Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Synthesis and in vitro Anti-proliferative Activities on LNCaP, LS180 and MKN45 of Novel 20(R)-Panaxadiol Derivatives

Author(s): Jianqiang Deng, Xinyu Yang, Mingzhu Luan, Shuqi Liu, Juan Zhang, Sheng Jiang, Wenshui Wang, Guige Hou, Qingguo Meng* and Hongbo Wang*

Volume 23, Issue 15, 2023

Published on: 12 May, 2023

Page: [1731 - 1739] Pages: 9

DOI: 10.2174/1871520623666230412095428

Price: $65

Abstract

Background: 20(R)-PD, a tetracyclic triterpenoid, is a non-natural saponin present in the form of protopanaxadiol. Because of its essential biological activities, especially anti-tumor activity, structural modification of 20(R)-PD and the development of innovative and novel 20(R)-PD derivatives with better anti-tumor activity are increasingly relevant.

Aims: 20(R)-Panaxadiol (20(R)-PD) can inhibit tumor proliferation. Three series of novel 20(R)-PD derivatives were synthesized by modifying the A-ring.

Objective: The objective of this work was to synthesize and evaluate the in vitro anti-proliferative activities of 20(R)- PD derivatives in LNCaP, LS180, and MKN45 cancer cells. Structural modifications were performed at the C-3 position and A-ring.

Methods: The in vitro anti-proliferative activities of novel derivatives in LNCaP, LS180, and MKN45 cells were evaluated by the MTT assay. The effects of compounds 5 and C9 on apoptosis were determined by flow cytometry.

Results: Compounds 5, B2, C2, C4, C7, C8, C9, C10, and C11 exhibited good anti-proliferative activities in LNCaP, LS180, and MKN45 cells in vitro. The best anti-proliferative activity was observed for the C-series derivatives with the introduction of amino acids at the C-3 position. C9 exhibited good potent activity with an IC50 of 2.89 μM.

Conclusion: Compound C9 is a potential candidate with potent anti-proliferative activity.

Keywords: Ginseng, 20(R)-panaxadiol, derivatives, synthesis, anti-proliferative activity, apoptosis.

Graphical Abstract
[1]
Shibata, S.; Tanaka, O.; Nagai, M.; Ishii, T. Studies on the constituents of japanese and chinese crude drugs. XII. Panaxadiol, a sapogenin of ginseng roots. (2). Chem. Pharm. Bull., 1963, 11(6), 762-765.
[http://dx.doi.org/10.1248/cpb.11.762] [PMID: 14068711]
[2]
Karikura, M.; Miyase, T.; Tanizawa, H.; Takino, Y.; Taniyama, T.; Hayashi, T. Studies on absorption, distribution, excretion and metabolism of ginseng saponins. V. The decomposition products of ginsenoside Rb2 in the large intestine of rats. Chem. Pharm. Bull. , 1990, 38(10), 2859-2861.
[http://dx.doi.org/10.1248/cpb.38.2859] [PMID: 2076572]
[3]
Li, G.; Cui, Y.; Wang, H.; Kwon, W.S.; Yang, D.C. Molecular differentiation of Russian wild ginseng using mitochondrial nad 7 intron 3 region. J. Ginseng Res., 2017, 41(3), 326-329.
[http://dx.doi.org/10.1016/j.jgr.2016.06.003] [PMID: 28701873]
[4]
Wang, C.; Liu, J.; Deng, J.; Wang, J.; Weng, W.; Chu, H.; Meng, Q. Advances in the chemistry, pharmacological diversity, and metabolism of 20(R)-ginseng saponins. J. Ginseng Res., 2020, 44(1), 14-23.
[http://dx.doi.org/10.1016/j.jgr.2019.01.005] [PMID: 32095093]
[5]
Liu, J.; Xu, Y.; Yang, J.; Wang, W.; Zhang, J.; Zhang, R.; Meng, Q. Discovery, semisynthesis, biological activities, and metabolism of ocotillol-type saponins. J. Ginseng Res., 2017, 41(3), 373-378.
[http://dx.doi.org/10.1016/j.jgr.2017.01.001] [PMID: 28701880]
[6]
Yang, Q.; Wang, N.; Zhang, J.; Chen, G.; Xu, H.; Meng, Q.; Du, Y.; Yang, X.; Fan, H. In vitro and in silico evaluation of stereoselective effect of ginsenoside isomers on platelet P2Y12 receptor. Phytomedicine, 2019, 64152899
[http://dx.doi.org/10.1016/j.phymed.2019.152899] [PMID: 31454649]
[7]
Chen, G.; Ge, H.; Li, J.; Li, J.; Zhai, X.; Wu, J.; Song, Y. Microbial transformation of 20(R)-panaxadiol by Absidia corymbifera AS 3.3387. J. Mol. Catal., B Enzym., 2016, 123, 154-159.
[http://dx.doi.org/10.1016/j.molcatb.2015.11.015]
[8]
Song, Y.; Yan, S.S.; Lin, H.J.; Li, J.L.; Zhai, X.G.; Ren, J.; Chen, G.T. ( R )-panaxadiol by whole cells of filamentous fungus Absidia coerulea AS 3.3382. J. Asian Nat. Prod. Res., 2018, 20(8), 719-726.
[http://dx.doi.org/10.1080/10286020.2017.1358267] [PMID: 28944684]
[9]
Wei, Y.; Ma, C.M.; Hattori, M. Synthesis of dammarane-type triterpene derivatives and their ability to inhibit HIV and HCV proteases. Bioorg. Med. Chem., 2009, 17(8), 3003-3010.
[http://dx.doi.org/10.1016/j.bmc.2009.03.019] [PMID: 19339186]
[10]
Bi, Y.; Ma, C.; Zhou, Z.; Zhang, T.; Zhang, H.; Zhang, X.; Lu, J.; Meng, Q.; Lewis, P.J.; Xu, J. Synthesis and antibacterial evaluation of novel hydrophilic ocotillol-type triterpenoid derivatives from 20 (S)-protopanaxadiol. Rec. Nat. Prod., 2015, 9(3), 356.
[11]
Zhang, J.; Zhang, Q.; Xu, Y.; Li, H.; Zhao, F.; Wang, C.; Liu, Z.; Liu, P.; Liu, Y.; Meng, Q.; Zhao, F. Synthesis and in vitro anti-inflammatory activity of C20 epimeric ocotillol-type triterpenes and protopanaxadiol. Planta Med., 2019, 85(4), 292-301.
[http://dx.doi.org/10.1055/a-0770-0994] [PMID: 30380571]
[12]
Wang, M.; Li, H.; Liu, W.; Cao, H.; Hu, X.; Gao, X.; Xu, F.; Li, Z.; Hua, H.; Li, D. Dammarane-type leads panaxadiol and protopanaxadiol for drug discovery: Biological activity and structural modification. Eur. J. Med. Chem., 2020, 189112087
[http://dx.doi.org/10.1016/j.ejmech.2020.112087] [PMID: 32007667]
[13]
Wang, Z.; Li, M.Y.; Zhang, Z.H.; Zuo, H.X.; Wang, J.Y.; Xing, Y.; Ri, M.; Jin, H.L.; Jin, C.H.; Xu, G.H.; Piao, L.X.; Jiang, C.G.; Ma, J.; Jin, X. Panaxadiol inhibits programmed cell death-ligand 1 expression and tumour proliferation via hypoxia-inducible factor (HIF)-1α and STAT3 in human colon cancer cells. Pharmacol. Res., 2020, 155104727
[http://dx.doi.org/10.1016/j.phrs.2020.104727] [PMID: 32113874]
[14]
Xiao, S.; Wang, X.; Xu, L.; Li, T.; Cao, J.; Zhao, Y. Novel panaxadiol triazole derivatives induce apoptosis in HepG-2 cells through the mitochondrial pathway. Bioorg. Chem., 2020, 102104078
[http://dx.doi.org/10.1016/j.bioorg.2020.104078] [PMID: 32702511]
[15]
Yan, B.; Chen, Z.; Zhai, X.; Yin, G.; Ai, Y.; Chen, G. Microbial carbonylation and hydroxylation of 20(R)-panaxadiol by Aspergillus niger. Nat. Prod. Res., 2018, 32(7), 782-787.
[http://dx.doi.org/10.1080/14786419.2017.1360887] [PMID: 28768436]
[16]
Lin, X.H.; Cao, M.N.; He, W.N.; Yu, S.W.; Guo, D.A.; Ye, M. Biotransformation of 20(R)-panaxadiol by the fungus Rhizopus chinensis. Phytochemistry, 2014, 105, 129-134.
[http://dx.doi.org/10.1016/j.phytochem.2014.06.001] [PMID: 24994672]
[17]
Shibata, S.; Fujita, M.; Itokawa, H.; Tanaka, O.; Ishii, T. Studies on the constituents of japanese and chinese crude drugs. XI. Panaxadiol, a sapogenin of ginseng roots. (1). Chem. Pharm. Bull. , 1963, 11(6), 759-761.
[http://dx.doi.org/10.1248/cpb.11.759] [PMID: 14068710]
[18]
Nagai, M.; Tanaka, O.; Shibata, S. Chemical studies on the oriental plant drugs. XXVI. Saponins and sapogenins of ginseng. The absolute configurations of Cinenic Acid and Panaxadiol. Chem. Pharm. Bull. , 1971, 19(11), 2349-2353.
[http://dx.doi.org/10.1248/cpb.19.2349]
[19]
Wang, J.Z.; Weng, W.Z.; Ma, Y.; He, X.T.; Meng, Q.G. Crystal structure of (1 S, 3a R, 3b R, 10a R, 10b R, 12a R)-8-amino-3a,3b,6,6,10a-pentamethyl-1-(( S )-2,6,6-trimethyltetrahydro-2 H -pyran-2-yl)-2,3,3a,3b,4,5,5a,6,10,10a,10b,11,12,12a-tetradecahydro-1 H -cyclopenta[7,8]phenanthro[2,3- d]thiazol-12-ol - a panaxadiol dervative, C 31 H 50 N 2 O 2 S. Z. Kristallogr. New Cryst. Struct., 2019, 234(3), 397-400.
[http://dx.doi.org/10.1515/ncrs-2018-0238]
[20]
Zhang, C.; Li, X.; Gao, Y.; Zhang, L.; Fu, X. Synthesis and primary research on antitumor activity of three new panaxadiol fatty acid esters. Chem. Res. Chin. Univ., 2007, 23(2), 176-182.
[http://dx.doi.org/10.1016/S1005-9040(07)60037-3]
[21]
Wu, Y.; Chen, W.Q.; Zhao, Y.Q.; Piao, H.R. Efficient synthesis of panaxadiol derivatives using continuous-flow microreactor and evaluation of anti-tumor activity. Chin. Chem. Lett., 2015, 26(3), 334-338.
[http://dx.doi.org/10.1016/j.cclet.2014.11.013]
[22]
Xiao, S.; Chen, S.; Sun, Y.; Zhou, W.; Piao, H.; Zhao, Y. Synthesis and anti-tumor evaluation of panaxadiol halogen-derivatives. Bioorg. Med. Chem. Lett., 2017, 27(17), 4204-4211.
[http://dx.doi.org/10.1016/j.bmcl.2017.06.061] [PMID: 28757064]
[23]
Li, X.L.; Wang, C.Z.; Mehendale, S.R.; Sun, S.; Wang, Q.; Yuan, C.S. Panaxadiol, a purified ginseng component, enhances the anti-cancer effects of 5-fluorouracil in human colorectal cancer cells. Cancer Chemother. Pharmacol., 2009, 64(6), 1097-1104.
[http://dx.doi.org/10.1007/s00280-009-0966-0] [PMID: 19277659]
[24]
Deng, J.Q.; Mu, X.D.; Zhao, R.L.; Liu, Z.; Tang, H.J.; He, M.; Meng, Q.G. Crystal structure of (20 R)-20,25-epoxy-dammaran-3,12-dione, C 30 H 48 O 3. Z. Kristallogr. New Cryst. Struct., 2018, 234(1), 145-147.
[http://dx.doi.org/10.1515/ncrs-2018-0237]
[25]
Baek, N.I.; Kim, D.S.; Lee, Y.H.; Park, J.D.; Lee, C.B.; Kim, S.I. Cytotoxicities of ginseng saponins and their degradation products against some cancer cell lines. Arch. Pharm. Res., 1995, 18(3), 164-168.
[http://dx.doi.org/10.1007/BF02979189]
[26]
Jin, Y.H.; Choi, J.; Shin, S.; Lee, K.Y.; Park, J.H.; Lee, S.K. Panaxadiol selectively inhibits cyclin A-associated Cdk2 activity by elevating p21WAF1/CIP1 protein levels in mammalian cells. Carcinogenesis, 2003, 24(11), 1767-1772.
[http://dx.doi.org/10.1093/carcin/bgg097] [PMID: 12819186]
[27]
Liu, X.K.; Ye, B.J.; Wu, Y.; Lin, Z.H.; Zhao, Y.Q.; Piao, H.R. Synthesis and anti-tumor evaluation of panaxadiol derivatives. Eur. J. Med. Chem., 2011, 46(6), 1997-2002.
[http://dx.doi.org/10.1016/j.ejmech.2011.02.022] [PMID: 21439693]
[28]
Abu-Dief, A.M.; El-Khatib, R.M.; Aljohani, F.S.; Al-Abdulkarim, H.A.; Alzahrani, S.; El-Sarrag, G.; Ismael, M. Synthesis, structural elucidation, DFT calculation, biological studies and DNA interaction of some aryl hydrazone Cr3+, Fe3+, and Cu2+ chelates. Comput. Biol. Chem., 2022, 97107643
[http://dx.doi.org/10.1016/j.compbiolchem.2022.107643] [PMID: 35189479]
[29]
El-Remaily, M.A.E.A.A.A.; Soliman, A.M.M.; Khalifa, M.E.; El-Metwaly, N.M.; Alsoliemy, A.; El-Dabea, T.; Abu-Dief, A.M. Rapidly, highly yielded and green synthesis of dihydrotetrazolo[1,5‐ a]pyrimidine derivatives in aqueous media using recoverable Pd (II) thiazole catalyst accelerated by ultrasonic: Computational studies. Appl. Organomet. Chem., 2022, 36(2)e6320
[http://dx.doi.org/10.1002/aoc.6320]
[30]
Abu-Dief, A.M.; El-khatib, R.M.; Aljohani, F.S.; Alzahrani, S.O.; Mahran, A.; Khalifa, M.E.; El-Metwaly, N.M. Synthesis and intensive characterization for novel Zn(II), Pd(II), Cr(III) and VO(II)-Schiff base complexes; DNA-interaction, DFT, drug-likeness and molecular docking studies. J. Mol. Struct., 2021, 1242130693
[http://dx.doi.org/10.1016/j.molstruc.2021.130693]
[31]
Abu-Dief, A.M.; Abdel-Rahman, L.H.; Abdelhamid, A.A.; Marzouk, A.A.; Shehata, M.R.; Bakheet, M.A.; Almaghrabi, O.A.; Nafady, A. Synthesis and characterization of new Cr(III), Fe(III) and Cu(II) complexes incorporating multi-substituted aryl imidazole ligand: Structural, DFT, DNA binding, and biological implications. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 228117700
[http://dx.doi.org/10.1016/j.saa.2019.117700] [PMID: 31748163]
[32]
Li, F.; Liu, Z.; Sun, H.; Li, C.; Wang, W.; Ye, L.; Yan, C.; Tian, J.; Wang, H. PCC0208017, a novel small-molecule inhibitor of MARK3/MARK4, suppresses glioma progression in vitro and in vivo. Acta Pharm. Sin. B, 2020, 10(2), 289-300.
[http://dx.doi.org/10.1016/j.apsb.2019.09.004] [PMID: 32082974]
[33]
Yang, Y.; Guan, D.; Lei, L.; Lu, J.; Liu, J.Q.; Yang, G.; Yan, C.; Zhai, R.; Tian, J.; Bi, Y.; Fu, F.; Wang, H. H6, a novel hederagenin derivative, reverses multidrug resistance in vitro and in vivo. Toxicol. Appl. Pharmacol., 2018, 341, 98-105.
[http://dx.doi.org/10.1016/j.taap.2018.01.015] [PMID: 29408042]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy