Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Biologically Active 2-Oxazolidinone Derivatives Beyond Antibacterial Activities

Author(s): Leer Yuan, Rong Sheng*, Mengying Guan, Yuan Wang and Siyuan Chen

Volume 30, Issue 23, 2023

Published on: 25 October, 2022

Page: [2672 - 2689] Pages: 18

DOI: 10.2174/0929867329666220823113415

Price: $65

Abstract

2-Oxazolidinone is well known as a pharmacophore for antibacterial agents represented by two marketed medicines, Linezolid and Tedizolid. On the other hand, there are growing reports on the various biological activities of 2-oxazolidinones beyond antibacterial activities. Therefore, in this review, we provide an overview of the progress of this untraditional area of 2-oxazolidinones in the past 10 years (2011-2021).

Keywords: 2-Oxazolidinones, various biological activities, anti-tumor, anti-virus, anti-inflammation, anti-coagulant.

[1]
Brickner, S.J.; Barbachyn, M.R.; Hutchinson, D.K.; Manninen, P.R. Linezolid (ZYVOX), the first member of a completely new class of antibacterial agents for treatment of serious gram-positive infections. J. Med. Chem., 2008, 51(7), 1981-1990.
[http://dx.doi.org/10.1021/jm800038g] [PMID: 18338841]
[2]
Zhanel, G.G.; Love, R.; Adam, H.; Golden, A.; Zelenitsky, S.; Schweizer, F.; Gorityala, B.; Lagacé-Wiens, P.R.S.; Rubinstein, E.; Walkty, A.; Gin, A.S.; Gilmour, M.; Hoban, D.J.; Lynch, J.P., III; Karlowsky, J.A. Tedizolid: A novel oxazolidinone with potent activity against multidrug-resistant gram-positive pathogens. Drugs, 2015, 75(3), 253-270.
[http://dx.doi.org/10.1007/s40265-015-0352-7] [PMID: 25673021]
[3]
Duarte, P.; Cuadrado, A.; León, R. Monoamine oxidase inhibitors: From classic to new clinical approaches. Handb. Exp. Pharmacol., 2020, 264, 229-259.
[http://dx.doi.org/10.1007/164_2020_384] [PMID: 32852645]
[4]
Hua, Y.; Sun, J.Y.; Su, Y.; Qu, Q.; Wang, H.Y.; Sun, W.; Kong, X.Q. The safety and efficacy of rivaroxaban compared with warfarin in patients with atrial fibrillation and diabetes: A systematic review and meta-analysis. Am. J. Cardiovasc. Drugs, 2021, 21(1), 51-61.
[http://dx.doi.org/10.1007/s40256-020-00407-z] [PMID: 32514866]
[5]
Harada, K.; Kubo, H.; Tanaka, A.; Nishioka, K. Identification of oxazolidinediones and thiazolidinediones as potent 17β-hydroxysteroid dehydrogenase type 3 inhibitors. Bioorg. Med. Chem. Lett., 2012, 22(1), 504-507.
[http://dx.doi.org/10.1016/j.bmcl.2011.10.095] [PMID: 22137341]
[6]
Zhao, Q.; Xin, L.; Liu, Y.; Liang, C.; Li, J.; Jian, Y.; Li, H.; Shi, Z.; Liu, H.; Cao, W. Current landscape and future perspective of oxazolidinone scaffolds containing antibacterial drugs. J. Med. Chem., 2021, 64(15), 10557-10580.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00480] [PMID: 34260235]
[7]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[8]
Hirsch, F.R.; Scagliotti, G.V.; Langer, C.J.; Varella-Garcia, M.; Franklin, W.A. Epidermal growth factor family of receptors in preneoplasia and lung cancer: Perspectives for targeted therapies. Lung Cancer, 2003, 41(Suppl. 1), 29-42.
[http://dx.doi.org/10.1016/S0169-5002(03)00137-5] [PMID: 12867060]
[9]
Mendelsohn, J.; Baselga, J. Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. J. Clin. Oncol., 2003, 21(14), 2787-2799.
[http://dx.doi.org/10.1200/JCO.2003.01.504] [PMID: 12860957]
[10]
Nakajima, H.; Ishikawa, Y.; Furuya, M.; Sano, T.; Ohno, Y.; Horiguchi, J.; Oyama, T. Protein expression, gene amplification, and mutational analysis of EGFR in triple-negative breast cancer. Breast Cancer, 2014, 21(1), 66-74.
[http://dx.doi.org/10.1007/s12282-012-0354-1] [PMID: 22481575]
[11]
Lin, J.; Shen, W.; Xue, J.; Sun, J.; Zhang, X.; Zhang, C. Novel oxazolo[4,5-g]quinazolin-2(1H)-ones: Dual inhibitors of EGFR and Src protein tyrosine kinases. Eur. J. Med. Chem., 2012, 55, 39-48.
[http://dx.doi.org/10.1016/j.ejmech.2012.06.055] [PMID: 22818848]
[12]
Chang, P.; Coughlin, M.; Mitchison, T.J. Interaction between Poly(ADP-ribose) and NuMA contributes to mitotic spindle pole assembly. Mol. Biol. Cell, 2009, 20(21), 4575-4585.
[http://dx.doi.org/10.1091/mbc.e09-06-0477] [PMID: 19759176]
[13]
Huang, S.M.A.; Mishina, Y.M.; Liu, S.; Cheung, A.; Stegmeier, F.; Michaud, G.A.; Charlat, O.; Wiellette, E.; Zhang, Y.; Wiessner, S.; Hild, M.; Shi, X.; Wilson, C.J.; Mickanin, C.; Myer, V.; Fazal, A.; Tomlinson, R.; Serluca, F.; Shao, W.; Cheng, H.; Shultz, M.; Rau, C.; Schirle, M.; Schlegl, J.; Ghidelli, S.; Fawell, S.; Lu, C.; Curtis, D.; Kirschner, M.W.; Lengauer, C.; Finan, P.M.; Tallarico, J.A.; Bouwmeester, T.; Porter, J.A.; Bauer, A.; Cong, F. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature, 2009, 461(7264), 614-620.
[http://dx.doi.org/10.1038/nature08356] [PMID: 19759537]
[14]
Waaler, J.; Machon, O.; Tumova, L.; Dinh, H.; Korinek, V.; Wilson, S.R.; Paulsen, J.E.; Pedersen, N.M.; Eide, T.J.; Machonova, O.; Gradl, D.; Voronkov, A.; von Kries, J.P.; Krauss, S. A novel tankyrase inhibitor decreases canonical Wnt signaling in colon carcinoma cells and reduces tumor growth in conditional APC mutant mice. Cancer Res., 2012, 72(11), 2822-2832.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-3336] [PMID: 22440753]
[15]
Chen, B.; Dodge, M.E.; Tang, W.; Lu, J.; Ma, Z.; Fan, C.W.; Wei, S.; Hao, W.; Kilgore, J.; Williams, N.S.; Roth, M.G.; Amatruda, J.F.; Chen, C.; Lum, L. Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nat. Chem. Biol., 2009, 5(2), 100-107.
[http://dx.doi.org/10.1038/nchembio.137] [PMID: 19125156]
[16]
Lu, J.; Ma, Z.; Hsieh, J.C.; Fan, C.W.; Chen, B.; Longgood, J.C.; Williams, N.S.; Amatruda, J.F.; Lum, L.; Chen, C. Structure–activity relationship studies of small-molecule inhibitors of Wnt response. Bioorg. Med. Chem. Lett., 2009, 19(14), 3825-3827.
[http://dx.doi.org/10.1016/j.bmcl.2009.04.040] [PMID: 19410457]
[17]
Bregman, H.; Chakka, N.; Guzman-Perez, A.; Gunaydin, H.; Gu, Y.; Huang, X.; Berry, V.; Liu, J.; Teffera, Y.; Huang, L.; Egge, B.; Mullady, E.L.; Schneider, S.; Andrews, P.S.; Mishra, A.; Newcomb, J.; Serafino, R.; Strathdee, C.A.; Turci, S.M.; Wilson, C.; DiMauro, E.F. Discovery of novel, induced-pocket binding oxazolidinones as potent, selective, and orally bioavailable tankyrase inhibitors. J. Med. Chem., 2013, 56(11), 4320-4342.
[http://dx.doi.org/10.1021/jm4000038] [PMID: 23701517]
[18]
Kakeya, H.; Morishita, M.; Koshino, H.; Morita, T.; Kobayashi, K.; Osada, H. Cytoxazone: A novel cytokine modulator containing a 2-oxazolidinone ring produced by Streptomyces sp. J. Org. Chem., 1999, 64(3), 1052-1053.
[http://dx.doi.org/10.1021/jo981922b] [PMID: 11674189]
[19]
Naresh, A.; Venkateswara Rao, M.; Kotapalli, S.S.; Ummanni, R.; Venkateswara Rao, B. Oxazolidinone derivatives: Cytoxazone–Linezolid hybrids induces apoptosis and senescence in DU145 prostate cancer cells. Eur. J. Med. Chem., 2014, 80, 295-307.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.062] [PMID: 24793880]
[20]
Marella, A.; Tanwar, O.P.; Saha, R.; Ali, M.R.; Srivastava, S.; Akhter, M.; Shaquiquzzaman, M.; Alam, M.M. Quinoline: A versatile heterocyclic. Saudi Pharm. J., 2013, 21(1), 1-12.
[http://dx.doi.org/10.1016/j.jsps.2012.03.002] [PMID: 23960814]
[21]
Devi, K.; Asmat, K.; Agrawal, M.; Sharma, S.; Dwivedi, J. Synthesis and evaluation of some novel precursors of oxazolidinone analogues of chloroquinoline for their antimicrobial and cytotoxic potential. J. Chem. Sci., 2013, 125(5), 1093-1101.
[http://dx.doi.org/10.1007/s12039-013-0492-9]
[22]
Armentano, B.; Curcio, R.; Brindisi, M.; Mancuso, R.; Rago, V.; Ziccarelli, I.; Frattaruolo, L.; Fiorillo, M.; Dolce, V.; Gabriele, B.; Cappello, A.R. 5-(Carbamoylmethylene)-oxazolidin-2-ones as a promising class of heterocycles inducing apoptosis triggered by increased ROS levels and mitochondrial dysfunction in breast and cervical cancer. Biomedicines, 2020, 8(2), 35.
[http://dx.doi.org/10.3390/biomedicines8020035] [PMID: 32085547]
[23]
Ghosh, A.K.; Dawson, Z.L.; Mitsuya, H. Darunavir, a conceptually new HIV-1 protease inhibitor for the treatment of drug-resistant HIV. Bioorg. Med. Chem., 2007, 15(24), 7576-7580.
[http://dx.doi.org/10.1016/j.bmc.2007.09.010] [PMID: 17900913]
[24]
Koh, Y.; Nakata, H.; Maeda, K.; Ogata, H.; Bilcer, G.; Devasamudram, T.; Kincaid, J.F.; Boross, P.; Wang, Y.F.; Tie, Y.; Volarath, P.; Gaddis, L.; Harrison, R.W.; Weber, I.T.; Ghosh, A.K.; Mitsuya, H. Novel bistetrahydrofuranylurethane-containing nonpeptidic protease inhibitor (PI) UIC-94017 (TMC114) with potent activity against multi-PI-resistant human immunodeficiency virus in vitro. Antimicrob. Agents Chemother., 2003, 47(10), 3123-3129.
[http://dx.doi.org/10.1128/AAC.47.10.3123-3129.2003] [PMID: 14506019]
[25]
Ghosh, A.K.; Ramu Sridhar, P.; Kumaragurubaran, N.; Koh, Y.; Weber, I.T.; Mitsuya, H. Bis-tetrahydrofuran: A privileged ligand for darunavir and a new generation of hiv protease inhibitors that combat drug resistance. ChemMedChem, 2006, 1(9), 939-950.
[http://dx.doi.org/10.1002/cmdc.200600103] [PMID: 16927344]
[26]
de Bethune, M-P.; Sekar, V.; Spinosa-Guzman, S.; Vanstockem, M.; De Meyer, S.; Wigerinck, P.; Lefebvre, E. Darunavir (Prezista, TMC114): From Bench to Clinic, Improving Treatment Options for HIV-infected Patients. In: Antiviral Drugs: From Basic Discovery through Clinical Trials; John Wiley & Sons: Hoboken, 2011; pp. 31-45.
[http://dx.doi.org/10.1002/9780470929353.ch3]
[27]
Ghosh, A.K.; Williams, J.N.; Ho, R.Y.; Simpson, H.M.; Hattori, S.; Hayashi, H.; Agniswamy, J.; Wang, Y.F.; Weber, I.T.; Mitsuya, H. Design and synthesis of potent HIV-1 protease inhibitors containing bicyclic oxazolidinone scaffold as the P2 ligands: Structure–activity studies and biological and X-ray structural studies. J. Med. Chem., 2018, 61(21), 9722-9737.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01227] [PMID: 30354121]
[28]
Li, S.; Yu, X.; Guo, Y.; Kong, L. Interaction networks of hepatitis C virus NS4B: Implications for antiviral therapy. Cell. Microbiol., 2012, 14(7), 994-1002.
[http://dx.doi.org/10.1111/j.1462-5822.2012.01773.x] [PMID: 22329740]
[29]
Zhang, X.; Zhang, N.; Chen, G.; Turpoff, A.; Ren, H.; Takasugi, J.; Morrill, C.; Zhu, J.; Li, C.; Lennox, W.; Paget, S.; Liu, Y.; Almstead, N.; George Njoroge, F.; Gu, Z.; Komatsu, T.; Clausen, V.; Espiritu, C.; Graci, J.; Colacino, J.; Lahser, F.; Risher, N.; Weetall, M.; Nomeir, A.; Karp, G.M. Discovery of novel HCV inhibitors: Synthesis and biological activity of 6-(indol-2-yl)pyridine-3-sulfonamides targeting hepatitis C virus NS4B. Bioorg. Med. Chem. Lett., 2013, 23(13), 3947-3953.
[http://dx.doi.org/10.1016/j.bmcl.2013.04.049] [PMID: 23683597]
[30]
Tai, V.W.F.; Garrido, D.; Price, D.J.; Maynard, A.; Pouliot, J.J.; Xiong, Z.; Seal, J.W., III; Creech, K.L.; Kryn, L.H.; Baughman, T.M.; Peat, A.J. Design and synthesis of spirocyclic compounds as HCV replication inhibitors by targeting viral NS4B protein. Bioorg. Med. Chem. Lett., 2014, 24(10), 2288-2294.
[http://dx.doi.org/10.1016/j.bmcl.2014.03.080] [PMID: 24731273]
[31]
Bartsch, S.M.; Lopman, B.A.; Ozawa, S.; Hall, A.J.; Lee, B.Y. Global economic burden of norovirus gastroenteritis. PLoS One, 2016, 11(4), e0151219.
[http://dx.doi.org/10.1371/journal.pone.0151219] [PMID: 27115736]
[32]
Lopman, B.A.; Steele, D.; Kirkwood, C.D.; Parashar, U.D. The vast and varied global burden of norovirus: Prospects for prevention and control. PLoS Med., 2016, 13(4), e1001999.
[33]
Hussey, R.J.; Coates, L.; Gill, R.S.; Erskine, P.T.; Coker, S.F.; Mitchell, E.; Cooper, J.B.; Wood, S.; Broadbridge, R.; Clarke, I.N.; Lambden, P.R.; Shoolingin-Jordan, P.M. A structural study of norovirus 3C protease specificity: Binding of a designed active site-directed peptide inhibitor. Biochemistry, 2011, 50(2), 240-249.
[http://dx.doi.org/10.1021/bi1008497] [PMID: 21128685]
[34]
Muhaxhiri, Z.; Deng, L.; Shanker, S.; Sankaran, B.; Estes, M.K.; Palzkill, T.; Song, Y.; Prasad, B.V.V. Structural basis of substrate specificity and protease inhibition in Norwalk virus. J. Virol., 2013, 87(8), 4281-4292.
[http://dx.doi.org/10.1128/JVI.02869-12] [PMID: 23365454]
[35]
Damalanka, V.C.; Kim, Y.; Galasiti Kankanamalage, A.C.; Rathnayake, A.D.; Mehzabeen, N.; Battaile, K.P.; Lovell, S.; Nguyen, H.N.; Lushington, G.H.; Chang, K.O.; Groutas, W.C. Structure-guided design, synthesis and evaluation of oxazolidinone-based inhibitors of norovirus 3CL protease. Eur. J. Med. Chem., 2018, 143, 881-890.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.014] [PMID: 29227928]
[36]
Dutkiewicz, M.; Swiatkowska, A.; Ojdowska, A.; Smólska, B.; Dymarek-Babś, T.; Jasińska, A.; Ciesiołka, J. Molecular mechanisms of genome expression of coxsackievirus B3 that belongs to enteroviruses. BioTechnologia, 2012, 4, 414-423.
[http://dx.doi.org/10.5114/bta.2012.46595]
[37]
Knowlton, K.U. CVB infection and mechanisms of viral cardiomyopathy. Curr. Top. Microbiol. Immunol., 2008, 323, 315-335.
[http://dx.doi.org/10.1007/978-3-540-75546-3_15] [PMID: 18357777]
[38]
Aguado, L.; Canela, M.D.; Thibaut, H.J.; Priego, E.M.; Camarasa, M.J.; Leyssen, P.; Neyts, J.; Pérez-Pérez, M.J. Efficient synthesis and anti-enteroviral activity of 9-arylpurines. Eur. J. Med. Chem., 2012, 49, 279-288.
[http://dx.doi.org/10.1016/j.ejmech.2012.01.022] [PMID: 22305341]
[39]
Li, H.; Zuo, J.P.; Tang, W. Phosphodiesterase-4 inhibitors for the treatment of inflammatory diseases. Front. Pharmacol., 2018, 9, 1048.
[40]
Schafer, P.H.; Truzzi, F.; Parton, A.; Wu, L.; Kosek, J.; Zhang, L.H.; Horan, G.; Saltari, A.; Quadri, M.; Lotti, R.; Marconi, A.; Pincelli, C. Phosphodiesterase 4 in inflammatory diseases: Effects of apremilast in psoriatic blood and in dermal myofibroblasts through the PDE4/CD271 complex. Cell. Signal., 2016, 28(7), 753-763.
[http://dx.doi.org/10.1016/j.cellsig.2016.01.007] [PMID: 26806620]
[41]
Souto, A.; Gómez-Reino, J.J. Apremilast for the treatment of psoriatic arthritis. Expert Rev. Clin. Immunol., 2015, 11(12), 1281-1290.
[http://dx.doi.org/10.1586/1744666X.2015.1102057] [PMID: 26503917]
[42]
Mulhall, A.M.; Droege, C.A.; Ernst, N.E.; Panos, R.J.; Zafar, M.A. Phosphodiesterase 4 inhibitors for the treatment of chronic obstructive pulmonary disease: A review of current and developing drugs. Expert Opin. Investig. Drugs, 2015, 24(12), 1597-1611.
[http://dx.doi.org/10.1517/13543784.2015.1094054] [PMID: 26419847]
[43]
Song, G.; Zhao, D.; Hu, D.; Li, Y.; Jin, H.; Cui, Z. Design, synthesis and biological evaluation of novel tetrahydroisoquinoline derivatives as potential PDE4 inhibitors. Bioorg. Med. Chem. Lett., 2015, 25(20), 4610-4614.
[http://dx.doi.org/10.1016/j.bmcl.2015.08.043] [PMID: 26320621]
[44]
Song, G.; Zhu, X.; Li, J.; Hu, D.; Zhao, D.; Liao, Y.; Lin, J.; Zhang, L.H.; Cui, Z.N. Rational design of conformationally constrained oxazolidinone-fused 1,2,3,4-tetrahydroisoqui-noline derivatives as potential PDE4 inhibitors. Bioorg. Med. Chem., 2017, 25(20), 5709-5717.
[http://dx.doi.org/10.1016/j.bmc.2017.08.045] [PMID: 28888661]
[45]
Yao, X.; Huang, J.; Zhong, H.; Shen, N.; Faggioni, R.; Fung, M.; Yao, Y. Targeting interleukin-6 in inflammatory autoimmune diseases and cancers. Pharmacol. Ther., 2014, 141(2), 125-139.
[http://dx.doi.org/10.1016/j.pharmthera.2013.09.004] [PMID: 24076269]
[46]
Tanaka, T.; Kishimoto, T. Targeting interleukin-6: All the way to treat autoimmune and inflammatory diseases. Int. J. Biol. Sci., 2012, 8(9), 1227-1236.
[http://dx.doi.org/10.7150/ijbs.4666] [PMID: 23136551]
[47]
Hong, S.S.; Choi, J.H.; Lee, S.Y.; Park, Y.H.; Park, K.Y.; Lee, J.Y.; Kim, J.; Gajulapati, V.; Goo, J.I.; Singh, S.; Lee, K.; Kim, Y.K.; Im, S.H.; Ahn, S.H.; Rose-John, S.; Heo, T.H.; Choi, Y. A novel small-molecule inhibitor targeting the IL-6 receptor β subunit, glycoprotein 130. J. Immunol., 2015, 195(1), 237-245.
[http://dx.doi.org/10.4049/jimmunol.1402908] [PMID: 26026064]
[48]
Singh, S.; Gajulapati, V.; Gajulapati, K.; Goo, J.I.; Park, Y.H.; Jung, H.Y.; Lee, S.Y.; Choi, J.H.; Kim, Y.K.; Lee, K.; Heo, T.H.; Choi, Y. Structure–activity relationship study of a series of novel oxazolidinone derivatives as IL-6 signaling blockers. Bioorg. Med. Chem. Lett., 2016, 26(4), 1282-1286.
[http://dx.doi.org/10.1016/j.bmcl.2016.01.016] [PMID: 26810262]
[49]
Hofmann, B.; Steinhilber, D. 5-Lipoxygenase inhibitors: A review of recent patents (2010 – 2012). Expert Opin. Ther. Pat., 2013, 23(7), 895-909.
[http://dx.doi.org/10.1517/13543776.2013.791678] [PMID: 23600432]
[50]
Boudreau, L.H. New hydroxycinnamic acid esters as novel 5-lipoxygenase inhibitors that affect leukotriene biosynthesis. Mediators Inflamm., 2017, 2017, 6904634.
[http://dx.doi.org/10.1155/2017/6904634] [PMID: 28680195]
[51]
Steinhilber, D.; Hofmann, B. Recent advances in the search for novel 5-lipoxygenase inhibitors. Basic Clin. Pharmacol. Toxicol., 2014, 114(1), 70-77.
[http://dx.doi.org/10.1111/bcpt.12114] [PMID: 23953428]
[52]
Phillips, O.A.; Bosso, M.A.; Ezeamuzie, C.I. Synthesis and structure-activity relationships of novel 5-(hydroxamic acid)methyl oxazolidinone derivatives as 5-lipoxygenase inhibitors. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 1471-1482.
[http://dx.doi.org/10.1080/14756366.2020.1786082] [PMID: 32635785]
[53]
Cheng, X.C.; Liu, X.Y.; Xu, W.F.; Guo, X.L.; Ou, Y. Design, synthesis, and biological activities of novel Ligustrazine derivatives. Bioorg. Med. Chem., 2007, 15(10), 3315-3320.
[http://dx.doi.org/10.1016/j.bmc.2007.03.033] [PMID: 17383884]
[54]
Chen, Y.; Ruan, Z.X.; Wang, F.; Huangfu, D.S.; Sun, P.H.; Lin, J.; Chen, W.M. Novel oxazolidinone antibacterial analogues with a substituted ligustrazine C-ring unit. Chem. Biol. Drug Des., 2015, 86(4), 682-690.
[http://dx.doi.org/10.1111/cbdd.12537] [PMID: 25677093]
[55]
Abdulrehman, J.; Eikelboom, J.W.; Siegal, D.M. Andexanet alfa for reversal of factor Xa inhibitors: A critical review of the evidence. Future Cardiol., 2019, 15(6), 395-404.
[http://dx.doi.org/10.2217/fca-2019-0038] [PMID: 31668083]
[56]
Perzborn, E.; Roehrig, S.; Straub, A.; Kubitza, D.; Misselwitz, F. The discovery and development of rivaroxaban, an oral, direct factor Xa inhibitor. Nat. Rev. Drug Discov., 2011, 10(1), 61-75.
[http://dx.doi.org/10.1038/nrd3185] [PMID: 21164526]
[57]
Perzborn, E.; Strassburger, J.; Wilmen, A.; Pohlmann, J.; Roehrig, S.; Schlemmer, K-H.; Straub, A. In vitro and in vivo studies of the novel antithrombotic agent BAY 59-7939-an oral, direct Factor Xa inhibitor. J. Thromb. Haemost., 2005, 3(3), 514-521.
[http://dx.doi.org/10.1111/j.1538-7836.2005.01166.x] [PMID: 15748242]
[58]
Roehrig, S.; Straub, A.; Pohlmann, J.; Lampe, T.; Pernerstorfer, J.; Schlemmer, K.H.; Reinemer, P.; Perzborn, E. Discovery of the novel antithrombotic agent 5-chloro-N-({(5S)-2-oxo-3 4-(3-oxomorpholin-4-yl)phenyl -1,3-oxazolidin- 5-yl}methyl)thiophene-2-carboxamide (BAY 59-7939): An oral, direct factor Xa inhibitor. J. Med. Chem., 2005, 48, 5900-5908.
[http://dx.doi.org/10.1021/jm050101d] [PMID: 16161994]
[59]
Nar, H. The role of structural information in the discovery of direct thrombin and factor Xa inhibitors. Trends Pharmacol. Sci., 2012, 33(5), 279-288.
[http://dx.doi.org/10.1016/j.tips.2012.03.004] [PMID: 22503439]
[60]
Xue, T.; Ding, S.; Guo, B.; Zhou, Y.; Sun, P.; Wang, H.; Chu, W.; Gong, G.; Wang, Y.; Chen, X.; Yang, Y. Design, synthesis, and structure-activity and structure-pharmacokinetic relationship studies of novel [6,6,5] tricyclic fused oxazolidinones leading to the discovery of a potent, selective, and orally bioavailable FXa inhibitor. J. Med. Chem., 2014, 57(18), 7770-7791.
[http://dx.doi.org/10.1021/jm501045e] [PMID: 25179681]
[61]
Zhao, Y.; Jiang, M.; Zhou, S.; Wu, S.; Zhang, X.; Ma, L.; Zhang, K.; Gong, P. Design, synthesis and structure–activity relationship of oxazolidinone derivatives containing novel S4 ligand as FXa inhibitors. Eur. J. Med. Chem., 2015, 96, 369-380.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.025] [PMID: 25911624]
[62]
Fitzsimmons, J.; Kubicki, M.; Shenton, M.E. Review of functional and anatomical brain connectivity findings in schizophrenia. Curr. Opin. Psychiatry, 2013, 26(2), 172-187.
[http://dx.doi.org/10.1097/YCO.0b013e32835d9e6a] [PMID: 23324948]
[63]
Millan, M.J.; Andrieux, A.; Bartzokis, G.; Cadenhead, K.; Dazzan, P.; Fusar-Poli, P.; Gallinat, J.; Giedd, J.; Grayson, D.R.; Heinrichs, M.; Kahn, R.; Krebs, M.O.; Leboyer, M.; Lewis, D.; Marin, O.; Marin, P.; Meyer-Lindenberg, A.; McGorry, P.; McGuire, P.; Owen, M.J.; Patterson, P.; Sawa, A.; Spedding, M.; Uhlhaas, P.; Vaccarino, F.; Wahlestedt, C.; Weinberger, D. Altering the course of schizophrenia: Progress and perspectives. Nat. Rev. Drug Discov., 2016, 15(7), 485-515.
[http://dx.doi.org/10.1038/nrd.2016.28] [PMID: 26939910]
[64]
Gilmour, G.; Broad, L.M.; Wafford, K.A.; Britton, T.; Colvin, E.M.; Fivush, A.; Gastambide, F.; Getman, B.; Heinz, B.A.; McCarthy, A.P.; Prieto, L.; Shanks, E.; Smith, J.W.; Taboada, L.; Edgar, D.M.; Tricklebank, M.D. In vitro characterisation of the novel positive allosteric modulators of the mGlu5 receptor, LSN2463359 and LSN2814617, and their effects on sleep architecture and operant responding in the rat. Neuropharmacology, 2013, 64, 224-239.
[http://dx.doi.org/10.1016/j.neuropharm.2012.07.030] [PMID: 22884720]
[65]
Conde-Ceide, S.; Martínez-Viturro, C.M.; Alcázar, J.; Garcia-Barrantes, P.M.; Lavreysen, H.; Mackie, C.; Vinson, P.N.; Rook, J.M.; Bridges, T.M.; Daniels, J.S.; Megens, A.; Langlois, X.; Drinkenburg, W.H.; Ahnaou, A.; Niswender, C.M.; Jones, C.K.; Macdonald, G.J.; Steckler, T.; Conn, P.J.; Stauffer, S.R.; Bartolomé-Nebreda, J.M.; Lindsley, C.W. Discovery of VU0409551/JNJ-46778212: An mGlu 5 positive allosteric modulator clinical candidate targeting schizophrenia. ACS Med. Chem. Lett., 2015, 6(6), 716-720.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00181] [PMID: 26157544]
[66]
Ellard, J.M.; Madin, A.; Philps, O.; Hopkin, M.; Henderson, S.; Birch, L.; O’Connor, D.; Arai, T.; Takase, K.; Morgan, L.; Reynolds, D.; Talma, S.; Howley, E.; Powney, B.; Payne, A.H.; Hall, A.; Gartlon, J.E.; Dawson, L.A.; Castro, L.; Atkinson, P.J. Identification and optimisation of a series of tetrahydrobenzotriazoles as metabotropic glutamate receptor 5-selective positive allosteric modulators that improve performance in a preclinical model of cognition. Bioorg. Med. Chem. Lett., 2015, 25(24), 5792-5796.
[http://dx.doi.org/10.1016/j.bmcl.2015.10.050] [PMID: 26531152]
[67]
Huang, H.; Degnan, A.P.; Balakrishnan, A.; Easton, A.; Gulianello, M.; Huang, Y.; Matchett, M.; Mattson, G.; Miller, R.; Santone, K.S.; Senapati, A.; Shields, E.E.; Sivarao, D.V.; Snyder, L.B.; Westphal, R.; Whiterock, V.J.; Yang, F.; Bronson, J.J.; Macor, J.E. Oxazolidinone-based allosteric modulators of mGluR5: Defining molecular switches to create a pharmacological tool box. Bioorg. Med. Chem. Lett., 2016, 26(17), 4165-4169.
[http://dx.doi.org/10.1016/j.bmcl.2016.07.065] [PMID: 27496211]
[68]
Laxer, K.D.; Trinka, E.; Hirsch, L.J.; Cendes, F.; Langfitt, J.; Delanty, N.; Resnick, T.; Benbadis, S.R. The consequences of refractory epilepsy and its treatment. Epilepsy Behav., 2014, 37, 59-70.
[http://dx.doi.org/10.1016/j.yebeh.2014.05.031] [PMID: 24980390]
[69]
Chang, B.S.; Krishnan, V.; Dulla, C.G.; Jette, N.; Marsh, E.D.; Dacks, P.A.; Whittemore, V.; Poduri, A. Epilepsy benchmarks area I: Understanding the causes of the epilepsies and epilepsy-related neurologic, psychiatric, and somatic conditions. Epilepsy Curr., 2020, 20(1_suppl.), 5S-13S.
[http://dx.doi.org/10.1177/1535759719895280] [PMID: 31965828]
[70]
Kombian, S.B.; Phillips, O.A. In vitro electrophysiological investigations of the acute effects of linezolid and novel oxazolidinones on central nervous system neurons. Neuroscience, 2011, 180, 53-63.
[http://dx.doi.org/10.1016/j.neuroscience.2011.01.062] [PMID: 21296129]
[71]
Qaddoumi, M.G.; Phillips, O.A.; Kombian, S.B. A novel oxazolidinone derivative PH192 demonstrates anticonvulsant activity in vivo in rats and mice. Eur. J. Pharm. Sci., 2019, 130, 21-26.
[http://dx.doi.org/10.1016/j.ejps.2019.01.011] [PMID: 30639401]
[72]
Ramunno, A.; Cosconati, S.; Sartini, S.; Maglio, V.; Angiuoli, S.; La Pietra, V.; Di Maro, S.; Giustiniano, M.; La Motta, C.; Da Settimo, F.; Marinelli, L.; Novellino, E. Progresses in the pursuit of aldose reductase inhibitors: The structure-based lead optimization step. Eur. J. Med. Chem., 2012, 51, 216-226.
[http://dx.doi.org/10.1016/j.ejmech.2012.02.045] [PMID: 22436396]
[73]
Sahoo, P.K.; Behera, P. Synthesis and biological evaluation of 1,2,4 triazino 4,3-a benzimidazole acetic acid derivatives as selective aldose reductase inhibitors. Eur. J. Med. Chem., 2011, 46, 5225-5225.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.069] [PMID: 22049548]
[74]
Tall, A.R.; Yvan-Charvet, L.; Terasaka, N.; Pagler, T.; Wang, N. HDL, ABC transporters, and cholesterol efflux: Implications for the treatment of atherosclerosis. Cell Metab., 2008, 7(5), 365-375.
[http://dx.doi.org/10.1016/j.cmet.2008.03.001] [PMID: 18460328]
[75]
Masson, D.; Jiang, X.C.; Lagrost, L.; Tall, A.R. The role of plasma lipid transfer proteins in lipoprotein metabolism and atherogenesis. J. Lipid Res., 2009, 50(Suppl.), S201-S206.
[http://dx.doi.org/10.1194/jlr.R800061-JLR200] [PMID: 19023137]
[76]
Forrest, M.J.; Bloomfield, D.; Briscoe, R.J.; Brown, P.N.; Cumiskey, A-M.; Ehrhart, J.; Hershey, J.C.; Keller, W.J.; Ma, X.; McPherson, H.E.; Messina, E.; Peterson, L.B.; Sharif-Rodriguez, W.; Siegl, P.K.S.; Sinclair, P.J.; Sparrow, C.P.; Stevenson, A.S.; Sun, S-Y.; Tsai, C.; Vargas, H.; Walker, M., III; West, S.H.; White, V.; Woltmann, R.F. Torcetrapib-induced blood pressure elevation is independent of CETP inhibition and is accompanied by increased circulating levels of aldosterone. Br. J. Pharmacol., 2008, 154(7), 1465-1473.
[http://dx.doi.org/10.1038/bjp.2008.229] [PMID: 18536749]
[77]
DePasquale, M.; Cadelina, G.; Knight, D.; Loging, W.; Winter, S.; Blasi, E.; Perry, D.; Keiser, J. Mechanistic studies of blood pressure in rats treated with a series of cholesteryl ester transfer protein inhibitors. Drug Dev. Res., 2009, 70(1), 35-48.
[http://dx.doi.org/10.1002/ddr.20282]
[78]
Smith, C.J.; Ali, A.; Hammond, M.L.; Li, H.; Lu, Z.; Napolitano, J.; Taylor, G.E.; Thompson, C.F.; Anderson, M.S.; Chen, Y.; Eveland, S.S.; Guo, Q.; Hyland, S.A.; Milot, D.P.; Sparrow, C.P.; Wright, S.D.; Cumiskey, A.M.; Latham, M.; Peterson, L.B.; Rosa, R.; Pivnichny, J.V.; Tong, X.; Xu, S.S.; Sinclair, P.J. Biphenyl-substituted oxazolidinones as cholesteryl ester transfer protein inhibitors: Modifications of the oxazolidinone ring leading to the discovery of anacetrapib. J. Med. Chem., 2011, 54(13), 4880-4895.
[http://dx.doi.org/10.1021/jm200484c] [PMID: 21682257]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy