Antibacterial and Cytotoxic Effects of the Cultivated Ruta chalepensis

Author(s): Lynda Gali*, Fatiha Bedjou

Journal Name: Current Bioactive Compounds

Volume 16 , Issue 5 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Ruta chalepensis is a shrub from the Mediterranean basin widely used in the traditional medicine. The plant presents an interesting composition containing alkaloids, coumarins and volatile oil. The present work aims to study the antibacterial and the cytotoxic effects of the ethanol extract, its fractions, and the alkaloid extract from the cultivated Ruta chalepensis.

Methods: Extracts were tested against five bacterial strains using the agar well diffusion method and the broth micro-dilution technique for the determination of the Minimum Inhibitory Concentration (MIC). Brine shrimp assay was used to evaluate the cytotoxicity.

Results: Chloroform fraction exhibited a strong antibacterial activity against S. aureus, and B. subtilis with inhibition diameters of 25.5±0.7 and 18.5±2.12mm at 50mg/ml and 100mg/ml, respectively. Butanol and aqueous fractions were found to be inactive against all the tested strains. Ethyl acetate was the only active fraction against E. coli. Alkaloids showed a strong growth inhibition of B. subtilis and S. aureus at low concentrations (22.5±0.71 and 18.00±0,00mm, respectively at 20mg/ml). The cytotoxicity evaluation using the brine shrimp larvae indicated a high effect of alkaloids with an LC50 of 27.51μg/ml supporting their antibacterial activity.

Conclusion: These findings suggest a possible use of Ruta chalepensis as a source of antibacterial and anti-proliferative agents.

Keywords: Medicinal plants, Ruta chalepensis, antibacterial activity, cytotoxicity, alkaloids, fractionation.

[1]
Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; Paterson, D.L.; Rice, L.B.; Stelling, J.; Struelens, M.J.; Vatopoulos, A.; Weber, J.T.; Monnet, D.L. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect., 2012, 18(3), 268-281.
[http://dx.doi.org/10.1111/j.1469-0691.2011.03570.x] [PMID: 21793988]
[2]
Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal., 2016, 6(2), 71-79.
[http://dx.doi.org/10.1016/j.jpha.2015.11.005] [PMID: 29403965]
[3]
de Pasquale, A. Pharmacognosy: the oldest modern science. J. Ethnopharmacol., 1984, 11(1), 1-16.
[http://dx.doi.org/10.1016/0378-8741(84)90092-8] [PMID: 6381886]
[4]
Rates, S.M.K. Plants as source of drugs. Toxicon, 2001, 39(5), 603-613.
[http://dx.doi.org/10.1016/S0041-0101(00)00154-9] [PMID: 11072038]
[5]
Trombetta, D.; Castelli, F.; Sarpietro, M.G.; Venuti, V.; Cristani, M.; Daniele, C.; Saija, A.; Mazzanti, G.; Bisignano, G. Mechanisms of antibacterial action of three monoterpenes. Antimicrob. Agents Chemother., 2005, 49(6), 2474-2478.
[http://dx.doi.org/10.1128/AAC.49.6.2474-2478.2005] [PMID: 15917549]
[6]
Haque, E.; Irfan, S.; Kamil, M.; Sheikh, S.; Hasan, A.; Ahmad, A.; Lakshmi, V.; Nazir, A.; Mir, S.S. Terpenoids with antifungal activity trigger mitochondrial dysfunction in Saccharomyces cerevisiae. Microbiology, 2016, 85(4), 436-443.
[http://dx.doi.org/10.1134/S0026261716040093] [PMID: 28853775]
[7]
Shimamura, T.; Zhao, W-H.W-H.; Hu, Z-Q. Mechanism of action and potential for use of tea catechin as an antiinfective agent. Antiinfect. Agents, 2007, 6, 57-62.
[8]
Smyth, T.; Ramachandran, V.N.; Smyth, W.F. A study of the antimicrobial activity of selected naturally occurring and synthetic coumarins. Int. J. Antimicrob. Agents, 2009, 33(5), 421-426.
[http://dx.doi.org/10.1016/j.ijantimicag.2008.10.022] [PMID: 19155158]
[9]
Yerlikaya1, S.; Zengin, G.; Mollica, A.; Baloglu, M.C.; Altunoglu Y.C.; Aktumsek, A. A multidirectional perspective for novel functional products: In vitro pharmacological activities and in silico studies on Ononis natrix subsp. Hispanica. Front. Pharmacol., 2017, 8, 1-14.
[10]
Wentland, M.P.; Cornett, J.B. Chapter 15. Quinolone antibacterial agents. Annu. Rep. Med. Chem., 1985, 20, 145-154.
[http://dx.doi.org/10.1016/S0065-7743(08)61041-6]
[11]
Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev., 1999, 12(4), 564-582.
[http://dx.doi.org/10.1128/CMR.12.4.564] [PMID: 10515903]
[12]
Al-Majedy, Y.A.; Kadhum, A.A.A.; Al-Amiery, A.A.; Mohamad, A.B. Recent trends in human and animal mycology. Sys. Rev. Pharm, 2017, 8(1), 62-70.
[http://dx.doi.org/10.5530/srp.2017.1.11]
[13]
Mollica, A.; Macedonio, G.; Stefanucci, A.; Costante, R.; Carradori, S.; Cataldi, V.; Giulio, M.; Cellini, L.; Silvestri, R. Giordano, C.; Scipioni, A.; Morosetti, S.; Punzi, P.; Mirzaie, S. Arginine- and Lysine-rich peptides: Synthesis, characterization and antimicrobial activity. Lett. Drug Des. Discov., 2017, 14, 1-7.
[14]
San Miguel, E. rue (Ruta L., rutaceae) in traditional spain: frequency and distribution of its medicinal and symbolic applications. Econ. Bot., 2003, 57(2), 231-244.
[http://dx.doi.org/10.1663/0013-0001(2003)057[0231:RRLRIT]2.0.CO;2]
[15]
Ezmirly, S.T.; Wilson, S.R. Saudi Arabian medicinal plants: Ruta chalepensis. J. Chem. Soc. Pak., 1980, 2(2), 55-57.
[16]
Ulubelen, A.; Ertugrul, L.; Birman, H.; Yigit, R.; Erseven, G.; Olgac, V. Antifertility effects of some coumarins isolated from Ruta chalepensis and R. chalepensis var. Latifolia in rodents. Phytother. Res., 1994, 8, 233-236.
[http://dx.doi.org/10.1002/ptr.2650080409]
[17]
El Sayed, K.; Al-Said, M.S.; El-Feraly, F.S.; Ross, S.A. New quinoline alkaloids from Ruta chalepensis. J. Nat. Prod., 2000, 63(7), 995-997.
[http://dx.doi.org/10.1021/np000012y] [PMID: 10924184]
[18]
Iauk, L.; Mangano, K.; Rapisarda, A.; Ragusa, S.; Maiolino, L.; Musumeci, R.; Costanzo, R.; Serra, A.; Speciale, A. Protection against murine endotoxemia by treatment with Ruta chalepensis L., a plant with anti-inflammatory properties. J. Ethnopharmacol., 2004, 90(2-3), 267-272.
[http://dx.doi.org/10.1016/j.jep.2003.10.004] [PMID: 15013191]
[19]
Zeichen de Sa, R.; Rey, A.; Argañaraz, E.; Bindstein, E. Perinatal toxicology of Ruta chalepensis (Rutaceae) in mice. J. Ethnopharmacol., 2000, 69(2), 93-98.
[http://dx.doi.org/10.1016/S0378-8741(98)00232-3] [PMID: 10687865]
[20]
Gonçalo, S.; Correia, C.; Couto, J.S.; Gonçalo, M. Contact and photocontact dermatitis from Ruta chalepensis. Contact Dermat., 1989, 21(3), 200-201.
[http://dx.doi.org/10.1111/j.1600-0536.1989.tb04740.x] [PMID: 2791550]
[21]
Khlifi, D.; Sghaier, R.M.; Amouri, S.; Laouini, D.; Hamdi, M.; Bouajila, J. Composition and anti-oxidant, anti-cancer and anti-inflammatory activities of Artemisia herba-alba, Ruta chalpensis L. and Peganum harmala L. Food Chem. Toxicol., 2013, 55, 202-208.
[http://dx.doi.org/10.1016/j.fct.2013.01.004] [PMID: 23333573]
[22]
Terkmane, S.; Gali, L.; Bourrebaba, L.; Shoji, K.; Legembre, P.; Konstantia, G.; Ioanna, C.; Bedjou, F. Chemical composition, antioxidant, and anticancer effect of Ruta chalepensis’s extracts against human leukemic cells. Phytotherapie, 2017, 1-12.
[http://dx.doi.org/10.1007/s10298-017-1147-7]
[23]
Bayer, E.; Buttler, K.P.; Zeller, Y.F.K.; Grau, J. Guide de la flore méditerranéenne: caractéristiques, habitat, distribution et particularités de 536 espèces; Delachaux et Nietlé: Paris, 1990.
[24]
Dehmlow, E.V.; Guntenhöner, M.; Ree, T.V. Novel alkaloid from Fluggea virosa: 14, 15-epoxynorsecurinine. Phytochemistry, 1999, 52, 1715-1716.
[http://dx.doi.org/10.1016/S0031-9422(99)00208-3]
[25]
Devillers, J.; Steiman, R.; Seigle-Murandi, F. The usefulness of the agar-well diffusion method for assessing chemical toxicity to bacteria and fungi. Chemosphere, 1989, 10/11(19), 1693-1700.
[http://dx.doi.org/10.1016/0045-6535(89)90512-2]
[26]
Erdemoglu, N.; Ozkan, S.; Tosun, F. Alkaloid profile and antimicrobial activity of Lupinus angustifolius L. alkaloid extract. Phytochem. Rev., 2007, 6, 197-201.
[http://dx.doi.org/10.1007/s11101-006-9055-8]
[27]
Wanyoike, G.N.; Chhabra, S.C.; Lang’at-Thoruwa, C.C.; Omar, S.A. Brine shrimp toxicity and antiplasmodial activity of five Kenyan medicinal plants. J. Ethnopharmacol., 2004, 90(1), 129-133.
[http://dx.doi.org/10.1016/j.jep.2003.09.047] [PMID: 14698520]
[28]
Cho, J.H.; Lee, C.C.; Lee, H.S. Antimicrobial activity of quinoline derivatives isolated from Ruta chalepensis toward human intestinal bacteria. J. Microbiol. Biotechnol., 2005, 15(3), 646-651.
[29]
Solis, P.N.; Wright, C.W.; Anderson, M.M.; Gupta, M.P.; Phillipson, J.D. A microwell cytotoxicity assay using Artemia salina (brine shrimp). Planta Med., 1993, 59(3), 250-252.
[http://dx.doi.org/10.1055/s-2006-959661] [PMID: 8316592]
[30]
Mclaughlin, J.L.; Rogers, L.L. The use of biological assays to evaluate botanicals. Drug Dev. Ind. Pharm., 1998, 32, 513-524.
[31]
Mouffouk, C.; Hambaba, L.; Haba, H.; Mouffouk, S.; Bensouici, C. Evaluation of cytotoxic effect, anti-cholinesterase, hemolytic and antibacterial activities of the species Scabiosa stellata L. Curr. Bioact. Compd., 2018, 14, 1-7.
[http://dx.doi.org/10.2174/1573407214666180730102338]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 5
Year: 2020
Published on: 16 July, 2020
Page: [654 - 660]
Pages: 7
DOI: 10.2174/1573407215666190207125643
Price: $65

Article Metrics

PDF: 13
HTML: 3