In Silico Elucidation of the Plausible Inhibitory Potential of Withaferin A of Withania Somnifera Medicinal Herb Against Breast Cancer Targeting Estrogen Receptor

Author(s): Mohammad A. Ali*, Mohammad Abul Farah*, Khalid M. Al-Anazi, Syed H. Basha, Fang Bai, Joongku Lee, Fahad M.A. Al-Hemaid, Ahmed H. Mahmoud, Waleed A.Q. Hailan

Journal Name: Current Pharmaceutical Biotechnology

Volume 21 , Issue 9 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Estrogen Receptors (ER) are members of the nuclear intracellular receptors family. ER once activated by estrogen, it binds to DNA via translocating into the nucleus and regulates the activity of various genes. Withaferin A (WA) - an active compound of a medicinal plant Withania somnifera was reported to be a very effective anti-cancer agent and some of the recent studies has demonstrated that WA is capable of arresting the development of breast cancer via targeting estrogen receptor.

Objective: The present study is aimed at understanding the molecular level interactions of ER and Tamoxifen in comparison to Withaferin A using In-silico approaches with emphasis on Withaferin A binding capability with ER in presence of point mutations which are causing de novo drug resistance to existing drugs like Tamoxifen.

Methods: Molecular modeling and docking studies were performed for the Tamoxifen and Withaferin A with the Estrogen receptor. Molecular docking simulations of estrogen receptor in complex with Tamoxifen and Withaferin A were also performed.

Results: Amino acid residues, Glu353, Arg394 and Leu387 was observed as crucial for binding and stabilizing the protein-ligand complex in case of Tamoxifen and Withaferin-A. The potential of Withaferin A to overcome the drug resistance caused by the mutations in estrogen receptor to the existing drugs such as Tamoxifen was demonstrated.

Conclusion: In-silico analysis has elucidated the binding mode and molecular level interactions which are expected to be of great help in further optimizing Withaferin A or design / discovery of future breast cancer inhibitors targeting estrogen receptor.

Keywords: Withania Somnifera, estrogen receptor, tamoxifen, withaferin A, molecular docking, molecular dynamics simulations.

[1]
Tsai, M.J.; O’Malley, B.W. Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu. Rev. Biochem., 1994, 63, 451-486.
[http://dx.doi.org/10.1146/annurev.bi.63.070194.002315] [PMID: 7979245]
[2]
Korach, K.S. Insights from the study of animals lacking functional estrogen receptor. Science, 1994, 266(5190), 1524-1527.
[http://dx.doi.org/10.1126/science.7985022] [PMID: 7985022]
[3]
Jordan, V.C.; Gradishar, W.J. Molecular mechanisms and future uses of antiestrogens. Mol. Aspects Med., 1997, 18(3), 167-247.
[http://dx.doi.org/10.1016/S0098-2997(96)00015-5] [PMID: 9220447]
[4]
Grainger, D.J.; Metcalfe, J.C. Tamoxifen: Teaching an old drug new tricks? Nat. Med., 1996, 2(4), 381-385.
[http://dx.doi.org/10.1038/nm0496-381] [PMID: 8597938]
[5]
Grese, T.A.; Sluka, J.P.; Bryant, H.U.; Cullinan, G.J.; Glasebrook, A.L.; Jones, C.D.; Matsumoto, K.; Palkowitz, A.D.; Sato, M.; Termine, J.D.; Winter, M.A.; Yang, N.N.; Dodge, J.A. Molecular determinants of tissue selectivity in estrogen receptor modulators. Proc. Natl. Acad. Sci. USA, 1997, 94(25), 14105-14110.
[http://dx.doi.org/10.1073/pnas.94.25.14105] [PMID: 9391160]
[6]
Shiau, A.K.; Barstad, D.; Loria, P.M.; Cheng, L.; Kushner, P.J.; Agard, D.A.; Greene, G.L. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell, 1998, 95(7), 927-937.
[http://dx.doi.org/10.1016/S0092-8674(00)81717-1] [PMID: 9875847]
[7]
Pritchard, K.I. Endocrine therapy: Is the first generation of targeted drugs the last? J. Intern. Med., 2013, 274(2), 144-152.
[http://dx.doi.org/10.1111/joim.12065] [PMID: 23844917]
[8]
Osborne, C.K.; Schiff, R. Mechanisms of endocrine resistance in breast cancer. Annu. Rev. Med., 2011, 62, 233-247.
[http://dx.doi.org/10.1146/annurev-med-070909-182917] [PMID: 20887199]
[9]
De Laurentiis, M.; Arpino, G.; Massarelli, E.; Ruggiero, A.; Carlomagno, C.; Ciardiello, F.; Tortora, G.; D’Agostino, D.; Caputo, F.; Cancello, G.; Montagna, E.; Malorni, L.; Zinno, L.; Lauria, R.; Bianco, A.R.; De Placido, S. A meta-analysis on the interaction between HER-2 expression and response to endocrine treatment in advanced breast cancer. Clin. Cancer Res., 2005, 11(13), 4741-4748.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-2569] [PMID: 16000569]
[10]
Amir, E.; Miller, N.; Geddie, W.; Freedman, O.; Kassam, F.; Simmons, C.; Oldfield, M.; Dranitsaris, G.; Tomlinson, G.; Laupacis, A.; Tannock, I.F.; Clemons, M. Prospective study evaluating the impact of tissue confirmation of metastatic disease in patients with breast cancer. J. Clin. Oncol., 2012, 30(6), 587-592.
[http://dx.doi.org/10.1200/JCO.2010.33.5232] [PMID: 22124102]
[11]
Toy, W.; Shen, Y.; Won, H.; Green, B.; Sakr, R.A.; Will, M.; Li, Z.; Gala, K.; Fanning, S.; King, T.A.; Hudis, C.; Chen, D.; Taran, T.; Hortobagyi, G.; Greene, G.; Berger, M.; Baselga, J.; Chandarlapaty, S. ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nat. Genet., 2013, 45(12), 1439-1445.
[http://dx.doi.org/10.1038/ng.2822] [PMID: 24185512]
[12]
Jeselsohn, R.; Yelensky, R.; Buchwalter, G.; Frampton, G.; Meric-Bernstam, F.; Gonzalez-Angulo, A.M.; Ferrer-Lozano, J.; Perez-Fidalgo, J.A.; Cristofanilli, M.; Gómez, H.; Arteaga, C.L.; Giltnane, J.; Balko, J.M.; Cronin, M.T.; Jarosz, M.; Sun, J.; Hawryluk, M.; Lipson, D.; Otto, G.; Ross, J.S.; Dvir, A.; Soussan-Gutman, L.; Wolf, I.; Rubinek, T.; Gilmore, L.; Schnitt, S.; Come, S.E.; Pusztai, L.; Stephens, P.; Brown, M.; Miller, V.A. Emergence of constitutively active estrogen receptor-α mutations in pretreated advanced estrogen receptor-positive breast cancer. Clin. Cancer Res., 2014, 20(7), 1757-1767.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-2332] [PMID: 24398047]
[13]
Weis, K.E.; Ekena, K.; Thomas, J.A.; Lazennec, G.; Katzenellenbogen, B.S. Constitutively active human estrogen receptors containing amino acid substitutions for tyrosine 537 in the receptor protein. Mol. Endocrinol., 1996, 10(11), 1388-1398.
[PMID: 8923465]
[14]
Zhang, Q.X.; Borg, A.; Wolf, D.M.; Oesterreich, S.; Fuqua, S.A. An estrogen receptor mutant with strong hormone-independent activity from a metastatic breast cancer. Cancer Res., 1997, 57(7), 1244-1249.
[PMID: 9102207]
[15]
Merenbakh-Lamin, K.; Ben-Baruch, N.; Yeheskel, A.; Dvir, A.; Soussan-Gutman, L.; Jeselsohn, R.; Yelensky, R.; Brown, M.; Miller, V.A.; Sarid, D.; Rizel, S.; Klein, B.; Rubinek, T.; Wolf, I. D538G mutation in estrogen receptor-α: A novel mechanism for acquired endocrine resistance in breast cancer. Cancer Res., 2013, 73(23), 6856-6864.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-1197] [PMID: 24217577]
[16]
Robinson, D.R.; Wu, Y.M.; Vats, P.; Su, F.; Lonigro, R.J.; Cao, X.; Kalyana-Sundaram, S.; Wang, R.; Ning, Y.; Hodges, L.; Gursky, A.; Siddiqui, J.; Tomlins, S.A.; Roychowdhury, S.; Pienta, K.J.; Kim, S.Y.; Roberts, J.S.; Rae, J.M.; Van Poznak, C.H.; Hayes, D.F.; Chugh, R.; Kunju, L.P.; Talpaz, M.; Schott, A.F.; Chinnaiyan, A.M. Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat. Genet., 2013, 45(12), 1446-1451.
[http://dx.doi.org/10.1038/ng.2823] [PMID: 24185510]
[17]
Li, S.; Shen, D.; Shao, J.; Crowder, R.; Liu, W.; Prat, A.; He, X.; Liu, S.; Hoog, J.; Lu, C.; Ding, L.; Griffith, O.L.; Miller, C.; Larson, D.; Fulton, R.S.; Harrison, M.; Mooney, T.; McMichael, J.F.; Luo, J.; Tao, Y.; Goncalves, R.; Schlosberg, C.; Hiken, J.F.; Saied, L.; Sanchez, C.; Giuntoli, T.; Bumb, C.; Cooper, C.; Kitchens, R.T.; Lin, A.; Phommaly, C.; Davies, S.R.; Zhang, J.; Kavuri, M.S.; McEachern, D.; Dong, Y.Y.; Ma, C.; Pluard, T.; Naughton, M.; Bose, R.; Suresh, R.; McDowell, R.; Michel, L.; Aft, R.; Gillanders, W.; DeSchryver, K.; Wilson, R.K.; Wang, S.; Mills, G.B.; Gonzalez-Angulo, A.; Edwards, J.R.; Maher, C.; Perou, C.M.; Mardis, E.R.; Ellis, M.J. Endocrine-therapy-resistant ESR1 variants revealed by genomic characterization of breast-cancer-derived xenografts. Cell Rep., 2013, 4(6), 1116-1130.
[http://dx.doi.org/10.1016/j.celrep.2013.08.022] [PMID: 24055055]
[18]
Pakdel, F.; Reese, J.C.; Katzenellenbogen, B.S. Identification of charged residues in an N-terminal portion of the hormone-binding domain of the human estrogen receptor important in transcriptional activity of the receptor. Mol. Endocrinol., 1993, 7(11), 1408-1417.
[PMID: 8114756]
[19]
Bown, D. Encyclopedia of herbs and their uses; RD Press: Montréal, 1995.
[20]
Uddin, Q.; Samiulla, L.; Singh, V.K.; Jamil, S.S. Phytochemical and pharmacological profile of Withania Somnifera Dunal: A review. J. Appl. Pharm. Sci., 2012, 2, 170-175.
[21]
Bhattacharya, S.K.; Bhattacharya, A.; Sairam, K.; Ghosal, S. Anxiolytic- antidepressant activity of Withania somnifera glycowithanolides: An experimental study. Phytomedicine, 2000, 7(6), 463-469.
[http://dx.doi.org/10.1016/S0944-7113(00)80030-6] [PMID: 11194174]
[22]
Girish, K.S.; Machiah, K.D.; Ushanandini, S.; Harish Kumar, K.; Nagaraju, S.; Govindappa, M.; Vedavathi, M.; Kemparaju, K. Antimicrobial properties of a non-toxic glycoprotein (WSG) from Withania somnifera (Ashwagandha). J. Basic Microbiol., 2006, 46(5), 365-374.
[http://dx.doi.org/10.1002/jobm.200510108] [PMID: 17009292]
[23]
Dikasso, D.; Makonnen, E.; Debella, A.; Abebe, D.; Urga, K.; Makonnen, W.; Melaku, D.; Kassa, M.; Guta, M. Anti-malarial activity of Withania somnifera L. Dunal extracts in mice. Ethiop. Med. J., 2006, 44(3), 279-285.
[PMID: 17447395]
[24]
Senthilnathan, P.; Padmavathi, R.; Banu, S.M.; Sakthisekaran, D. Enhancement of antitumor effect of paclitaxel in combination with immunomodulatory Withania somnifera on benzo(a)pyrene induced experimental lung cancer. Chem. Biol. Interact., 2006, 159(3), 180-185.
[http://dx.doi.org/10.1016/j.cbi.2005.11.003] [PMID: 16375880]
[25]
Sumantran, V.N.; Kulkarni, A.; Boddul, S.; Chinchwade, T.; Koppikar, S.J.; Harsulkar, A.; Patwardhan, B.; Chopra, A.; Wagh, U.V. Chondroprotective potential of root extracts of Withania somnifera in osteoarthritis. J. Biosci., 2007, 32(2), 299-307.
[http://dx.doi.org/10.1007/s12038-007-0030-3] [PMID: 17435322]
[26]
Hamza, A.; Amin, A.; Daoud, S. The protective effect of a purified extract of Withania somnifera against doxorubicin-induced cardiac toxicity in rats. Cell Biol. Toxicol., 2008, 24(1), 63-73.
[http://dx.doi.org/10.1007/s10565-007-9016-z] [PMID: 17520333]
[27]
Davis, L.; Kuttan, G. Immunomodulatory activity of Withania somnifera.J. Ethnopharmacol., 2000, 71(1-2), 193-200.
[http://dx.doi.org/10.1016/S0378-8741(99)00206-8] [PMID: 10904163]
[28]
Sankar, S.R.; Manivasagam, T.; Krishnamurti, A.; Ramanathan, M. The neuroprotective effect of Withania somnifera root extract in MPTP-intoxicated mice: An analysis of behavioral and biochemical variables. Cell. Mol. Biol. Lett., 2007, 12(4), 473-481.
[http://dx.doi.org/10.2478/s11658-007-0015-0] [PMID: 17415533]
[29]
Jayaprakasam, B.; Zhang, Y.; Seeram, N.P.; Nair, M.G. Growth inhibition of human tumor cell lines by withanolides from Withania somnifera leaves. Life Sci., 2003, 74(1), 125-132.
[http://dx.doi.org/10.1016/j.lfs.2003.07.007] [PMID: 14575818]
[30]
Bhattacharya, S.K.; Kumar, A.; Ghosal, S. Effects of glycowithanolides from Withania somnifera on an animal model of Alzheimer’s disease and perturbed central cholinergic markers of cognition in rats. Phytother. Res., 1995, 9, 110-113.
[http://dx.doi.org/10.1002/ptr.2650090206]
[31]
Naidu, P.S.; Singh, A.; Kulkarni, S.K. Effect of Withania somnifera root extract on reserpine-induced orofacial dyskinesia and cognitive dysfunction. Phytother. Res., 2006, 20(2), 140-146.
[http://dx.doi.org/10.1002/ptr.1823] [PMID: 16444668]
[32]
Tong, X.; Zhang, H.; Timmermann, B.N. Chlorinated withanolides from Withania somnifera. Phytochem. Lett., 2011, 4(4), 411-414.
[http://dx.doi.org/10.1016/j.phytol.2011.04.016] [PMID: 22125584]
[33]
Zhang, H.; Samadi, A.K.; Cohen, M.S.; Timmermann, B.N. Anti-proliferative withanolides from the Solanaceae: A structure-activity study. Pure Appl. Chem., 2012, 84(6), 1353-1367.
[http://dx.doi.org/10.1351/PAC-CON-11-10-08] [PMID: 24098060]
[34]
Stan, S.D.; Hahm, E.R.; Warin, R.; Singh, S.V. Withaferin A causes FOXO3a- and Bim-dependent apoptosis and inhibits growth of human breast cancer cells in vivo. Cancer Res., 2008, 68(18), 7661-7669.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1510] [PMID: 18794155]
[35]
Thaiparambil, J.T.; Bender, L.; Ganesh, T.; Kline, E.; Patel, P.; Liu, Y.; Tighiouart, M.; Vertino, P.M.; Harvey, R.D.; Garcia, A.; Marcus, A.I. Withaferin A inhibits breast cancer invasion and metastasis at sub-cytotoxic doses by inducing vimentin disassembly and serine 56 phosphorylation. Int. J. Cancer, 2011, 129(11), 2744-2755.
[http://dx.doi.org/10.1002/ijc.25938] [PMID: 21538350]
[36]
Hahm, E.R.; Lee, J.; Singh, S.V. Role of mitogen-activated protein kinases and Mcl-1 in apoptosis induction by withaferin A in human breast cancer cells. Mol. Carcinog., 2014, 53(11), 907-916.
[http://dx.doi.org/10.1002/mc.22050] [PMID: 24019090]
[37]
Hahm, E.R.; Lee, J.; Huang, Y.; Singh, S.V. Withaferin a suppresses estrogen receptor-α expression in human breast cancer cells. Mol. Carcinog., 2011, 50(8), 614-624.
[http://dx.doi.org/10.1002/mc.20760] [PMID: 21432907]
[38]
Maestro (Version 9.6); Schrödinger, LLC: New York, NY, 2013.
[39]
Accelrys Software Inc: Discovery studio Visualizer 4.0.. 2014.http://accelrys.com/products/discovery-studio/visualization-download.php
[40]
Irwin, J.J.; Shoichet, B.K. ZINC--a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model., 2005, 45(1), 177-182.
[http://dx.doi.org/10.1021/ci049714+] [PMID: 15667143]
[41]
Goodsell, D.S.; Morris, G.M.; Olson, A.J. Automated docking of flexible ligands: Applications of AutoDock. J. Mol. Recognit., 1996, 9(1), 1-5.
[http://dx.doi.org/10.1002/(SICI)1099-1352(199601)9:1<1:AID-JMR241>3.0.CO;2-6] [PMID: 8723313]
[42]
Shaw Research. Maestro-Desmond Interoperability Tools (Version 3.6); Schrödinger: New York, NY, 2013.
[43]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[44]
Reddy, S.V.G.; Reddy, K.T.; Kumari, V.V.; Basha, S.H. Molecular docking and dynamic simulation studies evidenced plausible immunotherapeutic anticancer property by Withaferin A targeting indoleamine 2,3-dioxygenase. J. Biomol. Struct. Dyn., 2015, 33(12), 2695-2709.
[http://dx.doi.org/10.1080/07391102.2015.1004834] [PMID: 25671592]
[45]
Basha, S.H.; Bethapudi, P.; Rambabu, M.F. Anti-angiogenesis property by quercetin compound targeting VEGFR2 elucidated in a computational approach. Eur. J. Biotech. Biosci., 2014, 2, 30-46.
[46]
Basha, S.H.; Kumar, K.N. Ligand and structure based virtual screening studies to identify potent inhibitors against herpes virus targeting gB-gH-gL complex interface as a novel drug target. Open Access Sci Rep., 2012, 1, 566.
[47]
Rao, C.M.; Yejella, R.P.; Rehman, R.S.A.; Basha, S.H. Molecular docking based screening of novel designed chalcone series of compounds for their anti-cancer activity targeting EGFR kinase domain. Bioinformation, 2015, 11(7), 322-329.
[http://dx.doi.org/10.6026/97320630011322] [PMID: 26339147]
[48]
Murthy, N.V.; Girija Sastry, M.V.; Basha, S.H. 3, 5-dinitrophenyl clubbed azoles against latent tuberculosis-a theoretical mechanistic study. J. Peer Sci., 2018, 1(1) e1000001
[49]
Tripathy, S.; Sahu, S.K. In-silico studies on molecular orbital’s, geometry optimization and molecular docking of curcumin as an antibacterial drug targets FtsZ protein. J. Peer Sci., 2018, 1(2) e1000006


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 9
Year: 2020
Published on: 09 June, 2020
Page: [842 - 851]
Pages: 10
DOI: 10.2174/1389201021666200129121843
Price: $65

Article Metrics

PDF: 20
HTML: 2