Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Chromone, A Privileged Scaffold in Drug Discovery: Developments in the Synthesis and Bioactivity

Author(s): Anjitha Theres Benny, Sonia D. Arikkatt , Cijo George Vazhappilly, Sathananthan Kannadasan, Renjan Thomas, Manju Sreedharan Nair Leelabaiamma, Ethiraj Kannatt Radhakrishnan* and Ponnusamy Shanmugam

Volume 22, Issue 7, 2022

Published on: 17 January, 2022

Page: [1030 - 1063] Pages: 34

DOI: 10.2174/1389557521666211124141859

Price: $65

Abstract

Chromones are the class of secondary metabolites that broadly occur in the plant kingdom in a noticeable quantity. This rigid bicyclic system has been categorized “as privileged scaffolds in compounds” in medicinal chemistry. Their wide biological responses have made them an important moiety in a drug discovery program. This review provides updates on the various methods of synthesis of chromones and biological applications in medicinal chemistry. Various synthetic strategies for the construction of chromones include readily available phenols, salicylic acid and its derivatives, ynones, chalcones, enaminones, and 2-hydroxyarylalkylketones as starting materials. Synthesis of chromones by using metal, metal-free, nanomaterials and different other catalysts is herein included. Details of diverse biological activities of chromone derviatives, such as anti-cancer, antimicrobial, anti-viral, anti-inflammatory, antioxidant, as Monoamine Oxidase-B (MAO-B) inhibitors, anti- Alzheimer’s agents, anti-diabetic agents, having antihistaminic potential, and acting as antiplatelet agents, are discussed.

Keywords: Chromones, synthetic transformation, anti-cancer, antimicrobial, anti-diabetic, anti-viral.

Next »
Graphical Abstract
[1]
Ellis, G.P.; Barker, G. Chromone-2- and -3-carboxylic acids and their derivatives. Prog. Med. Chem., 1972, 9(1), 65-116.
[PMID: 4564214]
[2]
Gaspar, A.; Matos, M.J.; Garrido, J.; Uriarte, E.; Borges, F. Chromone: A valid scaffold in medicinal chemistry. Chem. Rev., 2014, 114(9), 4960-4992.
[http://dx.doi.org/10.1021/cr400265z] [PMID: 24555663]
[3]
Edwards, A.M. Chromones. History of Allergy; Karger Publishers: Basel, Switzerland, 2014, Vol. 100, pp. 317-322.
[4]
Williams, D.A.; Zaidi, S.A.; Zhang, Y. 5-Hydroxy-2-(2-phenylethyl)chromone (5-HPEC): A novel non-nitrogenous ligand for 5-HT2B receptor. Bioorg. Med. Chem. Lett., 2014, 24(6), 1489-1492.
[http://dx.doi.org/10.1016/j.bmcl.2014.02.029] [PMID: 24582985]
[5]
Keri, R.S.; Budagumpi, S.; Pai, R.K.; Balakrishna, R.G. Chromones as a privileged scaffold in drug discovery: A review. Eur. J. Med. Chem., 2014, 78, 340-374.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.047] [PMID: 24691058]
[6]
Khadem, S.; Marles, R.J. Chromone and flavonoid alkaloids: Occurrence and bioactivity. Molecules, 2011, 17(1), 191-206.
[http://dx.doi.org/10.3390/molecules17010191] [PMID: 22202807]
[7]
Yatabe, T.; Jin, X.; Yamaguchi, K.; Mizuno, N. Gold nanoparticles supported on a layered double hydroxide as efficient catalysts for the one-pot synthesis of flavones. Angew. Chem. Int. Ed. Engl., 2015, 54(45), 13302-13306.
[http://dx.doi.org/10.1002/anie.201507134] [PMID: 26367015]
[8]
Hirao, I.; Yamaguchi, M.; Hamada, M. A convenient synthesis of 2-and 2, 3-substituted 4H-chromen-4-ones. Synthesis, 1984, (12), 1076-1078.
[http://dx.doi.org/10.1055/s-1984-31089]
[9]
Gomes, A.; Neuwirth, O.; Freitas, M.; Couto, D.; Ribeiro, D.; Figueiredo, A.G.; Silva, A.M.; Seixas, R.S.; Pinto, D.C.; Tomé, A.C.; Cavaleiro, J.A.; Fernandes, E.; Lima, J.L. Synthesis and antioxidant properties of new chromone derivatives. Bioorg. Med. Chem., 2009, 17(20), 7218-7226.
[http://dx.doi.org/10.1016/j.bmc.2009.08.056] [PMID: 19781949]
[10]
Lu, T.; Deng, S.; Li, C.; Wu, L.; Yang, R.; Li, J. A new chromone from the twig of Mallotus apelta. Nat. Prod. Res., 2014, 28(21), 1864-1868.
[http://dx.doi.org/10.1080/14786419.2014.951853] [PMID: 25187424]
[11]
Yang, D-L.; Wang, H.; Guo, Z-K.; Dong, W-H.; Mei, W-L.; Dai, H-F. A new 2-(2-phenylethyl)chromone derivative in Chinese agarwood ‘Qi-Nan’ from Aquilaria sinensis. J. Asian Nat. Prod. Res., 2014, 16(7), 770-776.
[http://dx.doi.org/10.1080/10286020.2014.896342] [PMID: 24646200]
[12]
Ibrahim, S.R.; Mohamed, G.A. Cucumin S, a new phenylethyl chromone from Cucumis melo var. reticulatus seeds. Rev. Bras. Farmacogn., 2015, 25(5), 462-464.
[http://dx.doi.org/10.1016/j.bjp.2015.06.006]
[13]
Nadmid, S.; Plaza, A.; Garcia, R.; Müller, R. Cystochromones, unusual chromone-containing polyketides from the Myxobacterium cystobacter sp. MCy9104. J. Nat. Prod., 2015, 78(8), 2023-2028.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00343] [PMID: 26214047]
[14]
Li, H.; Tian, J-M.; Tang, H-Y.; Pan, S-Y.; Zhang, A-L.; Gao, J-M. Chaetosemins A–E, new chromones isolated from an Ascomycete Chaetomium seminudum and their biological activities. RSC Advances, 2015, 5(37), 29185-29192.
[http://dx.doi.org/10.1039/C5RA00525F]
[15]
Chokpaiboon, S.; Choodej, S.; Boonyuen, N.; Teerawatananond, T.; Pudhom, K. Highly oxygenated chromones from mangrove-derived endophytic fungus Rhytidhysteron rufulum. Phytochemistry, 2016, 122, 172-177.
[http://dx.doi.org/10.1016/j.phytochem.2015.12.010] [PMID: 26712613]
[16]
Zhang, Z.; Wang, X.; Yang, W.; Wang, J.; Su, C.; Liu, X.; Li, J.; Zhao, Y.; Shi, S.; Tu, P. Five 2-(2-phenylethyl)chromones from sodium chloride-elicited Aquilaria sinensis cell suspension cultures. Molecules, 2016, 21(5), 555.
[http://dx.doi.org/10.3390/molecules21050555] [PMID: 27128895]
[17]
Rehman, N.U.; Hussain, H.; Khiat, M.; Al‐Riyami, S.A.; Csuk, R.; Khan, H.Y.; Abbas, G.; Al‐Thani, G.S.; Green, I.R.; Al‐Harrasi, A. Aloeverasides A and B: Two bioactive c‐glucosyl chromones from Aloe vera resin. Helv. Chim. Acta, 2016, 9(99), 687-690.
[http://dx.doi.org/10.1002/hlca.201600126]
[18]
Shao, H.; Mei, W-L.; Dong, W-H.; Gai, C-J.; Li, W.; Zhu, G-P.; Dai, H-F. 2-(2-Phenylethyl)chromone derivatives of agarwood originating from Gyrinops salicifolia. Molecules, 2016, 21(10), 1313.
[http://dx.doi.org/10.3390/molecules21101313] [PMID: 27706109]
[19]
Honmore, V.S.; Kandhare, A.D.; Kadam, P.P.; Khedkar, V.M.; Sarkar, D.; Bodhankar, S.L.; Zanwar, A.A.; Rojatkar, S.R.; Natu, A.D. Isolates of Alpinia officinarum Hance as COX-2 inhibitors: Evidence from anti-inflammatory, antioxidant and molecular docking studies. Int. Immunopharmacol., 2016, 33, 8-17.
[http://dx.doi.org/10.1016/j.intimp.2016.01.024] [PMID: 26849772]
[20]
Yang, B.; Tao, H.; Qin, X-C.; Wang, Z.; Dong, J.; Lin, X.; Zhou, X.; Li, J-L.; Tu, Z-C.; Liu, Y. Aspergone, a new chromanone derivative from fungus Aspergillus sp. SCSIO41002 derived of mangrove soil sample. J. Antibiot. (Tokyo), 2017, 70(6), 788-790.
[http://dx.doi.org/10.1038/ja.2016.169] [PMID: 28119517]
[21]
Okombi, S.; Schmidt, J.; Mariotte, A-M.; Perrier, E.; Boumendjel, A. A one-step synthesis of 2-alkyl-5-hydroxychromones and 3-alkoyl-2-alkyl-5-hydroxychromones. Chem. Pharm. Bull. (Tokyo), 2005, 53(11), 1460-1462.
[http://dx.doi.org/10.1248/cpb.53.1460] [PMID: 16272732]
[22]
Riva, C.; De Toma, C.; Donadel, L.; Boi, C.; Pennini, R.; Motta, G.; Leonardi, A. New DBU (1, 8-diazabicyclo [5.4. 0] undec-7-ene) assisted one-pot synthesis of 2, 8-disubstituted 4H-1-benzopyran-4-ones. Synthesis, 1997, 1997(02), 195-201.
[http://dx.doi.org/10.1055/s-1997-1168]
[23]
Abdel Ghani, S.B.; Mugisha, P.J.; Wilcox, J.C.; Gado, E.A.; Medu, E.O.; Lamb, A.J.; Brown, R.C. Convenient one-pot synthesis of chromone derivatives and their antifungal and antibacterial evaluation. Synth. Commun., 2013, 43(11), 1549-1556.
[http://dx.doi.org/10.1080/00397911.2011.647222]
[24]
Silva, A.M.; Pinto, D.; Cavaleiro, J.A.; Levai, A.; Patonay, T. Synthesis and reactivity of styrylchromones. ARKIVOC, 2004, 2004(7), 106-123.
[http://dx.doi.org/10.3998/ark.5550190.0005.709]
[25]
Dyrager, C.; Möllers, L.N.; Kjäll, L.K.; Alao, J.P.; Dinér, P.; Wallner, F.K.; Sunnerhagen, P.; Grøtli, M. Design, synthesis, and biological evaluation of chromone-based p38 MAP kinase inhibitors. J. Med. Chem., 2011, 54(20), 7427-7431.
[http://dx.doi.org/10.1021/jm200818j] [PMID: 21905739]
[26]
Horton, D.A.; Bourne, G.T.; Smythe, M.L. The combinatorial synthesis of bicyclic privileged structures or privileged substructures. Chem. Rev., 2003, 103(3), 893-930.
[http://dx.doi.org/10.1021/cr020033s] [PMID: 12630855]
[27]
Banerji, A.; Goomer, N.C. A new synthesis of flavones. Synthesis, 1980, 1980(11), 874-875.
[http://dx.doi.org/10.1055/s-1980-29245]
[28]
Li, N.G.; Shi, Z.H.; Tang, Y.P.; Ma, H.Y.; Yang, J.P.; Li, B.Q.; Wang, Z.J.; Song, S.L.; Duan, J.A. Synthetic strategies in the construction of chromones. J. Heterocycl. Chem., 2010, 47(4), 785-799.
[http://dx.doi.org/10.1002/jhet.393]
[29]
Irgashev, R.A.; Sosnovskikh, V.Y.; Kalinovich, N.; Kazakova, O.; Röschenthaler, G-V. Methyl 2-methoxytetrafluoropropionate as a synthetic equivalent of methyl trifluoropyruvate in the Claisen condensation. The first synthesis of 2-(trifluoroacetyl) chromones and 5-aryl-2-hydroxy-2-(trifluoromethyl) furan-3 (2H)-ones. Tetrahedron Lett., 2009, 50(34), 4903-4905.
[http://dx.doi.org/10.1016/j.tetlet.2009.06.067]
[30]
Forghieri, M.; Laggner, C.; Paoli, P.; Langer, T.; Manao, G.; Camici, G.; Bondioli, L.; Prati, F.; Costantino, L. Synthesis, activity and molecular modeling of a new series of chromones as low molecular weight protein tyrosine phosphatase inhibitors. Bioorg. Med. Chem., 2009, 17(7), 2658-2672.
[http://dx.doi.org/10.1016/j.bmc.2009.02.060] [PMID: 19297174]
[31]
Safrygin, A.V.; Barabanov, M.A.; Irgashev, R.A.; Sosnovskikh, V.Y. Synthesis and reactivity of 8-aza-5, 7-dimethyl-2-trifluoroacetyl chromone. Chem. Heterocycl. Compd., 2015, 51(9), 838-844.
[http://dx.doi.org/10.1007/s10593-015-1784-4]
[32]
Lee, K.S.; Seo, S.H.; Lee, Y.H.; Kim, H.D.; Son, M.H.; Chung, B.Y.; Lee, J.Y.; Jin, C.; Lee, Y.S. Synthesis and biological evaluation of chromone carboxamides as calpain inhibitors. Bioorg. Med. Chem. Lett., 2005, 15(11), 2857-2860.
[http://dx.doi.org/10.1016/j.bmcl.2005.03.095] [PMID: 15911268]
[33]
Lacova, M.; El-Shaaer, H.M.; Loos, D.; Matulova, M.; Chovancova, J.; Furdik, M. Evaluation of effect of microwave irradiation on syntheses and reactions of some new 3-acyl-methylchromones. Molecules, 1998, 3(3), 120-131.
[http://dx.doi.org/10.3390/30300120]
[34]
Nohara, A.; Umetani, T.; Sanno, Y. A facile synthesis of chromone-3-carboxaldehyde, chromone-3-carboxylic acid and 3-hydroxymethylchromone. Tetrahedron Lett., 1973, 14(22), 1995-1998.
[http://dx.doi.org/10.1016/S0040-4039(01)96102-7]
[35]
Raju, B.C.; Rao, R.N.; Suman, P.; Yogeeswari, P.; Sriram, D.; Shaik, T.B.; Kalivendi, S.V. Synthesis, structure-activity relationship of novel substituted 4H-chromen-1,2,3,4-tetrahydropyrimidine-5-carboxylates as potential anti-mycobacterial and anticancer agents. Bioorg. Med. Chem. Lett., 2011, 21(10), 2855-2859.
[http://dx.doi.org/10.1016/j.bmcl.2011.03.079] [PMID: 21507635]
[36]
Su, W.; Li, Z.; Zhao, L. One-pot synthesis of 3-formylchromones from bis-(trichloromethyl) carbonate/DMF. Org. Prep. Proced. Int., 2007, 39(5), 495-502.
[http://dx.doi.org/10.1080/00304940709458601]
[37]
Bass, R.J. Synthesis of chromones by cyclization of 2-hydroxyphenyl ketones with boron trifluoride–diethyl ether and methanesulphonyl chloride. J. Chem. Soc. Chem. Commun., 1976, (2), 78-79.
[http://dx.doi.org/10.1039/C39760000078]
[38]
Alderete, J.; Belmar, J.; Parra, M.; Zuniga, C.; Jimenez, V. Esters derived from 7-decanoyloxychromone-3-carboxylic acid: Synthesis and mesomorphic properties. Liq. Cryst., 2003, 30(11), 1319-1325.
[http://dx.doi.org/10.1080/02678290310001610167]
[39]
Morris, J.; Wishka, D.G.; Humphrey, W.R.; Lin, A.H.; Wiltse, A.L.; Benjamin, C.W.; Gorman, R.R.; Shebuski, R.J. Synthesis and biological activity of a potent antiplatelet 7-aminofurochromone. Bioorg. Med. Chem. Lett., 1994, 4(21), 2621-2626.
[http://dx.doi.org/10.1016/S0960-894X(01)80296-1]
[40]
Ali, T.E-S.; Ibrahim, M.A.; El-Gohary, N.M.; El‐Kazak, A.M. 3-Formylchromones as diverse building blocks in heterocycles synthesis. Eur. J. Chem., 2013, 4(3), 311-328.
[http://dx.doi.org/10.5155/eurjchem.4.3.311-328.815]
[41]
Jaen, J.C.; Wise, L.D.; Heffner, T.G.; Pugsley, T.A.; Meltzer, L.T. Dopamine autoreceptor agonists as potential antipsychotics. 2. (Aminoalkoxy)-4H-1-benzopyran-4-ones. J. Med. Chem., 1991, 34(1), 248-256.
[http://dx.doi.org/10.1021/jm00105a039] [PMID: 1671416]
[42]
Dorofeenko, G.; Tkachenko, V. Synthesis of 4-alkoxybenzopyrylium salts and chromones. Chem. Heterocycl. Compd., 1972, 8(8), 935-938.
[http://dx.doi.org/10.1007/BF00476317]
[43]
Singh, J.B.; Mishra, K.; Gupta, T.; Singh, R.M. TBHP promoted cross-dehydrogenative coupling (CDC) reaction: Metal/additive-free synthesis of chromone-fused quinolones. ChemistrySelect, 2017, 2(3), 1207-1210.
[http://dx.doi.org/10.1002/slct.201601527]
[44]
Wang, P.; Rao, H.; Hua, R.; Li, C-J. Rhodium-catalyzed xanthone formation from 2-aryloxybenzaldehydes via cross-dehydrogenative coupling (CDC). Org. Lett., 2012, 14(3), 902-905.
[http://dx.doi.org/10.1021/ol203381q] [PMID: 22272652]
[45]
Li, H.; Liu, C.; Zhang, Y.; Sun, Y.; Wang, B.; Liu, W. Green method for the synthesis of chromeno[2,3-c]pyrazol-4(1H)-ones through ionic liquid promoted directed annulation of 5-(aryloxy)-1H-pyrazole-4-carbaldehydes in aqueous media. Org. Lett., 2015, 17(4), 932-935.
[http://dx.doi.org/10.1021/acs.orglett.5b00033] [PMID: 25647482]
[46]
Sethna, S.; Phadke, R. The pechmann reaction. Organic Reactions; John Wiley & Sons, Inc.: Hoboken, NJ, 2004, pp. 2-55.
[http://dx.doi.org/10.1002/0471264180.or007.01]
[47]
Oyman, U.; Gunaydin, K. Condensation of ethyl acetoacetate with naphthalene‐diols. the synthesis of some novel coumarins and chromones. Part 1. Bull. Soc. Chim. Belg., 1994, 103(12), 763-764.
[http://dx.doi.org/10.1002/bscb.19941031208]
[48]
Fillion, E.; Dumas, A.M.; Kuropatwa, B.A.; Malhotra, N.R.; Sitler, T.C. Yb(OTf)3-catalyzed reactions of 5-alkylidene Meldrum’s acids with phenols: One-pot assembly of 3,4-dihydrocoumarins, 4-chromanones, coumarins, and chromones. J. Org. Chem., 2006, 71(1), 409-412.
[http://dx.doi.org/10.1021/jo052000t] [PMID: 16388672]
[49]
Mazzei, M.; Balbi, A.; Roma, G.; Di Braccio, M.; Leoncini, G.; Buzzi, E.; Maresca, M. Synthesis and anti-platelet activity of some 2-(dialkylamino) chromones. Eur. J. Med. Chem., 1988, 23(3), 237-242.
[http://dx.doi.org/10.1016/0223-5234(88)90005-0]
[50]
Morris, J.; Wishka, D.G.; Fang, Y. A cyclodehydration route to 2-aminochromones. Synth. Commun., 1994, 24(6), 849-858.
[http://dx.doi.org/10.1080/00397919408011307]
[51]
Pochat, F.; L’Haridon, P. New substituted derivatives of benzopyran and chromone. Synth. Commun., 1998, 28(6), 957-962.
[http://dx.doi.org/10.1080/00397919808003064]
[52]
Jung, J-C.; Min, J-P.; Park, O-S. A highly practical route to 2-methylchromones from 2-acetoxybenzoic acids. Synth. Commun., 2001, 31(12), 1837-1845.
[http://dx.doi.org/10.1081/SCC-100104333]
[53]
Abbott, B.; Thompson, P. Synthetic studies of the phosphatidylinositol 3-kinase inhibitor LY294002 and related analogues. Aust. J. Chem., 2003, 56(11), 1099-1106.
[http://dx.doi.org/10.1071/CH03113]
[54]
Liu, H.; Yang, Y.; Wang, S.; Wu, J.; Wang, X-N.; Chang, J. Synthesis of 3-substituted 2-aminochromones via Sn(IV)-promoted annulation of ynamides with 2-methoxyaroyl chlorides. Org. Lett., 2015, 17(18), 4472-4475.
[http://dx.doi.org/10.1021/acs.orglett.5b02137] [PMID: 26332185]
[55]
Athanasellis, G.; Melagraki, G.; Afantitis, A.; Makridima, K.; Igglessi-Markopoulou, O. A simple synthesis of functionalized 2-amino-3-cyano-4-chromones by application of the N-hydroxybenzotriazole methodology. ARKIVOC, 2006, 10, 28-34.
[http://dx.doi.org/10.3998/ark.5550190.0007.a04]
[56]
Kumar, P.; Bodas, M.S. A novel synthesis of 4 H-chromen-4-ones via intramolecular wittig reaction. Org. Lett., 2010, 12(18), 4216.
[http://dx.doi.org/10.1021/ol101940z]
[57]
Kalinin, V.; Shostakovsky, M.; Ponomaryov, A. Palladium-catalyzed synthesis of flavones and chromones via carbonylative coupling of o-Iodophenols with terminal acetylenes. Tetrahedron Lett., 1990, 31(28), 4073-4076.
[http://dx.doi.org/10.1016/S0040-4039(00)94503-9]
[58]
Liang, B.; Huang, M.; You, Z.; Xiong, Z.; Lu, K.; Fathi, R.; Chen, J.; Yang, Z. Pd-catalyzed copper-free carbonylative Sonogashira reaction of aryl iodides with alkynes for the synthesis of alkynyl ketones and flavones by using water as a solvent. J. Org. Chem., 2005, 70(15), 6097-6100.
[http://dx.doi.org/10.1021/jo050498t] [PMID: 16018709]
[59]
Yang, Q.; Alper, H. Synthesis of chromones via palladium-catalyzed ligand-free cyclocarbonylation of o-iodophenols with terminal acetylenes in phosphonium salt ionic liquids. J. Org. Chem., 2010, 75(3), 948-950.
[http://dx.doi.org/10.1021/jo902210p] [PMID: 20067278]
[60]
Awuah, E.; Capretta, A. Access to flavones via a microwave-assisted, one-pot Sonogashira-carbonylation-annulation reaction. Org. Lett., 2009, 11(15), 3210-3213.
[http://dx.doi.org/10.1021/ol901043q] [PMID: 19580257]
[61]
Cheng, G.; Qi, Y.; Zhou, X.; Sheng, R.; Hu, Y-Z.; Hu, Y. One-pot synthesis of 6-aza-chromone derivatives through cascade carbonylation-sonogashira-cyclization. Sci. Rep., 2017, 7(1), 4398.
[http://dx.doi.org/10.1038/s41598-017-04693-7] [PMID: 28667287]
[62]
Fernandes, C.; Soares, P.; Gaspar, A.; Martins, D.; Gomes, L.R.; Low, J.N.; Borges, F. Synthesis of 6-aryl/heteroaryl-4-oxo-4H-chromene-2-carboxylic ethyl ester derivatives. Tetrahedron Lett., 2016, 57(27), 3006-3010.
[http://dx.doi.org/10.1016/j.tetlet.2016.05.096]
[63]
Luo, T.; Wan, J-P.; Liu, Y. Toward C2-nitrogenated chromones by copper-catalyzed β-C (sp 2)–H N-heteroarylation of enaminones. Org. Chem. Front., 2020, 7(9), 1107-1112.
[http://dx.doi.org/10.1039/D0QO00065E]
[64]
Obulesu, O.; Babu, K.H.; Nanubolu, J.B.; Suresh, S. Copper-catalyzed tandem O-arylation–oxidative cross coupling: Synthesis of chromone fused pyrazoles. J. Org. Chem., 2017, 82(6), 2926-2934.
[http://dx.doi.org/10.1021/acs.joc.6b02890] [PMID: 28224791]
[65]
Lade, D.M.; Aher, Y.N.; Pawar, A.B. Cp*Ir(III)-catalyzed C-H/O-H functionalization of salicylaldehydes for the synthesis of chromones at room temperature. J. Org. Chem., 2019, 84(14), 9188-9195.
[http://dx.doi.org/10.1021/acs.joc.9b01139] [PMID: 31273978]
[66]
Debbarma, S.; Sk, M.R.; Modak, B.; Maji, M.S. On-water Cp*Ir(III)-catalyzed C-H functionalization for the synthesis of chromones through annulation of salicylaldehydes with diazo-ketones. J. Org. Chem., 2019, 84(10), 6207-6216.
[http://dx.doi.org/10.1021/acs.joc.9b00418] [PMID: 31002245]
[67]
Cai, L.; Zhu, X.; Chen, J.; Lin, A.; Yao, H. Rh (iii)-Catalyzed C–H activation/annulation of salicylaldehydes with sulfoxonium ylides for the synthesis of chromones. Org. Chem. Front., 2019, 6(21), 3688-3692.
[http://dx.doi.org/10.1039/C9QO00830F]
[68]
Wen, S-S.; Wang, J.; Luo, Y-M.; Yang, H. Synthesis of functionalized chromones via organocatalysis. Tetrahedron, 2014, 70(49), 9314-9320.
[http://dx.doi.org/10.1016/j.tet.2014.10.045]
[69]
Vedachalam, S.; Zeng, J.; Gorityala, B.K.; Antonio, M.; Liu, X-W. N-Heterocyclic carbene-catalyzed intramolecular aldehyde-nitrile cross coupling: An easy access to 3- aminochromones. Org. Lett., 2010, 12(2), 352-355.
[http://dx.doi.org/10.1021/ol9026232] [PMID: 20025237]
[70]
Vedachalam, S.; Wong, Q.L.; Maji, B.; Zeng, J.; Ma, J.; Liu, X.W. N‐heterocyclic carbene catalyzed intramolecular hydroacylation of activated alkynes: Synthesis of chromones. Adv. Synth. Catal., 2011, 353(2‐3), 219-225.
[http://dx.doi.org/10.1002/adsc.201000828]
[71]
Chand, S.; Sandhu, J.S. ZnO Nanoparticles: An efficient green reusable catalyst for the synthesis of 3-formyl benzopyranones chalcones by Claisen-Schmidt reaction under solvent-free condition. Indian J. Chem., 2015, 54, 1350-1354.
[72]
Kandula, V.; Balakrishna, C.; Behera, M.; Nagababu, U.; Kumar, G.K.; Chatterjee, A. Catalytic efficiency of biosynthesized silver nanoparticles in synthesis of chromones and reduction of nitro aromatics. Chem. Select, 2019, 4(48), 14043-14049.
[http://dx.doi.org/10.1002/slct.201903001]
[73]
Zhao, J.; Zhao, Y.; Fu, H. Transition-metal-free intramolecular Ullmann-type O-arylation: synthesis of chromone derivatives. Angew. Chem. Int. Ed. Engl., 2011, 50(16), 3769-3773.
[http://dx.doi.org/10.1002/anie.201007302] [PMID: 21416568]
[74]
Liu, J.; Ba, D.; Chen, Y.; Wen, S.; Cheng, G. Synthesis of 3-(2-quinolyl) chromones from ynones and quinoline N-oxides via tandem reactions under transition metal- and additive-free conditions. Chem. Commun. (Camb.), 2020, 56(29), 4078-4081.
[http://dx.doi.org/10.1039/C9CC09460A] [PMID: 32159534]
[75]
Zhang, J-W.; Yang, W-W.; Chen, L-L.; Chen, P.; Wang, Y-B.; Chen, D-Y. An efficient tandem synthesis of chromones from O-bromoaryl ynones and benzaldehyde oxime. Org. Biomol. Chem., 2019, 17(32), 7461-7467.
[http://dx.doi.org/10.1039/C9OB01387C] [PMID: 31360970]
[76]
Zhang, F.; Yao, Q.; Yuan, Y.; Xu, M.; Kong, L.; Li, Y. Base-mediated insertion reaction of alkynes into carbon-carbon σ-bonds of ethanones: Synthesis of hydroxydienone and chromone derivatives. Org. Biomol. Chem., 2017, 15(12), 2497-2500.
[http://dx.doi.org/10.1039/C7OB00476A] [PMID: 28266674]
[77]
Zheng, Z.; Wang, Y.; Xu, M.; Kong, L.; Wang, M.; Li, Y. Transition-metal-free insertion reactions of alkynes into the C-N σ-bonds of imides: Synthesis of substituted enamides or chromones. Chem. Commun. (Camb.), 2018, 54(48), 6192-6195.
[http://dx.doi.org/10.1039/C8CC03059F] [PMID: 29850679]
[78]
Guo, Y.; Xiang, Y.; Wei, L.; Wan, J-P. Thermoinduced free-radical C–H acyloxylation of tertiary enaminones: Catalyst-free synthesis of acyloxyl chromones and enaminones. Org. Lett., 2018, 20(13), 3971-3974.
[http://dx.doi.org/10.1021/acs.orglett.8b01536] [PMID: 29939030]
[79]
Singh, A.; Bimal, D.; Kumar, R.; Maikhuri, V.K.; Thirumal, M.; Senapati, N.N.; Prasad, A.K. Synthesis and antitubercular activity evaluation of 4-furano-coumarins and 3-furano-chromones. Synth. Commun., 2018, 48(18), 2339-2346.
[http://dx.doi.org/10.1080/00397911.2018.1480041]
[80]
Sorabad, G.S.; Maddani, M.R. Metal‐free, facile synthesis of sulfenylated chromones and indoles promoted by an aqueous HBr− DMSO system. Asian J. Org. Chem., 2019, 8(8), 1336-1343.
[http://dx.doi.org/10.1002/ajoc.201900402]
[81]
Guo, Y.; Zhong, S.; Wei, L.; Wan, J-P. Transition-metal-free synthesis of 3-sulfenylated chromones via KIO3-catalyzed radical C(sp2)-H sulfenylation. Beilstein J. Org. Chem., 2017, 13(1), 2017-2022.
[http://dx.doi.org/10.3762/bjoc.13.199] [PMID: 29062423]
[82]
Gao, H.; Hu, B.; Dong, W.; Gao, X.; Jiang, L.; Xie, X.; Zhang, Z. Synthesis of 3-CF2-containing chromones via a visible-light-induced radical cascade reaction of o-hydroxyaryl enaminones. ACS Omega, 2017, 2(7), 3168-3174.
[http://dx.doi.org/10.1021/acsomega.7b00383] [PMID: 31457645]
[83]
Gao, F.; Meng, F.X.; Du, J.Y.; Zhang, S.; Huang, H.L. One‐Step synthesis of trifluoroethylated chromones via radical cascade cyclization–coupling of 2‐(Allyloxy) arylaldehydes. Eur. J. Org. Chem., 2020, 2020(2), 209-212.
[http://dx.doi.org/10.1002/ejoc.201901636]
[84]
Kotha, R.R.; Kulkarni, R.; Garige, A.; Nerella, S.; Garlapati, A. Synthesis and cytotoxic activity of new chalcones and their flavonol derivatives. Med. Chem., 2017, 7, 353-360.
[85]
Shen, X.; Zhou, Q.; Xiong, W.; Pu, W.; Zhang, W.; Zhang, G.; Wang, C. Synthesis of 5-subsituted flavonols via the Algar-Flynn-Oyamada (AFO) reaction: The mechanistic implication. Tetrahedron, 2017, 73(32), 4822-4829.
[http://dx.doi.org/10.1016/j.tet.2017.06.064]
[86]
Gaikwad, S.; Sonawane, D.; Gaikwad, D.; Sangale, M.; Bare, Y. Synthesis and Characterization of SomeBiologically Potent 2-(2-butyl-4-chloro-1H-imidazol-5-yl)-4H-chromen-4-onederivative. Int. J. Sci. Res. Sci. Technol., 2017, 3(9), 69-74.
[87]
Patil, A.M.; Kamble, D.A.; Lokhande, P.D. Iodine-mediated direct synthesis of 3-iodoflavones. Synth. Commun., 2018, 48(11), 1299-1307.
[http://dx.doi.org/10.1080/00397911.2018.1440601]
[88]
Zhang, P.; Chen, W.; Liu, M.; Wu, H. Synthesis of 3-HCF2S-chromones through tandem oxa-michael addition and oxidative diflluoromethylthiolation. Org. Lett., 2019, 21(23), 9326-9329.
[http://dx.doi.org/10.1021/acs.orglett.9b03396] [PMID: 31769689]
[89]
Galietta, L.J.; Springsteel, M.F.; Eda, M.; Niedzinski, E.J.; By, K.; Haddadin, M.J.; Kurth, M.J.; Nantz, M.H.; Verkman, A.S. Novel CFTR chloride channel activators identified by screening of combinatorial libraries based on flavone and benzoquinolizinium lead compounds. J. Biol. Chem., 2001, 276(23), 19723-19728.
[http://dx.doi.org/10.1074/jbc.M101892200] [PMID: 11262417]
[90]
Tawfik, H.A.; Ewies, E.F.; El-Hamouly, W.S. Synthesis of chromones and their applications during the last ten years during the last ten years. Int. J. Res. Pharm. Chem., 4(4), 1046-1085.
[http://dx.doi.org/10.1002/CHIN.201513331]
[91]
Xing, C.G.; Zhu, B.S.; Liu, H.H.; Lin, F.; Yao, H.H.; Liang, Z.Q.; Qin, Z.H. LY294002 induces p53-dependent apoptosis of SGC7901 gastric cancer cells. Acta Pharmacol. Sin., 2008, 29(4), 489-498.
[http://dx.doi.org/10.1111/j.1745-7254.2008.00770.x] [PMID: 18358096]
[92]
Ren, W.; Qiao, Z.; Wang, H.; Zhu, L.; Zhang, L. Flavonoids: Promising anticancer agents. Med. Res. Rev., 2003, 23(4), 519-534.
[http://dx.doi.org/10.1002/med.10033] [PMID: 12710022]
[93]
Bao, J.; Luo, J.F.; Qin, X.C.; Xu, X.Y.; Zhang, X.Y.; Tu, Z.C.; Qi, S.H. Dihydrothiophene-condensed chromones from a marine-derived fungus Penicillium oxalicum and their structure-bioactivity relationship. Bioorg. Med. Chem. Lett., 2014, 24(11), 2433-2436.
[http://dx.doi.org/10.1016/j.bmcl.2014.04.028] [PMID: 24767845]
[94]
Ionut, I.; Nastasa, C.; Ndongo, J.T.; Bruyere, C.; Leclercqz, H.; Tiperciuc, B.; Lefranc, F.; Pirnau, A.; Kiss, R.; Oniga, O. Synthesis and in vitro anticancer activity of new thiadiazolines and thiazolinones containing a chromenyl scaffold. Dig. J. Nanomater. Biostruct., 2013, 8(4), 1509-1523.
[95]
Safia, K.M.; Kamil, M.; Jadiya, P.; Sheikh, S.; Haque, E.; Nazir, A.; Lakshmi, V.; Mir, S.S. The chromone alkaloid, rohitukine, affords anti-cancer activity via modulating apoptosis pathways in a549 cell line and yeast Mitogen Activated Protein Kinase (MAPK) pathway. PLoS One, 2015, 10(9), e0137991.
[http://dx.doi.org/10.1371/journal.pone.0137991] [PMID: 26405812]
[96]
Shaw, A.Y.; Chang, C.Y.; Liau, H.H.; Lu, P.J.; Chen, H.L.; Yang, C.N.; Li, H.Y. Synthesis of 2-styrylchromones as a novel class of antiproliferative agents targeting carcinoma cells. Eur. J. Med. Chem., 2009, 44(6), 2552-2562.
[http://dx.doi.org/10.1016/j.ejmech.2009.01.034] [PMID: 19246129]
[97]
Zhang, Y.; Schnoes, A.M.; Clapp, A.R. Dithiocarbamates as capping ligands for water-soluble quantum dots. ACS Appl. Mater. Interfaces, 2010, 2(11), 3384-3395.
[http://dx.doi.org/10.1021/am100996g] [PMID: 21053924]
[98]
Huang, W.; Ding, Y.; Miao, Y.; Liu, M.Z.; Li, Y.; Yang, G.F. Synthesis and antitumor activity of novel dithiocarbamate substituted chromones. Eur. J. Med. Chem., 2009, 44(9), 3687-3696.
[http://dx.doi.org/10.1016/j.ejmech.2009.04.004] [PMID: 19410339]
[99]
Hikisz, P.; Szczupak, Ł.; Koceva-Chyła, A.; Gu Spiel, A.; Oehninger, L.; Ott, I.; Therrien, B.; Solecka, J.; Kowalski, K. Anticancer and antibacterial activity studies of gold(I)-alkynyl chromones. Molecules, 2015, 20(11), 19699-19718.
[http://dx.doi.org/10.3390/molecules201119647] [PMID: 26528965]
[100]
Sun, C.; Chen, C.; Xu, S.; Wang, J.; Zhu, Y.; Kong, D.; Tao, H.; Jin, M.; Zheng, P.; Zhu, W. Synthesis and anticancer activity of novel 4-morpholino-7,8-dihydro-5H-thiopyrano[4,3-d]pyrimidine derivatives bearing chromone moiety. Bioorg. Med. Chem., 2016, 24(16), 3862-3869.
[http://dx.doi.org/10.1016/j.bmc.2016.06.032] [PMID: 27353887]
[101]
Stacy, A.E.; Jansson, P.J.; Richardson, D.R. Molecular pharmacology of ABCG2 and its role in chemoresistance. Mol. Pharmacol., 2013, 84(5), 655-669.
[http://dx.doi.org/10.1124/mol.113.088609] [PMID: 24021215]
[102]
Payen, L.; Honorat, M.; Guitton, J.; Gauthier, C.; Bouard, C.; Lecerf-Schmidt, F.; Peres, B.; Terreux, R.; Gervot, H.; Rioufol, C.; Boumendjel, A.; Puisieux, A.; Di Pietro, A. MBL-II-141, a chromone derivative, enhances irinotecan (CPT-11) anticancer efficiency in ABCG2-positive xenografts. Oncotarget, 2014, 5(23), 11957-11970.
[http://dx.doi.org/10.18632/oncotarget.2566] [PMID: 25474134]
[103]
Zhu, W.; Chen, C.; Sun, C.; Xu, S.; Wu, C.; Lei, F.; Xia, H.; Tu, Q.; Zheng, P. Design, synthesis and docking studies of novel thienopyrimidine derivatives bearing chromone moiety as mTOR/PI3Kα inhibitors. Eur. J. Med. Chem., 2015, 93, 64-73.
[http://dx.doi.org/10.1016/j.ejmech.2015.01.061] [PMID: 25659752]
[104]
Ali, T.E.; Ibrahim, M.A.; El-Edfawy, S.M. Synthesis and cytotoxicity evaluation of some novel chromone annulated phosphorus heterocycles. Phosphorus Sulfur Silicon Relat. Elem., 2017, 192(7), 819-826.
[http://dx.doi.org/10.1080/10426507.2017.1287183]
[105]
Jiao, R.; Xu, F.; Huang, X.; Li, H.; Liu, W.; Cao, H.; Zang, L.; Li, Z.; Hua, H.; Li, D. Antiproliferative chromone derivatives induce K562 cell death through endogenous and exogenous pathways. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 759-772.
[http://dx.doi.org/10.1080/14756366.2020.1740696] [PMID: 32183548]
[106]
Kobayashi, Y.; Saito, Y.; Goto, M.; Nakagawa-Goto, K. Antitubulin effects of aminobenzothiophene-substituted triethylated chromones. Bioorg. Med. Chem. Lett., 2017, 27(12), 2731-2735.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.055] [PMID: 28457756]
[107]
Takao, K.; Hoshi, K.; Sakagami, H.; Shi, H.; Bandow, K.; Nagai, J.; Uesawa, Y.; Tomomura, A.; Tomomura, M.; Sugita, Y. Further quantitative structure-cytotoxicity relationship analysis of 3-styrylchromones. Anticancer Res., 2020, 40(1), 87-95.
[http://dx.doi.org/10.21873/anticanres.13929] [PMID: 31892556]
[108]
Kaviarasan, L.; Gowramma, B.; Kalirajan, R.; Mevithra, M.; Chandralekha, S. Molecular docking studies and synthesis of a new class of chroman-4-one fused 1, 3, 4-thiadiazole derivatives and evaluation for their anticancer potential. J. Iranian Chem. Soc., 2020, 17, 2083-2094.
[http://dx.doi.org/10.1007/s13738-020-01913-2]
[109]
Abu‐Bakr, S.M.; Khidre, M.D.; Omar, M.A.; Swelam, S.A.; Awad, H.M. Synthesis of furo [3, 2‐g] chromones under microwave irradiation and their antitumor activity evaluation. J. Heterocycl. Chem., 2020, 57(2), 731-743.
[http://dx.doi.org/10.1002/jhet.3813]
[110]
Arjmand, F.; Afsan, Z.; Roisnel, T. Design, synthesis and characterization of novel chromone based-copper (ii) antitumor agents with N, N-donor ligands: Comparative DNA/RNA binding profile and cytotoxicity. RSC Advances, 2018, 8(65), 37375-37390.
[http://dx.doi.org/10.1039/C8RA06722H]
[111]
Gaber, M.; El-Wakiel, N.; El-Baradie, K.; Hafez, S. Chromone Schiff base complexes: Synthesis, structural elucidation, molecular modeling, antitumor, antimicrobial, and DNA studies of Co (II), Ni (II), and Cu (II) complexes. J. Indian Chem. Soc., 2019, 16(1), 169-182.
[112]
Adly, O.M.; El-Shafiy, H.F. New metal complexes derived from S-benzyldithiocarbazate (SBDTC) and chromone-3-carboxaldehyde: synthesis, characterization, antimicrobial, antitumor activity and DFT calculations. J. Coord. Chem., 2019, 72(2), 218-238.
[http://dx.doi.org/10.1080/00958972.2018.1564912]
[113]
Balakrishnan, N.; Haribabu, J.; Dhanabalan, A.K.; Swaminathan, S.; Sun, S.; Dibwe, D.F.; Bhuvanesh, N.; Awale, S.; Karvembu, R. Thiosemicarbazone(s)-anchored water soluble mono- and bimetallic Cu(ii) complexes: Enzyme-like activities, biomolecular interactions, anticancer property and real-time live cytotoxicity. Dalton Trans., 2020, 49(27), 9411-9424.
[http://dx.doi.org/10.1039/D0DT01309A] [PMID: 32589180]
[114]
Kavitha, P.; Saritha, M.; Laxma Reddy, K. Synthesis, structural characterization, fluorescence, antimicrobial, antioxidant and DNA cleavage studies of Cu(II) complexes of formyl chromone Schiff bases. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 102, 159-168.
[http://dx.doi.org/10.1016/j.saa.2012.10.037] [PMID: 23220531]
[115]
Mendu, P.; Pragathi, J.; Anupama, B.; Kumari, C.G. Synthesis, spectral characterization, molecular modeling, and antimicrobial studies of Cu (II), Ni (II), Co (II), Mn (II), and Zn (II) complexes of ONO Schiff base. J. Chem., 2012, 9(4), 2145-2154.
[116]
Siddiqui, Z.N.; Musthafa, T.M.; Praveen, S. Solvent-and catalyst-free synthesis of bis-adducts of 3-formylchromone as potential antimicrobial agents. Med. Chem. Res., 2013, 22(1), 127-133.
[http://dx.doi.org/10.1007/s00044-012-0013-2]
[117]
Gharpure, M.P.; Chaudhary, R.G.; Gandhare, N.V.; Tanna, J.A.; Sarin, I.M.; Juneja, H.D. Oxovanadium (IV) complexes with O–O donors ligands: Efficient synthesis, spectral characterization, antimicrobial activity and thermal degradation. J. Chin. Adv. Mat. Soc., 2015, 3(2), 89-101.
[http://dx.doi.org/10.1080/22243682.2015.1008571]
[118]
Ionuţ, I.; Vodnar, D.C.; Oniga, I.; Oniga, O.; Tiperciuc, B.; Tamaian, R. Biological evaluation and molecular docking of some chromenyl-derivatives as potential antimicrobial agents. Pak. J. Pharm. Sci., 2016, 29(1)(Suppl.), 261-272.
[PMID: 27005495]
[119]
Singh, G.; Sharma, A.; Kaur, H.; Ishar, M.P.S. Chromanyl-isoxazolidines as antibacterial agents: Synthesis, biological evaluation, quantitative structure activity relationship, and molecular docking studies. Chem. Biol. Drug Des., 2016, 87(2), 213-223.
[http://dx.doi.org/10.1111/cbdd.12653] [PMID: 26301627]
[120]
Ashok, D.; Rangu, K.; Rao, V.H.; Gundu, S.; Srilata, B.; Vijjulatha, M. Microwave-assisted synthesis, molecular docking and antimicrobial activity of novel 2-(3-aryl, 1-phenyl-1H-pyrazol-4-yl)-8H-pyrano [2, 3-f] chromen-4-ones. Med. Chem. Res., 2016, 25(3), 501-514.
[http://dx.doi.org/10.1007/s00044-016-1505-2]
[121]
Nastasă, C.M.; Duma, M.; Pîrnău, A.; Vlase, L.; Tiperciuc, B.; Oniga, O. Development of new 5-(chromene-3-yl)methylene-2,4-thiazolidinediones as antimicrobial agents. Clujul Med., 2016, 89(1), 122-127.
[PMID: 27004035]
[122]
Cano, P.A.; Islas-Jácome, A.; Rangel-Serrano, Á.; Anaya-Velázquez, F.; Padilla-Vaca, F.; Trujillo-Esquivel, E.; Ponce-Noyola, P.; Martínez-Richa, A.; Gámez-Montaño, R. In vitro studies of chromone-tetrazoles against pathogenic protozoa, bacteria, and fungi. Molecules, 2015, 20(7), 12436-12449.
[http://dx.doi.org/10.3390/molecules200712436] [PMID: 26184131]
[123]
Sriram, D.; Yogeeswari, P.; Dinakaran, M.; Banerjee, D.; Bhat, P.; Gadhwal, S. Discovery of novel antitubercular 2,10-dihydro-4aH-chromeno[3,2-c]pyridin-3-yl derivatives. Eur. J. Med. Chem., 2010, 45(1), 120-123.
[http://dx.doi.org/10.1016/j.ejmech.2009.09.033] [PMID: 19942326]
[124]
Haveliwala, D.D.; Kamdar, N.R.; Mistry, P.T.; Patel, S.K. Synthesis of novel thiopyrimidines: An investigation of anti-tubercular and antimicrobial activity. J. Sulfur Chem., 2011, 32(5), 451-462.
[http://dx.doi.org/10.1080/17415993.2010.523894]
[125]
Haveliwala, D.D.; Kamdar, N.R.; Mistry, P.T.; Patel, S.K. Chromone-fused cytosine analogues: Synthesis, biological activity, and structure-activity relationship. Nucleos. Nucleot. Nucl. Acids, 2014, 33(2), 80-91.
[http://dx.doi.org/10.1080/15257770.2013.873128] [PMID: 24660882]
[126]
Muthukrishnan, M.; Mujahid, M.; Yogeeswari, P.; Sriram, D. Syntheses and biological evaluation of new triazole-spirochromone conjugates as inhibitors of Mycobacterium tuberculosis. Tetrahedron Lett., 2011, 52(18), 2387-2389.
[http://dx.doi.org/10.1016/j.tetlet.2011.02.099]
[127]
Mujahid, M.; Gonnade, R.G.; Yogeeswari, P.; Sriram, D.; Muthukrishnan, M. Synthesis and antitubercular activity of amino alcohol fused spirochromone conjugates. Bioorg. Med. Chem. Lett., 2013, 23(5), 1416-1419.
[http://dx.doi.org/10.1016/j.bmcl.2012.12.073] [PMID: 23357635]
[128]
Mujahid, M.; Yogeeswari, P.; Sriram, D.; Basavanag, U.; Díaz-Cervantes, E.; Córdoba-Bahena, L.; Robles, J.; Gonnade, R.; Karthikeyan, M.; Vyas, R. Spirochromone-chalcone conjugates as antitubercular agents: Synthesis, bio evaluation and molecular modeling studies. RSC Advances, 2015, 5(129), 106448-106460.
[http://dx.doi.org/10.1039/C5RA21737G]
[129]
de Monbrison, F.; Maitrejean, M.; Latour, C.; Bugnazet, F.; Peyron, F.; Barron, D.; Picot, S. In vitro antimalarial activity of flavonoid derivatives dehydrosilybin and 8-(1;1)-DMA-kaempferide. Acta Trop., 2006, 97(1), 102-107.
[http://dx.doi.org/10.1016/j.actatropica.2005.09.004] [PMID: 16256062]
[130]
Auffret, G.; Labaied, M.; Frappier, F.; Rasoanaivo, P.; Grellier, P.; Lewin, G. Synthesis and antimalarial evaluation of a series of piperazinyl flavones. Bioorg. Med. Chem. Lett., 2007, 17(4), 959-963.
[http://dx.doi.org/10.1016/j.bmcl.2006.11.051] [PMID: 17166718]
[131]
Isaka, M.; Sappan, M.; Auncharoen, P.; Srikitikulchai, P. Chromone derivatives from the wood-decay fungus Rhizina sp. BCC 12292. Phytochem. Lett., 2010, 3(3), 152-155.
[http://dx.doi.org/10.1016/j.phytol.2010.06.001]
[132]
Lerdsirisuk, P.; Maicheen, C.; Ungwitayatorn, J. Antimalarial activity of HIV-1 protease inhibitor in chromone series. Bioorg. Chem., 2014, 57, 142-147.
[http://dx.doi.org/10.1016/j.bioorg.2014.10.006] [PMID: 25462990]
[133]
Philip, J.E.; Antony, S.A.; Eeettinilkunnathil, S.J.; Kurup, M.P.; Velayudhan, M.P. Design, synthesis, antimicrobial and antioxidant activity of 3-formyl chromone hydrazone and their metal (II) complexes. Inorg. Chim. Acta, 2018, 469, 87-97.
[http://dx.doi.org/10.1016/j.ica.2017.09.006]
[134]
Nalla, V.; Shaikh, A.; Bapat, S.; Vyas, R.; Karthikeyan, M.; Yogeeswari, P.; Sriram, D.; Muthukrishnan, M. Identification of potent chromone embedded [1,2,3]-triazoles as novel anti-tubercular agents. R. Soc. Open Sci., 2018, 5(4), 171750.
[http://dx.doi.org/10.1098/rsos.171750] [PMID: 29765644]
[135]
Gül, D.Ş.; Ogutcu, H.; Hayvalı, Z. Investigation of photophysical behaviours and antimicrobial activity of novel benzo-15-crown-5 substituted coumarin and chromone derivatives. J. Mol. Struct., 2020, 1204, 127569.
[http://dx.doi.org/10.1016/j.molstruc.2019.127569]
[136]
Dofe, V.S.; Sarkate, A.P.; Lokwani, D.K.; Shinde, D.B.; Kathwate, S.H.; Gill, C.H. Novel O‐alkylated chromones as antimicrobial agents: Ultrasound mediated synthesis, molecular docking and ADME prediction. J. Heterocycl. Chem., 2017, 54(5), 2678-2685.
[http://dx.doi.org/10.1002/jhet.2868]
[137]
Dofe, V.S.; Sarkate, A.P.; Lokwani, D.K.; Kathwate, S.H.; Gill, C.H. Synthesis, antimicrobial evaluation, and molecular docking studies of novel chromone based 1, 2, 3-triazoles. Res. Chem. Intermed., 2017, 43(1), 15-28.
[http://dx.doi.org/10.1007/s11164-016-2602-z]
[138]
García, E.; Coa, J.C.; Otero, E.; Carda, M.; Vélez, I.D.; Robledo, S.M.; Cardona, W.I. Synthesis and antiprotozoal activity of furanchalcone–quinoline, furanchalcone–chromone and furanchalcone–imidazole hybrids. Med. Chem. Res., 2018, 27(2), 497-511.
[http://dx.doi.org/10.1007/s00044-017-2076-6]
[139]
Vargas, E.; Echeverri, F.; Vélez, I.D.; Robledo, S.M.; Quiñones, W. Synthesis and evaluation of thiochroman-4-one derivatives as potential leishmanicidal agents. Molecules, 2017, 22(12), 2041.
[http://dx.doi.org/10.3390/molecules22122041] [PMID: 29186046]
[140]
Coa, J.C.; García, E.; Carda, M.; Agut, R.; Vélez, I.D.; Muñoz, J.A.; Yepes, L.M.; Robledo, S.M.; Cardona, W.I. Synthesis, leishmanicidal, trypanocidal and cytotoxic activities of quinoline-chalcone and quinoline-chromone hybrids. Med. Chem. Res., 2017, 26(7), 1405-1414.
[http://dx.doi.org/10.1007/s00044-017-1846-5]
[141]
Sun, Y.W.; Liu, G.M.; Huang, H.; Yu, P.Z. Chromone derivatives from Halenia elliptica and their anti-HBV activities. Phytochemistry, 2012, 75, 169-176.
[http://dx.doi.org/10.1016/j.phytochem.2011.09.015] [PMID: 22192328]
[142]
Kim, M.K.; Yoon, H.; Barnard, D.L.; Chong, Y. Design, synthesis and antiviral activity of 2-(3-amino-4-piperazinylphenyl)chromone derivatives. Chem. Pharm. Bull. (Tokyo), 2013, 61(4), 486-488.
[http://dx.doi.org/10.1248/cpb.c12-01050] [PMID: 23546009]
[143]
Rocha-Pereira, J.; Cunha, R.; Pinto, D.C.; Silva, A.M.; Nascimento, M.S. (E)-2-styrylchromones as potential anti-norovirus agents. Bioorg. Med. Chem., 2010, 18(12), 4195-4201.
[http://dx.doi.org/10.1016/j.bmc.2010.05.006] [PMID: 20554208]
[144]
Conti, C.; Mastromarino, P.; Goldoni, P.; Portalone, G.; Desideri, N. Synthesis and anti-rhinovirus properties of fluoro-substituted flavonoids. Antivir. Chem. Chemother., 2005, 16(4), 267-276.
[http://dx.doi.org/10.1177/095632020501600406] [PMID: 16130524]
[145]
Shaveta; Singh, A.; Kaur, M.; Sharma, S.; Bhatti, R.; Singh, P. Rational design, synthesis and evaluation of chromone-indole and chromone-pyrazole based conjugates: Identification of a lead for anti-inflammatory drug. Eur. J. Med. Chem., 2014, 77, 185-192.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.003] [PMID: 24631898]
[146]
Singh, P.; Kaur, J.; Singh, G.; Bhatti, R. Triblock conjugates: Identification of a highly potent antiinflammatory agent. J. Med. Chem., 2015, 58(15), 5989-6001.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00952] [PMID: 26204057]
[147]
Mahajan, P.S.; Nikam, M.D.; Khedkar, V.M.; Jha, P.C.; Sarkar, D.; Gill, C.H. Synthesis, biological evaluation and molecular docking studies of N-acylheteroaryl hydrazone derivatives as antioxidant and anti-inflammatory agents. Res. Chem. Intermed., 2016, 42(3), 2707-2729.
[http://dx.doi.org/10.1007/s11164-015-2176-1]
[148]
Ragab, F.A.E-F.; Eid, N.M.; Hassan, G.S.; Nissan, Y.M. Synthesis and anti-inflammatory activity of some benzofuran and benzopyran-4-one derivatives. Chem. Pharm. Bull. (Tokyo), 2012, 60(1), 110-120.
[http://dx.doi.org/10.1248/cpb.60.110] [PMID: 22223382]
[149]
Kumar, V.; Gupta, M.; Gandhi, S.G.; Bharate, S.S.; Kumar, A.; Vishwakarma, R.A.; Bharate, S.B. Anti-inflammatory chromone alkaloids and glycoside from Dysoxylum binectariferum. Tetrahedron Lett., 2017, 58(42), 3974-3978.
[http://dx.doi.org/10.1016/j.tetlet.2017.09.005]
[150]
Opretzka, L.C.F.; Espírito-Santo, R.F.D.; Nascimento, O.A.; Abreu, L.S.; Alves, I.M.; Döring, E.; Soares, M.B.P.; Velozo, E.D.S.; Laufer, S.A.; Villarreal, C.F. Natural chromones as potential anti-inflammatory agents: Pharmacological properties and related mechanisms. Int. Immunopharmacol., 2019, 72, 31-39.
[http://dx.doi.org/10.1016/j.intimp.2019.03.044] [PMID: 30959369]
[151]
Maicheen, C.; Phosrithong, N.; Ungwitayatorn, J. Biological activity evaluation and molecular docking study of chromone derivatives as cyclooxygenase-2 inhibitors. Med. Chem. Res., 2017, 26(3), 662-671.
[http://dx.doi.org/10.1007/s00044-017-1786-0]
[152]
Phosrithong, N.; Samee, W.; Nunthanavanit, P.; Ungwitayatorn, J. In vitro antioxidant activity study of novel chromone derivatives. Chem. Biol. Drug Des., 2012, 79(6), 981-989.
[http://dx.doi.org/10.1111/j.1747-0285.2012.01368.x] [PMID: 22381130]
[153]
Kładna, A.; Berczyński, P.; Piechowska, T.; Kruk, I.; Aboul-Enein, H.Y.; Ceylan-Unlusoy, M.; Verspohl, E.J.; Ertan, R. Studies on the antioxidant activities of some new chromone compounds. Luminescence, 2014, 29(7), 846-853.
[http://dx.doi.org/10.1002/bio.2631] [PMID: 24482260]
[154]
Pawar, S.P.; Kondhare, D.D.; Zubaidha, P. Synthesis and evaluation of antioxidant activity of 2-styrylchromones. Med. Chem. Res., 2013, 22(2), 753-757.
[http://dx.doi.org/10.1007/s00044-012-0069-z]
[155]
Li, Y.; Yang, Z-y.; Li, T-r. Synthesis, characterisation, in vitro DNA binding properties and antioxidant activities of Ln (III) complexes with chromone-3-carbaldehyde-(2-hydroxy) benzoyl hydrazone. Prog. React. Kinet. Mech., 2015, 40(4), 313-329.
[http://dx.doi.org/10.3184/146867815X14455981832978]
[156]
Saif, M.; El-Shafiy, H.F.; Mashaly, M.M.; Eid, M.F.; Nabeel, A.; Fouad, R. Synthesis, characterization, and antioxidant/cytotoxic activity of new chromone Schiff base nano-complexes of Zn (II), Cu (II), Ni (II) and Co (II). J. Mol. Struct., 2016, 1118, 75-82.
[http://dx.doi.org/10.1016/j.molstruc.2016.03.060]
[157]
Proença, C.; Albuquerque, H.M.; Ribeiro, D.; Freitas, M.; Santos, C.M.; Silva, A.M.; Fernandes, E. Novel chromone and xanthone derivatives: Synthesis and ROS/RNS scavenging activities. Eur. J. Med. Chem., 2016, 115, 381-392.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.043] [PMID: 27031214]
[158]
Demetgül, C.; Beyazit, N. Synthesis, characterization and antioxidant activity of chitosan-chromone derivatives. Carbohydr. Polym., 2018, 181, 812-817.
[http://dx.doi.org/10.1016/j.carbpol.2017.11.074] [PMID: 29254040]
[159]
Csepanyi, E.; Szabados-Furjesi, P.; Kiss-Szikszai, A.; Frensemeier, L.M.; Karst, U.; Lekli, I.; Haines, D.D.; Tosaki, A.; Bak, I. Antioxidant properties and oxidative transformation of different chromone derivatives. Molecules, 2017, 22(4), 588.
[http://dx.doi.org/10.3390/molecules22040588] [PMID: 28383511]
[160]
Ali, T.E.; Bakhotmah, D.A.; Assiri, M.A. Synthesis of some new functionalized pyrano [2, 3-c] pyrazoles and pyrazolo [4¢, 3¢: 5, 6] pyrano [2, 3-d] pyrimidines bearing a chromone ring as antioxidant agents. Synth. Commun., 2020, 1-12.
[161]
Salar, U.; Khan, K.M.; Chigurupati, S.; Taha, M.; Wadood, A.; Vijayabalan, S.; Ghufran, M.; Perveen, S. New hybrid hydrazinyl thiazole substituted chromones: As potential α-amylase inhibitors and radical (DPPH & ABTS) scavengers. Sci. Rep., 2017, 7(1), 16980.
[http://dx.doi.org/10.1038/s41598-017-17261-w] [PMID: 29209017]
[162]
Alcaro, S.; Gaspar, A.; Ortuso, F.; Milhazes, N.; Orallo, F.; Uriarte, E.; Yáñez, M.; Borges, F. Chromone-2- and -3-carboxylic acids inhibit differently monoamine oxidases A and B. Bioorg. Med. Chem. Lett., 2010, 20(9), 2709-2712.
[http://dx.doi.org/10.1016/j.bmcl.2010.03.081] [PMID: 20382016]
[163]
Gaspar, A.; Reis, J.; Fonseca, A.; Milhazes, N.; Viña, D.; Uriarte, E.; Borges, F. Chromone 3-phenylcarboxamides as potent and selective MAO-B inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(2), 707-709.
[http://dx.doi.org/10.1016/j.bmcl.2010.11.128] [PMID: 21194943]
[164]
Legoabe, L.J.; Petzer, A.; Petzer, J.P. Inhibition of monoamine oxidase by selected C6-substituted chromone derivatives. J. Med. Chem., 2012, 49, 343-353.
[http://dx.doi.org/10.1016/j.ejmech.2012.01.037] [PMID: 22309913]
[165]
Legoabe, L.J.; Petzer, A.; Petzer, J.P. Selected chromone derivatives as inhibitors of monoamine oxidase. Bioorg. Med. Chem. Lett., 2012, 22(17), 5480-5484.
[http://dx.doi.org/10.1016/j.bmcl.2012.07.025] [PMID: 22850212]
[166]
Takao, K.; Endo, S.; Nagai, J.; Kamauchi, H.; Takemura, Y.; Uesawa, Y.; Sugita, Y. 2-Styrylchromone derivatives as potent and selective monoamine oxidase B inhibitors. Bioorg. Chem., 2019, 92, 103285.
[http://dx.doi.org/10.1016/j.bioorg.2019.103285] [PMID: 31561103]
[167]
Kittisrisopit, S.; Bunbamrung, N.; Thawai, C.; Tadtong, S.; Niemhom, N.; Komwijit, S.; Rachtawee, P.; Pittayakhajonwut, P. Neuroprotective potential of new chromones isolated from the soil actinomycete Microbispora sp. TBRC6027. Nat. Prod. Res., 2021, 35(17), 2881-2886.
[http://dx.doi.org/10.1080/14786419.2019.1679135] [PMID: 31631706]
[168]
Wang, X-B.; Yin, F-C.; Huang, M.; Jiang, N.; Lan, J-S.; Kong, L-Y. Chromone and donepezil hybrids as new multipotent cholinesterase and monoamine oxidase inhibitors for the potential treatment of Alzheimer’s disease. RSC Med. Chem., 2020, 11(2), 225-233.
[http://dx.doi.org/10.1039/C9MD00441F] [PMID: 33479629]
[169]
Silva, C.F.M.; Pinto, D.C.G.A.; Silva, A.M.S. Chromones: Privileged scaffolds for the production of multi-target-directed-ligand agents for the treatment of Alzheimer’s disease. Expert Opin. Drug Discov., 2018, 13(12), 1141-1151.
[http://dx.doi.org/10.1080/17460441.2018.1543267] [PMID: 30430870]
[170]
Reis, J.; Cagide, F.; Valencia, M.E.; Teixeira, J.; Bagetta, D.; Pérez, C.; Uriarte, E.; Oliveira, P.J.; Ortuso, F.; Alcaro, S.; Rodríguez-Franco, M.I.; Borges, F. Multi-target-directed ligands for Alzheimer’s disease: Discovery of chromone-based monoamine oxidase/cholinesterase inhibitors. Eur. J. Med. Chem., 2018, 158, 781-800.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.056] [PMID: 30245401]
[171]
Shaikh, S.; Dhavan, P.; Ramana, M.; Jadhav, B. Design, synthesis and evaluation of new chromone-derived aminophosphonates as potential acetylcholinesterase inhibitor. Mol. Divers., 2020, 25(2), 811-825.
[http://dx.doi.org/10.1007/s11030-020-10060-y] [PMID: 32124162]
[172]
Mpitimpiti, A.N.; Petzer, J.P.; Petzer, A.; Jordaan, J.H.L.; Lourens, A.C.U. Synthesis and evaluation of chromone derivatives as inhibitors of monoamine oxidase. Mol. Divers., 2019, 23(4), 897-913.
[http://dx.doi.org/10.1007/s11030-019-09917-8] [PMID: 30666491]
[173]
Mathew, B.; Mathew, G.E.; Petzer, J.P.; Petzer, A. Structural exploration of synthetic chromones as selective MAO-B inhibitors: A mini review. Comb. Chem. High Throughput Screen., 2017, 20(6), 522-532.
[http://dx.doi.org/10.2174/1386207320666170227155517] [PMID: 28245770]
[174]
Li, F.; Wu, J-J.; Wang, J.; Yang, X-L.; Cai, P.; Liu, Q-H.; Kong, L-Y.; Wang, X-B. Synthesis and pharmacological evaluation of novel chromone derivatives as balanced multifunctional agents against Alzheimer’s disease. Bioorg. Med. Chem., 2017, 25(14), 3815-3826.
[http://dx.doi.org/10.1016/j.bmc.2017.05.027] [PMID: 28549891]
[175]
Makhaeva, G.F.; Boltneva, N.P.; Lushchekina, S.V.; Rudakova, E.V.; Serebryakova, O.G.; Kulikova, L.N.; Beloglazkin, A.A.; Borisov, R.S.; Richardson, R.J. Synthesis, molecular docking, and biological activity of 2-vinyl chromones: Toward selective butyrylcholinesterase inhibitors for potential Alzheimer’s disease therapeutics. Bioorg. Med. Chem., 2018, 26(16), 4716-4725.
[http://dx.doi.org/10.1016/j.bmc.2018.08.010] [PMID: 30104121]
[176]
Baruah, P.; Rohman, M.A.; Yesylevskyy, S.O.; Mitra, S. Therapeutic potency of substituted chromones as Alzheimer’s drug: Elucidation of acetylcholinesterase inhibitory activity through spectroscopic and molecular modelling investigation. Bioimpacts, 2019, 9(2), 79-88.
[http://dx.doi.org/10.15171/bi.2019.11] [PMID: 31334039]
[177]
Fernández-Bachiller, M.I.; Pérez, C.; Monjas, L.; Rademann, J.; Rodríguez-Franco, M.I. New tacrine-4-oxo-4H-chromene hybrids as multifunctional agents for the treatment of Alzheimer’s disease, with cholinergic, antioxidant, and β-amyloid-reducing properties. J. Med. Chem., 2012, 55(3), 1303-1317.
[http://dx.doi.org/10.1021/jm201460y] [PMID: 22243648]
[178]
Liu, Q.; Qiang, X.; Li, Y.; Sang, Z.; Li, Y.; Tan, Z.; Deng, Y. Design, synthesis and evaluation of chromone-2-carboxamido-alkylbenzylamines as multifunctional agents for the treatment of Alzheimer’s disease. Bioorg. Med. Chem., 2015, 23(5), 911-923.
[http://dx.doi.org/10.1016/j.bmc.2015.01.042] [PMID: 25678013]
[179]
Zhang, X.; Wang, J.; Hong, C.; Luo, W.; Wang, C. Design, synthesis and evaluation of genistein-polyamine conjugates as multi-functional anti-Alzheimer agents. Acta Pharm. Sin. B, 2015, 5(1), 67-73.
[http://dx.doi.org/10.1016/j.apsb.2014.12.008] [PMID: 26579427]
[180]
Ceylan-Ünlüsoy, M.; Verspohl, E.J.; Ertan, R. Synthesis and antidiabetic activity of some new chromonyl-2,4-thiazolidinediones. J. Enzyme Inhib. Med. Chem., 2010, 25(6), 784-789.
[http://dx.doi.org/10.3109/14756360903357544] [PMID: 20687791]
[181]
Unlusoy, M.C.; Kazak, C.; Bayro, O.; Verspohl, E.J.; Ertan, R.; Dundar, O.B. Synthesis and antidiabetic activity of 2,4-thiazolidindione, imidazolidinedione and 2-thioxo-imidazolidine-4-one derivatives bearing 6-methyl chromonyl pharmacophore. J. Enzyme Inhib. Med. Chem., 2013, 28(6), 1205-1210.
[http://dx.doi.org/10.3109/14756366.2012.723207] [PMID: 23057864]
[182]
Nazreen, S.; Alam, M.S.; Hamid, H.; Yar, M.S.; Dhulap, A.; Alam, P.; Pasha, M.A.; Bano, S.; Alam, M.M.; Haider, S.; Kharbanda, C.; Ali, Y.; Pillai, K.K. Thiazolidine-2,4-diones derivatives as PPAR-γ agonists: Synthesis, molecular docking, in vitro and in vivo antidiabetic activity with hepatotoxicity risk evaluation and effect on PPAR-γ gene expression. Bioorg. Med. Chem. Lett., 2014, 24(14), 3034-3042.
[http://dx.doi.org/10.1016/j.bmcl.2014.05.034] [PMID: 24890090]
[183]
Valentina, P.; Ilango, K.; Chander, S.; Murugesan, S. Design, synthesis and α-amylase inhibitory activity of novel chromone derivatives. Bioorg. Chem., 2017, 74, 158-165.
[http://dx.doi.org/10.1016/j.bioorg.2017.07.018] [PMID: 28802166]
[184]
Wang, G.; Chen, M.; Wang, J.; Peng, Y.; Li, L.; Xie, Z.; Deng, B.; Chen, S.; Li, W. Synthesis, biological evaluation and molecular docking studies of chromone hydrazone derivatives as α-glucosidase inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(13), 2957-2961.
[http://dx.doi.org/10.1016/j.bmcl.2017.05.007] [PMID: 28506754]
[185]
Wang, G.; Chen, M.; Qiu, J.; Xie, Z.; Cao, A. Synthesis, in vitro α-glucosidase inhibitory activity and docking studies of novel chromone-isatin derivatives. Bioorg. Med. Chem. Lett., 2018, 28(2), 113-116.
[http://dx.doi.org/10.1016/j.bmcl.2017.11.047] [PMID: 29208524]
[186]
Zhang, M-Q.; Wada, Y.; Sato, F.; Timmerman, H. (Piperidinylalkoxy)chromones: Novel antihistamines with additional antagonistic activity against leukotriene D4. J. Med. Chem., 1995, 38(13), 2472-2477.
[http://dx.doi.org/10.1021/jm00013a023] [PMID: 7608912]
[187]
Dave, S.S.; Rahatgaonkar, A.M. Computational evaluation of 2-phenyl-4H-chromen-4-one analogues as antihistamines: Potential histamine N-methyltransferase (HMT) inhibitors. J. Chem., 2009, 6(4), 1009-1016.
[188]
Morris, J.; Wishka, D.G.; Lin, A.H.; Humphrey, W.R.; Wiltse, A.L.; Gammill, R.B.; Judge, T.M.; Bisaha, S.N.; Olds, N.L.; Jacob, C.S. Synthesis and biological evaluation of antiplatelet 2-aminochromones. J. Med. Chem., 1993, 36(14), 2026-2032.
[http://dx.doi.org/10.1021/jm00066a012] [PMID: 8336341]
[189]
Roma, G.; Braccio, M.D.; Carrieri, A.; Grossi, G.; Leoncini, G.; Grazia Signorello, M.; Carotti, A. Coumarin, chromone, and 4(3H)-pyrimidinone novel bicyclic and tricyclic derivatives as antiplatelet agents: Synthesis, biological evaluation, and comparative molecular field analysis. Bioorg. Med. Chem., 2003, 11(1), 123-138.
[http://dx.doi.org/10.1016/S0968-0896(02)00307-3] [PMID: 12467715]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy