P.; Saha, R.; Su, D.; Krishna, V.D.; Liu, J. Magnetic-nanosensor-based virus and pathogen detection strategies before and during covid-19. ACS Appl. Nano Mater., 2020, 3(10), 9560-9580.
[http://dx.doi.org/10.1021/acsanm.0c02048]
[140]
Loyprasert-Thananimit, S.; Saleedang, A.; Deachamag, P.; Waiyapoka, T.; Neulplub, M.; Chotigeat, W. Development of an immuno-based colorimetric assay for white spot syndrome virus. Biotechnol. Appl. Biochem., 2014, 61(3), 357-362.
[http://dx.doi.org/10.1002/bab.1169] [PMID: 24131426]
[141]
Dean, R.L. Kinetic studies with alkaline phosphatase in the presence and absence of inhibitors and divalent cations. Biochem. Mol. Biol. Educ., 2002, 30(6), 401-407.
[http://dx.doi.org/10.1002/bmb.2002.494030060138]
[142]
Fang, F.; Meng, F.; Luo, L. Recent advances on polydiacetylene-based smart materials for biomedical applications. Mater. Chem. Front., 2020, 4(4), 1089-1104.
[http://dx.doi.org/10.1039/C9QM00788A]
[143]
Chen, X.; Zhou, G.; Peng, X.; Yoon, J. Biosensors and chemosensors based on the optical responses of polydiacetylenes. Chem. Soc. Rev., 2012, 41(13), 4610-4630.
[http://dx.doi.org/10.1039/c2cs35055f] [PMID: 22569480]
[144]
Song, S.; Ha, K.; Guk, K.; Hwang, S-G.; Choi, J.M.; Kang, T.; Bae, P.; Jung, J.; Lim, E-K. Colorimetric detection of influenza A (H1N1) virus by a peptide-functionalized polydiacetylene (PEP-PDA) nanosensor. RSC Advances, 2016, 6(54), 48566-48570.
[http://dx.doi.org/10.1039/C6RA06689E]
[145]
Julian, T.R.; Schwab, K.J. Challenges in environmental detection of human viral pathogens. Curr. Opin. Virol., 2012, 2(1), 78-83.
[http://dx.doi.org/10.1016/j.coviro.2011.10.027] [PMID: 22440969]
[146]
Wu, J.; Wang, X.; Wang, Q.; Lou, Z.; Li, S.; Zhu, Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem. Soc. Rev., 2019, 48(4), 1004-1076.
[http://dx.doi.org/10.1039/C8CS00457A] [PMID: 30534770]
[147]
Ahmed, S.; Ahmad, M.; Swami, B.L.; Ikram, S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J. Adv. Res., 2016, 7(1), 17-28.
[http://dx.doi.org/10.1016/j.jare.2015.02.007] [PMID: 26843966]
[148]
Shukla, A.K.; Iravani, S. Green Synthesis, Characterization and Applications of Nanoparticles, 1st ed; Elsevier: Amsterdam, 2018.
[149]
Jampilek, J.; Kos, J.; Kralova, K. Potential of nanomaterial applications in dietary supplements and foods for special medical purposes. Nanomaterials (Basel), 2019, 9(2), 296.
[http://dx.doi.org/10.3390/nano9020296] [PMID: 30791492]
[150]
Sharifi, S.; Vahed, S.Z.; Ahmadian, E.; Dizaj, S.M.; Eftekhari, A.; Khalilov, R.; Ahmadi, M.; Hamidi-Asl, E.; Labib, M. Detection of pathogenic bacteria via nanomaterials-modified aptasensors. Biosens. Bioelectron., 2020, 150111933
[http://dx.doi.org/10.1016/j.bios.2019.111933] [PMID: 31818764]
[151]
Eftekhari, A.; Alipour, M.; Chodari, L.; Maleki Dizaj, S.; Ardalan, M.; Samiei, M.; Sharifi, S.; Zununi Vahed, S.; Huseynova, I.; Khalilov, R.; Ahmadian, E.; Cucchiarini, M. A comprehensive review of detection methods for SARS-CoV-2. Microorganisms, 2021, 9(2), 232.
[http://dx.doi.org/10.3390/microorganisms9020232] [PMID: 33499379]
[152]
Farmani, A.; Soroosh, M.; Mozaffari, M.H.; Daghooghi, T. Chapter 25 - Optical nanosensors for cancer and virus detections. In: Nanosensors For Smart Cities; Han, B.; Tomer, V.K.; Nguyen, T.A.; Farmani, A.; Singh, P.K., Eds.; Elsevier: Amsterdam, 2020, pp. 419-432.
[http://dx.doi.org/10.1016/B978-0-12-819870-4.00024-4]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy