Synthesis and Biological Evaluation of Structurally Diverse Benzimidazole Scaffolds as Potential Chemotherapeutic Agents

Author(s): Leonard Barasa, Hari P. Vemana, Nirupama Surubhotla, Sin S. Ha, Jing Kong, Alison Yong, John L. Croft, Vikas V. Dukhande*, Sabesan Yoganathan*

Journal Name: Anti-Cancer Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Anti-Cancer Agents)

Volume 20 , Issue 3 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background and Objective: Drug resistance and adverse effects are immense healthcare challenges in cancer therapy. Benzimidazole ring-based small molecules have been effective anticancer agents in drug development. In an effort to develop novel chemotherapeutics, we synthesized and assessed the anticancer and antibacterial activities of a small library of structurally unique benzimidazoles.

Methods: The benzimidazoles were derived from indole, N-alkyl indole, fatty acid, and alpha-amino acid scaffolds providing a panel of diverse structures. The compounds were tested in three different cancer cell lines for cytotoxicity: HepG2 (human hepatocellular carcinoma), HeLa (human cervical carcinoma), and A549 (human lung carcinoma). Mechanism of cell death induced by benzimidazoles was evaluated using fluorescent dye-based apoptosis-necrosis assay, immunoblotting for active caspases, topoisomerase-II activity assay, and cell cycle assay.

Results: Cell viability testing revealed that indole- and fatty acid-based benzimidazoles were most potent followed by the amino acid derivatives. Many compounds induced cytotoxicity in a concentration-dependent manner with cellular cytotoxicity (CC50) <20μM in the cell lines tested. Most compounds exhibited cytotoxicity via apoptosis through the intrinsic pathway. Inhibition of topoisomerase activity and cell cycle alterations were not the primary mechanisms of cytotoxicity. In addition, several compounds showed promising activity against S. aureus and S. epidermidis (Minimum Inhibitory Concentration (MIC) of as low as 0.04μmol/mL).

Conclusion: The reported benzimidazole derivatives possess promising anticancer and antibacterial properties. Additionally, we discovered apoptosis to be the primary mechanism for cancer cell death induced by the tested benzimidazoles. Our findings suggest that further development of these scaffolds could provide drug leads towards new chemotherapeutics.

Keywords: Antibiotics, anticancer drug, apoptosis, benzimidazoles, cell death, heterocycles.

[1]
[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2017. CA Cancer J. Clin., 2017, 67(1), 7-30.
[http://dx.doi.org/10.3322/caac.21387] [PMID: 28055103]
[3]
Liang, X-J.; Chen, C.; Zhao, Y.; Wang, P.C. Circumventing tumor resistance to chemotherapy by nanotechnology. Methods Mol. Biol., 2010, 596, 467-488.
[http://dx.doi.org/10.1007/978-1-60761-416-6_21] [PMID: 19949937]
[4]
Holohan, C.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer, 2013, 13(10), 714-726.
[http://dx.doi.org/10.1038/nrc3599] [PMID: 24060863]
[5]
Markman, J.L.; Rekechenetskiy, A.; Holler, E.; Ljubimova, J.Y. Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv. Drug Deliv. Rev., 2013, 65(13-14), 1866-1879.
[http://dx.doi.org/10.1016/j.addr.2013.09.019] [PMID: 24120656]
[6]
Walia, R.; Naaz, S.F.; Iqbal, K.; Lamba, H. Benzimidazole Derivatives – An Overview. Int. J. Res. Pharm. Chem., 2011, 1(3), 10.
[7]
Song, D.; Ma, S. Recent development of benzimidazole-containing antibacterial agents. ChemMedChem, 2016, 11(7), 646-659.
[http://dx.doi.org/10.1002/cmdc.201600041] [PMID: 26970352]
[8]
Baumann, M.; Baxendale, I.R.; Ley, S.V.; Nikbin, N. An overview of the key routes to the best selling 5-membered ring heterocyclic pharmaceuticals. Beilstein J. Org. Chem., 2011, 7, 442-495.
[http://dx.doi.org/10.3762/bjoc.7.57] [PMID: 21647262]
[9]
Bhattacharya, S.; Chaudhuri, P. Medical implications of benzimidazole derivatives as drugs designed for targeting DNA and DNA associated processes. Curr. Med. Chem., 2008, 15(18), 1762-1777.
[http://dx.doi.org/10.2174/092986708785133013] [PMID: 18691037]
[10]
Labarbera, D.V.; Skibo, E.B. Synthesis of imidazo[1,5,4-de]quinoxalin-9-ones, benzimidazole analogues of pyrroloiminoquinone marine natural products. Bioorg. Med. Chem., 2005, 13(2), 387-395.
[http://dx.doi.org/10.1016/j.bmc.2004.10.016] [PMID: 15598560]
[11]
Martins, P.; Jesus, J.; Santos, S.; Raposo, L.R.; Roma-Rodrigues, C.; Baptista, P.V.; Fernandes, A.R. Heterocyclic anticancer compounds: Recent advances and the paradigm shift towards the use of nanomedicine’s tool box. Molecules, 2015, 20(9), 16852-16891.
[http://dx.doi.org/10.3390/molecules200916852] [PMID: 26389876]
[12]
Maruthamuthu; Rajam, S.; Stella, C.R.; Dileepan, B.A.G.; Ranjith, R. The chemistry and biological significance of imidazole, benzimidazole, benzoxazole, tetrazole and quinazolinone nucleus. J. Chem. Pharm. Res., 2016, 8(5), 505-526.
[13]
Bansal, Y.; Silakari, O. The therapeutic journey of benzimidazoles: A review. Bioorg. Med. Chem., 2012, 20(21), 6208-6236.
[http://dx.doi.org/10.1016/j.bmc.2012.09.013] [PMID: 23031649]
[14]
Zhang, H-Z.; Damu, G.L.V.; Cai, G-X.; Zhou, C-H. Design, synthesis and antimicrobial evaluation of novel benzimidazole type of Fluconazole analogues and their synergistic effects with Chloromycin, Norfloxacin and Fluconazole. Eur. J. Med. Chem., 2013, 64, 329-344.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.049] [PMID: 23644216]
[15]
Spasov, A.A.; Yozhitsa, I.N.; Bugaeva, L.I.; Anisimova, V.A. Benzimidazole derivatives: Spectrum of pharmacological activity and toxicological properties (a Review). Pharm. Chem. J., 1999, 33, 232-243.
[http://dx.doi.org/10.1007/BF02510042]
[16]
Arjmand, F.; Mohani, B.; Ahmad, S. Synthesis, antibacterial, antifungal activity and interaction of CT-DNA with a new benzimidazole derived Cu(II) complex. Eur. J. Med. Chem., 2005, 40(11), 1103-1110.
[http://dx.doi.org/10.1016/j.ejmech.2005.05.005] [PMID: 16006016]
[17]
Čáňová, K.; Rozkydalová, L.; Rudolf, E. Anthelmintic flubendazole and its potential use in anticancer therapy. Acta Med. (Hradec Kralove), 2017, 60(1), 5-11.
[http://dx.doi.org/10.14712/18059694.2017.44] [PMID: 28399389]
[18]
Yadav, S.; Lim, S.M.; Ramasamy, K.; Vasudevan, M.; Shah, S.A.A.; Mathur, A.; Narasimhan, B. Synthesis and evaluation of antimicrobial, antitubercular and anticancer activities of 2-(1-benzoyl-1H-benzo[d]imidazol-2-ylthio)-N-substituted acetamides. Chem. Cent. J., 2018, 12(1), 66.
[http://dx.doi.org/10.1186/s13065-018-0432-3] [PMID: 29804151]
[19]
Akhtar, W.; Khan, M.F.; Verma, G.; Shaquiquzzaman, M.; Rizvi, M.A.; Mehdi, S.H.; Akhter, M.; Alam, M.M. Therapeutic evolution of benzimidazole derivatives in the last quinquennial period. Eur. J. Med. Chem., 2017, 126, 705-753.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.010] [PMID: 27951484]
[20]
Barasa, L.; Yoganathan, S. An efficient one-pot conversion of carboxylic acids into benzimidazoles via an HBTU-promoted methodology. RSC Adv, 2018, 8, 35824-35830.
[http://dx.doi.org/10.1039/C8RA07773H]
[21]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[22]
Beaulieu, P.L.; Gillard, J.; Jolicoeur, E.; Duan, J.; Garneau, M.; Kukolj, G.; Poupart, M-A. From benzimidazole to indole-5-carboxamide Thumb Pocket I inhibitors of HCV NS5B polymerase. Part 1: Indole C-2 SAR and discovery of diamide derivatives with nanomolar potency in cell-based subgenomic replicons. Bioorg. Med. Chem. Lett., 2011, 21(12), 3658-3663.
[http://dx.doi.org/10.1016/j.bmcl.2011.04.059] [PMID: 21550240]
[23]
Brands, M.; Ergüden, J-K.; Hashimoto, K.; Heimbach, D.; Schröder, C.; Siegel, S.; Stasch, J-P.; Weigand, S. Novel, selective indole-based ECE inhibitors: lead optimization via solid-phase and classical synthesis. Bioorg. Med. Chem. Lett., 2005, 15(19), 4201-4205.
[http://dx.doi.org/10.1016/j.bmcl.2005.06.085] [PMID: 16085415]
[24]
Muth, A.; Subramanian, V.; Beaumont, E.; Nagar, M.; Kerry, P.; McEwan, P.; Srinath, H.; Clancy, K.; Parelkar, S.; Thompson, P.R. Development of a selective inhibitor of protein arginine deiminase 2. J. Med. Chem., 2017, 60(7), 3198-3211.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00274] [PMID: 28328217]
[25]
Balboni, G.; Trapella, C.; Sasaki, Y.; Ambo, A.; Marczak, E.D.; Lazarus, L.H.; Salvadori, S. Influence of the side chain next to C-terminal benzimidazole in opioid pseudopeptides containing the Dmt-Tic pharmacophore. J. Med. Chem., 2009, 52(17), 5556-5559.
[http://dx.doi.org/10.1021/jm900686q] [PMID: 19642675]
[26]
Khlebnikov, A.I.; Schepetkin, I.A.; Kirpotina, L.N.; Brive, L.; Dahlgren, C.; Jutila, M.A.; Quinn, M.T. Molecular docking of 2-(benzimidazol-2-ylthio)-N-phenylacetamide-derived small-molecule agonists of human formyl peptide receptor 1. J. Mol. Model., 2012, 18(6), 2831-2843.
[http://dx.doi.org/10.1007/s00894-011-1307-x] [PMID: 22127612]
[27]
Chakraborty, A.; Debnath, S.; Ghosh, T.; Maiti, D.; Majumdar, S. An efficient strategy for N-alkylation of benzimidazoles/imidazoles in SDS-aqueous basic medium and N-alkylation induced ring opening of benzimidazoles. Tetrahedron, 2018, 74(40), 5932-5941.
[http://dx.doi.org/10.1016/j.tet.2018.08.029]
[28]
Hewitt, N.J.; Hewitt, P. Phase I and II enzyme characterization of two sources of HepG2 cell lines. Xenobiotica, 2004, 34(3), 243-256.
[http://dx.doi.org/10.1080/00498250310001657568] [PMID: 15204697]
[29]
Singh, S.; Prasad, N.R.; Chufan, E.E.; Patel, B.A.; Wang, Y-J.; Chen, Z-S.; Ambudkar, S.V.; Talele, T.T. Design and synthesis of human ABCB1 (P-glycoprotein) inhibitors by peptide coupling of diverse chemical scaffolds on carboxyl and amino termini of (S)-valine-derived thiazole amino acid. J. Med. Chem., 2014, 57(10), 4058-4072.
[http://dx.doi.org/10.1021/jm401966m] [PMID: 24773054]
[30]
Yarlagadda, V.; Akkapeddi, P.; Manjunath, G.B.; Haldar, J. Membrane active vancomycin analogues: a strategy to combat bacterial resistance. J. Med. Chem., 2014, 57(11), 4558-4568.
[http://dx.doi.org/10.1021/jm500270w] [PMID: 24846441]
[31]
Yoganathan, S.; Miller, S.J. Structure diversification of vancomycin through peptide-catalyzed, site-selective lipidation: A catalysis-based approach to combat glycopeptide-resistant pathogens. J. Med. Chem., 2015, 58(5), 2367-2377.
[http://dx.doi.org/10.1021/jm501872s] [PMID: 25671771]
[32]
Yadav, S.; Narasimhan, B.; Kaur, H. Perspectives of benzimidazole derivatives as anticancer agents in the new era. Anticancer. Agents Med. Chem., 2016, 16(11), 1403-1425.
[http://dx.doi.org/10.2174/1871520616666151103113412] [PMID: 26526461]
[33]
El Rashedy, A.A.; Aboul-Enein, H.Y. Benzimidazole derivatives as potential anticancer agents. Mini Rev. Med. Chem., 2013, 13(3), 399-407.
[PMID: 23190032]
[34]
Kroemer, G.; Galluzzi, L.; Vandenabeele, P.; Abrams, J.; Alnemri, E.S.; Baehrecke, E.H.; Blagosklonny, M.V.; El-Deiry, W.S.; Golstein, P.; Green, D.R.; Hengartner, M.; Knight, R.A.; Kumar, S.; Lipton, S.A.; Malorni, W.; Nuñez, G.; Peter, M.E.; Tschopp, J.; Yuan, J.; Piacentini, M.; Zhivotovsky, B.; Melino, G. Classification of cell death: Recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ., 2009, 16(1), 3-11.
[http://dx.doi.org/10.1038/cdd.2008.150] [PMID: 18846107]
[35]
Hollville, E.; Martin, S.J. Measuring Apoptosis by Microscopy and Flow Cytometry. https://currentprotocols.onlinelibrary.wiley.com/doi/abs/10.1002/0471142735.im1438s112 (Accessed Jul 1, 2019).
[http://dx.doi.org/10.1002/0471142735.im1438s112]
[36]
Willmore, E.; Frank, A.J.; Padget, K.; Tilby, M.J.; Austin, C.A. Etoposide targets topoisomerase IIalpha and IIbeta in leukemic cells: Isoform-specific cleavable complexes visualized and quantified in situ by a novel immunofluorescence technique. Mol. Pharmacol., 1998, 54(1), 78-85.
[http://dx.doi.org/10.1124/mol.54.1.78] [PMID: 9658192]
[37]
Griffiths, A.J.; Miller, J.H.; Suzuki, D.T.; Lewontin, R.C.; Gelbart, W.M. Machinery for programmed cell death. An Introduction to Genetic Analysis, 7th edition; W.H. Freeman: NewYork, 2000.
[38]
Ouyang, L.; Shi, Z.; Zhao, S.; Wang, F-T.; Zhou, T-T.; Liu, B.; Bao, J-K. Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif., 2012, 45(6), 487-498.
[http://dx.doi.org/10.1111/j.1365-2184.2012.00845.x] [PMID: 23030059]
[39]
Shakeri, R.; Kheirollahi, A.; Davoodi, J. Apaf-1: Regulation and function in cell death. Biochimie, 2017, 135, 111-125.
[http://dx.doi.org/10.1016/j.biochi.2017.02.001] [PMID: 28192157]
[40]
McIlwain, D.R.; Berger, T.; Mak, T.W. Caspase functions in cell death and disease. Cold Spring Harb. Perspect. Biol., 2015, 7(4), 7.
[http://dx.doi.org/10.1101/cshperspect.a026716] [PMID: 25833847]
[41]
Tait, S.W.G.; Green, D.R. Caspase-independent cell death: Leaving the set without the final cut. Oncogene, 2008, 27(50), 6452-6461.
[http://dx.doi.org/10.1038/onc.2008.311] [PMID: 18955972]
[42]
D., Arcy N.; Gabrielli, B. Topoisomerase II inhibitors and poisons, and the influence of cell cycle checkpoints. Curr. Med. Chem., 2017, 24(15), 1504-1519.
[http://dx.doi.org/10.2174/0929867323666161205122613] [PMID: 27919216]
[43]
Oksuzoglu, E.; Tekiner-Gulbas, B.; Alper, S.; Temiz-Arpaci, O.; Ertan, T.; Yildiz, I.; Diril, N.; Sener-Aki, E.; Yalcin, I. Some benzoxazoles and benzimidazoles as DNA topoisomerase I and II inhibitors. J. Enzyme Inhib. Med. Chem., 2008, 23(1), 37-42.
[http://dx.doi.org/10.1080/14756360701342516] [PMID: 18341251]
[44]
Bell, C.A.; Dykstra, C.C.; Naiman, N.A.; Cory, M.; Fairley, T.A.; Tidwell, R.R. Structure-activity studies of dicationically substituted bis-benzimidazoles against Giardia lamblia: Correlation of antigiardial activity with DNA binding affinity and giardial topoisomerase II inhibition. Antimicrob. Agents Chemother., 1993, 37(12), 2668-2673.
[http://dx.doi.org/10.1128/AAC.37.12.2668] [PMID: 8109934]
[45]
Cummings, J.; Smyth, J.F. DNA topoisomerase I and II as targets for rational design of new anticancer drugs. Ann. Oncol., 1993, 4(7), 533-543.
[http://dx.doi.org/10.1093/oxfordjournals.annonc.a058584] [PMID: 8395870]
[46]
He, L-J.; Yang, D-L.; Li, S-Q.; Zhang, Y-J.; Tang, Y.; Lei, J.; Frett, B.; Lin, H-K.; Li, H-Y.; Chen, Z-Z.; Xu, Z-G. Facile construction of fused benzimidazole-isoquinolinones that induce cell-cycle arrest and apoptosis in colorectal cancer cells. Bioorg. Med. Chem., 2018, 26(14), 3899-3908.
[http://dx.doi.org/10.1016/j.bmc.2018.06.010] [PMID: 29921474]
[47]
Clifford, B.; Beljin, M.; Stark, G.R.; Taylor, W.R.G. 2 arrest in response to topoisomerase II inhibitors: the role of p53. Cancer Res., 2003, 63(14), 4074-4081.
[PMID: 12874009]
[48]
Yoganathan, S.; Sit, C.S.; Vederas, J.C. Chemical synthesis and biological evaluation of gallidermin-siderophore conjugates. Org. Biomol. Chem., 2011, 9(7), 2133-2141.
[http://dx.doi.org/10.1039/c0ob00846j] [PMID: 21290068]
[49]
Yoganathan, S.; Yin, N.; He, Y.; Mesleh, M.F.; Gu, Y.G.; Miller, S.J. An efficient chemical synthesis of carboxylate-isostere analogs of daptomycin. Org. Biomol. Chem., 2013, 11(28), 4680-4685.
[http://dx.doi.org/10.1039/c3ob40924d] [PMID: 23752953]
[50]
Walsh, C.T.; Wright, G. Introduction: Antibiotic resistance. Chem. Rev., 2005, 105, 391-394.
[51]
Blair, J.M.A.; Webber, M.A.; Baylay, A.J.; Ogbolu, D.O.; Piddock, L.J.V. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol., 2015, 13(1), 42-51.
[http://dx.doi.org/10.1038/nrmicro3380] [PMID: 25435309]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 3
Year: 2020
Published on: 23 April, 2020
Page: [301 - 314]
Pages: 14
DOI: 10.2174/1871520619666191028101506
Price: $65

Article Metrics

PDF: 23
HTML: 3