Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Curcumin Combats against Organophosphate Pesticides Toxicity: A Review of the Current Evidence and Molecular Pathways

Author(s): Amir Masoud Jafari-Nozad, Amirsajad Jafari, Michael Aschner, Tahereh Farkhondeh* and Saeed Samarghandian*

Volume 30, Issue 20, 2023

Published on: 03 October, 2022

Page: [2312 - 2339] Pages: 28

DOI: 10.2174/0929867329666220817125800

Price: $65

conference banner
Abstract

Organophosphate compounds are regarded as a class of pesticides that are used in farming. Their extensive use, especially in developing countries, is a serious public health problem. Numerous studies have shown the effects of these toxins on various parts of the human and other vertebrates’ bodies, including the cardiovascular, hepatobiliary, renal, and reproductive systems. Curcumin is a polyphenol compound obtained from the rhizome of the Curcuma longa. Curcumin has been known as a dietary spice, food additive, and traditional medicine since many years ago. In recent decades, the medicinal characteristics, clinical aspects, and biological activity of curcumin have been extensively examined. The most examined positive characteristics of curcumin are its anti- inflammatory and anti-oxidant qualities. This review will deal with the pharmacological properties of curcumin as well as an update of currently available studies in terms of curcumin’s uses and function against organophosphate pesticides-induced toxicity on different human organs.

Keywords: Curcumin, organophosphate, pesticides, toxicity, toxins.

[1]
Naughton, S.X.; Terry, A.V., Jr Neurotoxicity in acute and repeated organophosphate exposure. Toxicology, 2018, 408, 101-112.
[http://dx.doi.org/10.1016/j.tox.2018.08.011] [PMID: 30144465]
[2]
Sagir, D. Protective effects of curcumin on liver damage in rats treated with chlorpyrifos during pregnancy. Med. Sci., 2019, 8(3), 586-591.
[http://dx.doi.org/10.5455/medscience.2019.08.9029]
[3]
Abdel-Diam, M.M.; Samak, D.H.; El-Sayed, Y.S.; Aleya, L.; Alarifi, S.; Alkahtani, S. Curcumin and quercetin synergistically attenuate subacute diazinon-induced inflammation and oxidative neurohepatic damage, and acetylcholinesterase inhibition in albino rats. Environ. Sci. Pollut. Res. Int., 2019, 26(4), 3659-3665.
[http://dx.doi.org/10.1007/s11356-018-3907-9] [PMID: 30535736]
[4]
Farkhondeh, T.; Mehrpour, O.; Forouzanfar, F.; Roshanravan, B.; Samarghandian, S. Oxidative stress and mitochondrial dysfunction in organophosphate pesticide-induced neurotoxicity and its amelioration: A review. Environ. Sci. Pollut. Res. Int., 2020, 27(20), 24799-24814.
[http://dx.doi.org/10.1007/s11356-020-09045-z] [PMID: 32358751]
[5]
Samarghandian S, Farkhondeh T, Samini F. A Review on Possible Therapeutic Effect of Nigella sativa and Thymoquinone in Neurodegenerative Diseases. CNS Neurol Disord Drug Targets. 2018, 17(6), 412-420
[http://dx.doi.org/10.2174/1871527317666180702101455] [PMID: 29962349]
[6]
Colović, M.B.; Krstić, D.Z.; Lazarević-Pašti, T.D.; Bondžić, A.M.; Vasić, V.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol., 2013, 11(3), 315-335.
[http://dx.doi.org/10.2174/1570159X11311030006] [PMID: 24179466]
[7]
Uchendu, C.; Ambali, S.F.; Ayo, J.O. The organophosphate, chlorpyrifos, oxidative stress and the role of some antioxidants: A review. Afr. J. Agric. Res., 2012, 7(18), 2720-2728.
[8]
Mehanny, P.; Somaya, O.; Hanan, A.; Hanan, M.S.; Mogda, K.M.; Noha, A.M. Effects of curcumin on diazinon-induced biochemical and cytogenetical alterations in male rats. Egypt. J. Chem. Environ. Health, 2015, 1, 914-932.
[9]
Samarghandian S, Borji A, Afshari R, Delkhosh MB, Gholami A. The effect of lead acetate on oxidative stress and antioxidant status in rat bronchoalveolar lavage fluid and lung tissue. Toxicology mechanisms and methods, 2013, 23(6), 432-6
[10]
Medithi, S.; Jonnalagadda, P.R.; Jee, B. Predominant role of antioxidants in ameliorating the oxidative stress induced by pesticides. Arch. Environ. Occup. Health, 2021, 76(2), 61-74.
[http://dx.doi.org/10.1080/19338244.2020.1750333] [PMID: 32271132]
[11]
Yonar, M.E. Chlorpyrifos-induced biochemical changes in Cyprinus carpio: Ameliorative effect of curcumin. Ecotoxicol. Environ. Saf., 2018, 151, 49-54.
[http://dx.doi.org/10.1016/j.ecoenv.2017.12.065] [PMID: 29306070]
[12]
Samarghandian S, Azimi-Nezhad M, Mehrad-Majd H, Mirhafez SR. Thymoquinone ameliorates acute renal failure in gentamicin-treated adult male rats. Pharmacology. 2015, 96(3-4), 112-7
[13]
Zaman, M.S.; Chauhan, N.; Yallapu, M.M.; Gara, R.K.; Maher, D.M.; Kumari, S.; Sikander, M.; Khan, S.; Zafar, N.; Jaggi, M.; Chauhan, S.C. Curcumin nanoformulation for cervical cancer treatment. Sci. Rep., 2016, 6(1), 20051.
[http://dx.doi.org/10.1038/srep20051] [PMID: 26837852]
[14]
Sharma, R.A.; Gescher, A.J.; Steward, W.P. Curcumin: The story so far. Eur. J. Cancer, 2005, 41(13), 1955-1968.
[http://dx.doi.org/10.1016/j.ejca.2005.05.009] [PMID: 16081279]
[15]
Oglah, M.K.; Mustafa, Y.F.; Bashir, M.K.; Jasim, M.H.; Mustafa, Y.F. Curcumin and its derivatives: A review of their biological activities. Syst. Rev. Pharm., 2020, 11(3), 472.
[16]
Abrahams, S.; Haylett, W.L.; Johnson, G.; Carr, J.A.; Bardien, S. Antioxidant effects of curcumin in models of neurodegeneration, aging, oxidative and nitrosative stress: A review. Neuroscience, 2019, 406, 1-21.
[http://dx.doi.org/10.1016/j.neuroscience.2019.02.020] [PMID: 30825584]
[17]
Hussain, Z.; Thu, H.E.; Amjad, M.W.; Hussain, F.; Ahmed, T.A.; Khan, S. Exploring recent developments to improve antioxidant, anti-inflammatory and antimicrobial efficacy of curcumin: A review of new trends and future perspectives. Mater. Sci. Eng. C, 2017, 77, 1316-1326.
[http://dx.doi.org/10.1016/j.msec.2017.03.226] [PMID: 28532009]
[18]
Jayaprakasha, G.K.; Rao, L.J.; Sakariah, K.K. Antioxidant activities of curcumin, demethoxycurcumin and bisdemethoxycurcumin. Food Chem., 2006, 98(4), 720-724.
[http://dx.doi.org/10.1016/j.foodchem.2005.06.037]
[19]
Mythri, R.B.; Bharath, M.M. Curcumin: A potential neuroprotective agent in Parkinson’s disease. Curr. Pharm. Des., 2012, 18(1), 91-99.
[http://dx.doi.org/10.2174/138161212798918995] [PMID: 22211691]
[20]
Cole, G.M.; Teter, B.; Frautschy, S.A. Neuroprotective effects of curcumin. Adv. Exp. Med. Biol., 2007, 595, 197-212.
[http://dx.doi.org/10.1007/978-0-387-46401-5_8] [PMID: 17569212]
[21]
Dong, W.; Yang, B.; Wang, L.; Li, B.; Guo, X.; Zhang, M.; Jiang, Z.; Fu, J.; Pi, J.; Guan, D.; Zhao, R. Curcumin plays neuroprotective roles against traumatic brain injury partly via Nrf2 signaling. Toxicol. Appl. Pharmacol., 2018, 346, 28-36.
[http://dx.doi.org/10.1016/j.taap.2018.03.020] [PMID: 29571711]
[22]
Edwards, R.L.; Luis, P.B.; Varuzza, P.V.; Joseph, A.I.; Presley, S.H.; Chaturvedi, R.; Schneider, C. The anti-inflammatory activity of curcumin is mediated by its oxidative metabolites. J. Biol. Chem., 2017, 292(52), 21243-21252.
[http://dx.doi.org/10.1074/jbc.RA117.000123] [PMID: 29097552]
[23]
Fadus, M.C.; Lau, C.; Bikhchandani, J.; Lynch, H.T. Curcumin: An age-old anti-inflammatory and anti-neoplastic agent. J. Tradit. Complement. Med., 2016, 7(3), 339-346.
[http://dx.doi.org/10.1016/j.jtcme.2016.08.002] [PMID: 28725630]
[24]
Farhood, B.; Mortezaee, K.; Goradel, N.H.; Khanlarkhani, N.; Salehi, E.; Nashtaei, M.S.; Najafi, M.; Sahebkar, A. Curcumin as an anti-inflammatory agent: Implications to radiotherapy and chemotherapy. J. Cell. Physiol., 2019, 234(5), 5728-5740.
[http://dx.doi.org/10.1002/jcp.27442] [PMID: 30317564]
[25]
Kohli, K.; Ali, J.; Ansari, M.; Raheman, Z. Curcumin: A natural antiinflammatory agent. Indian J. Pharmacol., 2005, 37(3), 141.
[http://dx.doi.org/10.4103/0253-7613.16209]
[26]
Menon, V.P.; Sudheer, A.R. Antioxidant and anti-inflammatory properties of curcumin; Springer, 2007.
[http://dx.doi.org/10.1007/978-0-387-46401-5_3]
[27]
Jafarinezhad, Z.; Rafati, A.; Ketabchi, F.; Noorafshan, A.; Karbalay-Doust, S. Cardioprotective effects of curcumin and carvacrol in doxorubicin-treated rats: Stereological study. Food Sci. Nutr., 2019, 7(11), 3581-3588.
[http://dx.doi.org/10.1002/fsn3.1210] [PMID: 31763008]
[28]
Miriyala, S.; Panchatcharam, M.; Rengarajulu, P. Cardioprotective effects of curcumin; Springer, 2007.
[http://dx.doi.org/10.1007/978-0-387-46401-5_16]
[29]
Srivastava, G.; Mehta, J.L. Currying the heart: Curcumin and cardioprotection. J. Cardiovasc. Pharmacol. Ther., 2009, 14(1), 22-27.
[http://dx.doi.org/10.1177/1074248408329608] [PMID: 19153099]
[30]
Swamy, A.V.; Gulliaya, S.; Thippeswamy, A.; Koti, B.C.; Manjula, D.V. Cardioprotective effect of curcumin against doxorubicin-induced myocardial toxicity in albino rats. Indian J. Pharmacol., 2012, 44(1), 73-77.
[http://dx.doi.org/10.4103/0253-7613.91871] [PMID: 22345874]
[31]
Jayaprakasha, G.K.; Jena, B.S.; Negi, P.S.; Sakariah, K.K. Evaluation of antioxidant activities and antimutagenicity of turmeric oil: A byproduct from curcumin production. Z. Naturforsch. C J. Biosci., 2002, 57(9-10), 828-835.
[http://dx.doi.org/10.1515/znc-2002-9-1013] [PMID: 12440720]
[32]
Parvathy, K.; Negi, P.; Srinivas, P. Antioxidant, antimutagenic and antibacterial activities of curcumin-β-diglucoside. Food Chem., 2009, 115(1), 265-271.
[http://dx.doi.org/10.1016/j.foodchem.2008.12.036]
[33]
Shukla, Y.; Arora, A.; Taneja, P. Antimutagenic potential of curcumin on chromosomal aberrations in Wistar rats. Mutat. Res., 2002, 515(1-2), 197-202.
[http://dx.doi.org/10.1016/S1383-5718(02)00016-5] [PMID: 11909768]
[34]
Aggarwal, B.B.; Kumar, A.; Bharti, A.C. Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Res., 2003, 23, 363-398.
[35]
Subramani, P.A.; Panati, K.; Narala, V.R. Curcumin nanotechnologies and its anticancer activity. Nutr. Cancer, 2017, 69(3), 381-393.
[http://dx.doi.org/10.1080/01635581.2017.1285405] [PMID: 28287321]
[36]
Tamvakopoulos, C.; Dimas, K.; Sofianos, Z.D.; Hatziantoniou, S.; Han, Z.; Liu, Z-L.; Wyche, J.H.; Pantazis, P. Metabolism and anticancer activity of the curcumin analogue, dimethoxycurcumin. Clin. Cancer Res., 2007, 13(4), 1269-1277.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1839] [PMID: 17317839]
[37]
Vallianou, N.G.; Evangelopoulos, A.; Schizas, N.; Kazazis, C. Potential anticancer properties and mechanisms of action of curcumin. Anticancer Res., 2015, 35(2), 645-651.
[PMID: 25667441]
[38]
Kwong, T.C. Organophosphate pesticides: Biochemistry and clinical toxicology. Ther. Drug Monit., 2002, 24(1), 144-149.
[http://dx.doi.org/10.1097/00007691-200202000-00022] [PMID: 11805735]
[39]
Vale, A.; Lotti, M. Organophosphorus and carbamate insecticide poisoning; Elsevier, 2015.
[http://dx.doi.org/10.1016/B978-0-444-62627-1.00010-X]
[40]
Badr, A.M. Organophosphate toxicity: Updates of malathion potential toxic effects in mammals and potential treatments. Environ. Sci. Pollut. Res. Int., 2020, 27(21), 26036-26057.
[http://dx.doi.org/10.1007/s11356-020-08937-4] [PMID: 32399888]
[41]
Beloti, V.H.; Alves, G.R.; Moral, R.A.; Demétrio, C.G.B.; Yamamoto, P.T. Acute toxicity of fresh and aged residues of pesticides to the parasitoid Tamarixia radiata and to the HLB-bacteria vector Diaphorina citri. Neotrop. Entomol., 2018, 47(3), 403-411.
[http://dx.doi.org/10.1007/s13744-017-0575-2] [PMID: 29222706]
[42]
Ventura, C.; Zappia, C.D.; Lasagna, M.; Pavicic, W.; Richard, S.; Bolzan, A.D.; Monczor, F.; Núñez, M.; Cocca, C. Effects of the pesticide chlorpyrifos on breast cancer disease. Implication of epigenetic mechanisms. J. Steroid Biochem. Mol., 2019, 186, 96-104.
[http://dx.doi.org/10.1016/j.jsbmb.2018.09.021] [PMID: 30290214]
[43]
Esen, M.; Uysal, M. Protective effects of intravenous lipid emulsion on malathion-induced hepatotoxicity. Bratisl. Lek Listy, 2018, 119(6), 373-378.
[http://dx.doi.org/10.4149/BLL_2018_069] [PMID: 29947238]
[44]
Budzinski, H.; Couderchet, M. Environmental and human health issues related to pesticides: From usage and environmental fate to impact. Environ. Sci. Pollut. Res. Int., 2018, 25(15), 14277-14279.
[http://dx.doi.org/10.1007/s11356-018-1738-3] [PMID: 29569196]
[45]
Gosselin, R.E.; Smith, R.P.; Hodge, H.C.; Braddock, J.E. Clinical toxicology of commercial products; Williams & Wilkins Baltimore: MD, USA, 1984.
[46]
Baselt, R.C.; Cravey, R.H. Disposition of toxic drugs and chemicals in man, biomedical publications, 10th ed.; Biomedical Publications: CA, USA, 1982.
[47]
Alahakoon, C.; Dassanayake, T.L.; Gawarammana, I.B.; Sedgwick, E.M.; Weerasinghe, V.S.; Abdalla, A.; Roberts, M.S.; Buckley, N.A. Prediction of organophosphorus insecticide-induced intermediate syndrome with stimulated concentric needle single fibre electromyography. PLoS One, 2018, 13(9), e0203596.
[http://dx.doi.org/10.1371/journal.pone.0203596] [PMID: 30261032]
[48]
Namba, T. Cholinesterase inhibition by organophosphorus compounds and its clinical effects. Bull. World Health Organ., 1971, 44(1-2-3), 289.
[49]
Kumar, S.V.; Fareedullah, M.; Sudhakar, Y.; Venkateswarlu, B.; Kumar, E.A. Current review on organophosphorus poisoning. Arch. Appl. Sci. Res., 2010, 2(4), 199-215.
[50]
Kamanyire, R.; Karalliedde, L. Organophosphate toxicity and occupational exposure. Occup. Med. (Lond.), 2004, 54(2), 69-75.
[http://dx.doi.org/10.1093/occmed/kqh018] [PMID: 15020723]
[51]
Farkhondeh, T.; Mehrpour, O.; Buhrmann, C.; Pourbagher-Shahri, A.M.; Shakibaei, M.; Samarghandian, S. Organophosphorus compounds and MAPK signaling pathways. Int. J. Mol. Sci., 2020, 21(12), 4258.
[http://dx.doi.org/10.3390/ijms21124258] [PMID: 32549389]
[52]
Zia, A.; Farkhondeh, T.; Pourbagher-Shahri, A.M.; Samarghandian, S. The role of curcumin in aging and senescence: Molecular mechanisms. Biomed. Pharmacother., 2021, 134, 111119.
[http://dx.doi.org/10.1016/j.biopha.2020.111119] [PMID: 33360051]
[53]
Parsamanesh, N.; Moossavi, M.; Bahrami, A.; Butler, A.E.; Sahebkar, A. Therapeutic potential of curcumin in diabetic complications. Pharm. Res., 2018, 136, 181-193.
[http://dx.doi.org/10.1016/j.phrs.2018.09.012] [PMID: 30219581]
[54]
Mohajeri, M.; Sahebkar, A. Protective effects of curcumin against doxorubicin-induced toxicity and resistance: A review. Crit. Rev. Oncol. Hematol., 2018, 122, 30-51.
[http://dx.doi.org/10.1016/j.critrevonc.2017.12.005] [PMID: 29458788]
[55]
Barzegar, A. The role of electron-transfer and H-atom donation on the superb antioxidant activity and free radical reaction of curcumin. Food Chem., 2012, 135(3), 1369-1376.
[http://dx.doi.org/10.1016/j.foodchem.2012.05.070] [PMID: 22953868]
[56]
Bahrami, A.; A Ferns, G. Effect of curcumin and its derivates on gastric Cancer: Molecular mechanisms. Nutr. Cancer, 2021, 73(9), 1553-1569.
[http://dx.doi.org/10.1080/01635581.2020.1808232] [PMID: 32814463]
[57]
Rivera-Espinoza, Y.; Muriel, P. Pharmacological actions of curcumin in liver diseases or damage. Liver Int., 2009, 29(10), 1457-1466.
[http://dx.doi.org/10.1111/j.1478-3231.2009.02086.x] [PMID: 19811613]
[58]
Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: Problems and promises. Mol. Pharm., 2007, 4(6), 807-818.
[http://dx.doi.org/10.1021/mp700113r] [PMID: 17999464]
[59]
Hoeijmakers, J.H. DNA damage, aging, and cancer. N. Engl. J. Med., 2009, 361(15), 1475-1485.
[http://dx.doi.org/10.1056/NEJMra0804615] [PMID: 19812404]
[60]
Tiwari, H.; Rao, M.V.J. Curcumin supplementation protects from genotoxic effects of arsenic and fluoride. Food Chem. Toxicol., 2010, 48(5), 1234-1238.
[http://dx.doi.org/10.1016/j.fct.2010.02.015] [PMID: 20170701]
[61]
Nair, U.; Bartsch, H.; Nair, J. Lipid peroxidation-induced DNA damage in cancer-prone inflammatory diseases: A review of published adduct types and levels in humans. Free Radic. Biol. Med., 2007, 43(8), 1109-1120.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.07.012] [PMID: 17854706]
[62]
Ranjbar, A.; Pasalar, P.; Abdollahi, M. Induction of oxidative stress and acetylcholinesterase inhibition in organophosphorous pesticide manufacturing workers. Hum. Exp. Toxicol., 2002, 21(4), 179-182.
[http://dx.doi.org/10.1191/0960327102ht238oa] [PMID: 12099619]
[63]
Verma, R.S.; Srivastava, N. Chlorpyrifos induced alterations in levels of thiobarbituric acid reactive substances and glutathione in rat brain. Indian J. Exp. Biol., 2001, 39(2), 174-177.
[PMID: 11480216]
[64]
Pournourmohammadi, S.; Ostad, S.N.; Azizi, E.; Ghahremani, M.H.; Farzami, B.; Minaie, B.; Larijani, B.; Abdollahi, M. Induction of insulin resistance by malathion: Evidence for disrupted islets cells metabolism and mitochondrial dysfunction. Pestic. Biochem. Physiol., 2007, 88(3), 346-352.
[http://dx.doi.org/10.1016/j.pestbp.2007.02.001]
[65]
Costa, L.G. Current issues in organophosphate toxicology. Clin. Chim. Acta, 2006, 366(1-2), 1-13.
[http://dx.doi.org/10.1016/j.cca.2005.10.008] [PMID: 16337171]
[66]
Costa, L.G.; Giordano, G.; Guizzetti, M.; Vitalone, A. Neurotoxicity of pesticides: A brief review. Front. Biosci., 2008, 13(4), 1240-1249.
[http://dx.doi.org/10.2741/2758] [PMID: 17981626]
[67]
Yadav, H.; Sankhla, M.; Kumar, R. Pesticides-induced carcinogenic & neurotoxic effect on human. Forensic Sci. Int., 2019, 7(5), 243-245.
[68]
Kaur, S.; Singh, S.; Chahal, K.S.; Prakash, A. Potential pharmacological strategies for the improved treatment of organophosphate-induced neurotoxicity. Can. J. Physiol. Pharmacol., 2014, 92(11), 893-911.
[http://dx.doi.org/10.1139/cjpp-2014-0113] [PMID: 25348489]
[69]
Moyano, P.; Del Pino, J.; Anadon, M.J.; Díaz, M.J.; Gómez, G.; Frejo, M.T. Toxicogenomic profile of apoptotic and necrotic SN56 basal forebrain cholinergic neuronal loss after acute and long-term chlorpyrifos exposure. Neurotoxicol. Teratol., 2017, 59, 68-73.
[http://dx.doi.org/10.1016/j.ntt.2016.10.002] [PMID: 27737797]
[70]
Singh, S.; Prakash, A.; Kaur, S.; Ming, L.C.; Mani, V.; Majeed, A.B.A. The role of multifunctional drug therapy as an antidote to combat experimental subacute neurotoxicity induced by organophosphate pesticides. Environ. Toxicol., 2016, 31(8), 1017-1026.
[http://dx.doi.org/10.1002/tox.22111] [PMID: 25864908]
[71]
Farooqui, A.A. Therapeutic potentials of curcumin for Alzheimer disease; Springer, 2016.
[http://dx.doi.org/10.1007/978-3-319-15889-1]
[72]
Canales-Aguirre, A.A.; Gomez-Pinedo, U.A.; Luquin, S.; Ramírez-Herrera, M.A.; Mendoza-Magaña, M.L.; Feria-Velasco, A. Curcumin protects against the oxidative damage induced by the pesticide parathion in the hippocampus of the rat brain. Nutr. Neurosci., 2012, 15(2), 62-69.
[http://dx.doi.org/10.1179/1476830511Y.0000000034] [PMID: 22333997]
[73]
Eronat, K.; Sağır, D. Protective effects of curcumin and Ganoderma lucidum on hippocampal damage caused by the organophosphate insecticide chlorpyrifos in the developing rat brain: Stereological, histopathological and immunohistochemical study. Acta Histochem., 2020, 122(7), 151621.
[http://dx.doi.org/10.1016/j.acthis.2020.151621] [PMID: 33066842]
[74]
Dominah, G.A.; McMinimy, R.A.; Kallon, S.; Kwakye, G.F. Acute exposure to chlorpyrifos caused NADPH oxidase mediated oxidative stress and neurotoxicity in a striatal cell model of Huntington’s disease. Neurotoxicology, 2017, 60, 54-69.
[http://dx.doi.org/10.1016/j.neuro.2017.03.004] [PMID: 28300621]
[75]
Tripathi, V.K.; Kumar, V.; Singh, A.K.; Kashyap, M.P.; Jahan, S.; Pandey, A.; Alam, S.; Khan, F.; Khanna, V.K.; Yadav, S.; Lohani, M.; Pant, A.B. Monocrotophos induces the expression and activity of xenobiotic metabolizing enzymes in pre-sensitized cultured human brain cells. PLoS One, 2014, 9(3), e91946.
[http://dx.doi.org/10.1371/journal.pone.0091946] [PMID: 24663500]
[76]
Mandal, M.; Jaiswal, P.; Mishra, A. Curcumin loaded nanoparticles reversed monocrotophos induced motor impairment and memory deficit: Role of oxidative stress and intracellular calcium level. J. Drug Deliv. Sci. Technol., 2020, 56, 101559.
[http://dx.doi.org/10.1016/j.jddst.2020.101559]
[77]
Mundhe, A.Y.; Pandit, S.V. Assessment of toxicity of monocrotophos in freshwater bivalve, Lamellidens marginalis, using different markers. Toxicol. Int., 2014, 21(1), 51-56.
[PMID: 24748735]
[78]
Kashyap, M.P.; Singh, A.K.; Kumar, V.; Tripathi, V.K.; Srivastava, R.K.; Agrawal, M.; Khanna, V.K.; Yadav, S.; Jain, S.K.; Pant, A.B. Monocrotophos induced apoptosis in PC12 cells: Role of xenobiotic metabolizing cytochrome P450s. PLoS One, 2011, 6(3), e17757.
[http://dx.doi.org/10.1371/journal.pone.0017757] [PMID: 21445290]
[79]
Sayre, L.M.; Perry, G.; Smith, M.A. Oxidative stress and neurotoxicity. Chem. Res. Toxicol., 2008, 21(1), 172-188.
[http://dx.doi.org/10.1021/tx700210j] [PMID: 18052107]
[80]
Richardson, J.R.; Roy, A.; Shalat, S.L.; von Stein, R.T.; Hossain, M.M.; Buckley, B.; Gearing, M.; Levey, A.I.; German, D.C. Elevated serum pesticide levels and risk for Alzheimer disease. JAMA Neurol., 2014, 71(3), 284-290.
[http://dx.doi.org/10.1001/jamaneurol.2013.6030] [PMID: 24473795]
[81]
Hardy, J.; Selkoe, D.J. The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics. Science, 2002, 297(5580), 353-356.
[82]
Sarkar, B. Organophosphate pesticides pester aβ-induced genotoxic responses in cultured neuronal cells: Ape1/ref-1 mediated intervention, 2018,
[83]
Sarkar, B.; Dhiman, M.; Mittal, S.; Mantha, A.K. Curcumin revitalizes Amyloid beta (25-35)-induced and organophosphate pesticides pestered neurotoxicity in SHSY5Y and IMR-32 cells via activation of APE1 and Nrf2. Metab. Brain Dis., 2017, 32(6), 2045-2061.
[http://dx.doi.org/10.1007/s11011-017-0093-2] [PMID: 28861684]
[84]
Das, S. A review of dichlorvos toxicity in fish. Curr. World Environ., 2013, 8(1), 143.
[http://dx.doi.org/10.12944/CWE.8.1.08]
[85]
Edem, V.; Kosoko, A.; Akinyoola, S.; Owoeye, O.; Rahamon, S.; Arinola, O. Plasma antioxidant enzymes, lipid peroxidation and hydrogen peroxide in wistar rats exposed to Dichlorvos insecticide. Arch. Appl. Sci. Res., 2012, 4(4), 1778-1781.
[86]
Yadav, P.; Jadhav, S.E.; Kumar, V.; Kaul, K.K.; Pant, S.C.; Flora, S.J. Protective efficacy of 2-PAMCl, atropine and curcumin against dichlorvos induced toxicity in rats. Interdiscip. Toxicol., 2012, 5(1), 1-8.
[http://dx.doi.org/10.2478/v10102-012-0001-x] [PMID: 22783142]
[87]
Taylor, P. Goodman & Gilman’s: The Pharmacological Basis of Therapeutics, 12th ed.; Brunton, L.L.; Chabner, B.A.; Knollmann, B.C., Eds.; McGraw-Hill Education: New York, NY, 2015.
[88]
Giyanwani, P.R.; Zubair, U.; Salam, O.; Zubair, Z. Respiratory failure following organophosphate poisoning: A literature review. Cureus, 2017, 9(9), e1651.
[http://dx.doi.org/10.7759/cureus.1651] [PMID: 29142799]
[89]
Hassani, S.; Sepand, M.R.; Jafari, A.; Jaafari, J.; Rezaee, R.; Zeinali, M.; Tavakoli, F.; Razavi-Azarkhiavi, K. Protective effects of curcumin and vitamin E against chlorpyrifos-induced lung oxidative damage. Hum. Exp. Toxicol., 2015, 34(6), 668-676.
[http://dx.doi.org/10.1177/0960327114550888] [PMID: 25233897]
[90]
Alp, H.; Aytekin, İ.; Esen, H.; Basaralı, K.; Kul, S. Effects of caffeic acid phenethyl ester, ellagic acid, sulforaphane and curcumin on diazinon induced damage to the lungs, liver and kidneys in an acute toxicity rat model. Kafkas Univ. Vet. Fak. Derg., 2011, 17(6), 4800.
[91]
Giray, B.; Gürbay, A.; Hincal, F. Cypermethrin-induced oxidative stress in rat brain and liver is prevented by vitamin E or allopurinol. Toxicol. Lett., 2001, 118(3), 139-146.
[http://dx.doi.org/10.1016/S0378-4274(00)00277-0] [PMID: 11137320]
[92]
Soltaninejad, K.; Abdollahi, M. Current opinion on the science of organophosphate pesticides and toxic stress: A systematic review. Med. Sci. Monit., 2009, 15(3), RA75-RA90.
[PMID: 19247260]
[93]
Jayaraj, R.L.; Tamilselvam, K.; Manivasagam, T.; Elangovan, N. Neuroprotective effect of CNB-001, a novel pyrazole derivative of curcumin on biochemical and apoptotic markers against rotenone-induced SK-N-SH cellular model of Parkinson’s disease. J. Mol. Neurosci., 2013, 51(3), 863-870.
[http://dx.doi.org/10.1007/s12031-013-0075-8] [PMID: 23900721]
[94]
González-Reimers, E.; López-Lirola, A.; Olivera, R.M.; Santolaria-Fernández, F.; Galindo-Martín, L.; Abreu-González, P.; Sánchez-Sanchez, J.J.; Martínez-Riera, A. Effects of protein deficiency on liver trace elements and antioxidant activity in carbon tetrachloride-induced liver cirrhosis. Biol. Trace Elem. Res., 2003, 93(1-3), 127-140.
[http://dx.doi.org/10.1385/BTER:93:1-3:127] [PMID: 12835497]
[95]
Rezg, R.; Mornagui, B.; El-Fazaa, S.; Gharbi, N. Biochemical evaluation of hepatic damage in subchronic exposure to malathion in rats: Effect on superoxide dismutase and catalase activities using native PAGE. C. R. Biol., 2008, 331(9), 655-662.
[http://dx.doi.org/10.1016/j.crvi.2008.06.004] [PMID: 18722984]
[96]
El-Baz, M.A.; El-Deek, S.E.; Ghandour, N.M. Role of melatonin and curcumin in amelioration of malathion toxicity in rat’s liver. J. Nat. Toxins, 2016, 13, 1-20.
[97]
Alp, H.; Aytekin, I.; Esen, H.; Alp, A.; Buyukbas, S.; Basarali, K.; Hatipoglu, N.; Kul, S. Protective effects of caffeic acid phenethyl ester, ellagic acid, sulforaphan and curcuma on malathion induced damage in lungs, liver and kidneys in an acute toxicity rat model. Rev. Med. Vet. (Toulouse), 2011, 162(7), 333-340.
[98]
Abu-El-Zahab, H.S.; Hamza, R.Z.; Al-Ahmed, J.A. Ameliorative effect of vitamin C and curcumin on malathion induced hepatorenal toxicity in male mice. J. Chem. Pharm., 2016, 8(3), 990-999.
[99]
Michael, M.I. Possible role of humoral immunity on liver dysfunction in male albino rats. J. Radiat. Res. Appl., 2011, 4(1A), 19-31.
[100]
Kassab, F. Biochemical and immunological changes associated with curcumin intake with different concentrations of malathion in female rats. Appl. Radiat. Isot., 2009, 41(4s1), 1101-1112.
[101]
Abass, K.; Lämsä, V.; Reponen, P.; Küblbeck, J.; Honkakoski, P.; Mattila, S.; Pelkonen, O.; Hakkola, J. Characterization of human cytochrome P450 induction by pesticides. Toxicology, 2012, 294(1), 17-26.
[http://dx.doi.org/10.1016/j.tox.2012.01.010] [PMID: 22310298]
[102]
Tripathi, S.; Srivastav, A.K. Liver profile of rats after long-term ingestion of different doses of chlorpyrifos. Pestic. Biochem. Physiol., 2010, 97(1), 60-65.
[http://dx.doi.org/10.1016/j.pestbp.2009.12.005]
[103]
Uzun, F.G.; Kalender, Y. Chlorpyrifos induced hepatotoxic and hematologic changes in rats: The role of quercetin and catechin. Food Chem. Toxicol., 2013, 55, 549-556.
[http://dx.doi.org/10.1016/j.fct.2013.01.056] [PMID: 23402859]
[104]
Mansour, S.A.; Mossa, A-T.H. Oxidative damage, biochemical and histopathological alterations in rats exposed to chlorpyrifos and the antioxidant role of zinc. Pestic. Biochem. Physiol., 2010, 96(1), 14-23.
[http://dx.doi.org/10.1016/j.pestbp.2009.08.008]
[105]
Abdollahzadeh Estakhri, M.; Shokrzadeh, M.; Jaafari, M.R.; Karami, M.; Mohammadi, H. Organ toxicity attenuation by nanomicelles containing curcuminoids: Comparing the protective effects on tissues oxidative damage induced by diazinon. Iran. J. Basic Med. Sci., 2019, 22(1), 17-24.
[PMID: 30944703]
[106]
Jafari, M.; Salehi, M.; Ahmadi, S.; Asgari, A.; Abasnezhad, M.; Hajigholamali, M. The role of oxidative stress in diazinon-induced tissues toxicity in Wistar and Norway rats. Toxicol. Mech. Methods, 2012, 22(8), 638-647.
[http://dx.doi.org/10.3109/15376516.2012.716090] [PMID: 22871176]
[107]
Akturk, O.; Demirin, H.; Sutcu, R.; Yilmaz, N.; Koylu, H.; Altuntas, I. The effects of diazinon on lipid peroxidation and antioxidant enzymes in rat heart and ameliorating role of vitamin E and vitamin C. Cell Biol. Toxicol., 2006, 22(6), 455-461.
[http://dx.doi.org/10.1007/s10565-006-0138-5] [PMID: 16964585]
[108]
Kalender, S.; Ogutcu, A.; Uzunhisarcikli, M.; Açikgoz, F.; Durak, D.; Ulusoy, Y.; Kalender, Y. Diazinon-induced hepatotoxicity and protective effect of vitamin E on some biochemical indices and ultrastructural changes. Toxicology, 2005, 211(3), 197-206.
[http://dx.doi.org/10.1016/j.tox.2005.03.007] [PMID: 15925023]
[109]
Al-Attar, A.M. Physiological and histopathological investigations on the effects of a-lipoic acid in rats exposed to malathion. Biomed. Biotechnol., 2010, 210, 1-8.
[110]
Al-Attar, A.M. Effect of grapeseed oil on diazinon-induced physiological and histopathological alterations in rats. Saudi J. Biol. Sci., 2015, 22(3), 284-292.
[http://dx.doi.org/10.1016/j.sjbs.2014.12.010] [PMID: 25972749]
[111]
el-Demerdash, F.M.; Yousef, M.I.; Kedwany, F.S.; Baghdadi, H.H. Role of α-tocopherol and β-carotene in ameliorating the fenvalerate-induced changes in oxidative stress, hemato-biochemical parameters, and semen quality of male rats. J. Environ. Sci. Health B, 2004, 39(3), 443-459.
[http://dx.doi.org/10.1081/PFC-120035929] [PMID: 15186033]
[112]
Messarah, M.; Amamra, W.; Boumendjel, A.; Barkat, L.; Bouasla, I.; Abdennour, C.; Boulakoud, M.S.; Feki, A.E. Ameliorating effects of curcumin and vitamin E on diazinon-induced oxidative damage in rat liver and erythrocytes. Toxicol. Ind. Health, 2013, 29(1), 77-88.
[http://dx.doi.org/10.1177/0748233712446726] [PMID: 22609857]
[113]
Kalpana, C.; Rajasekharan, K.N.; Menon, V.P. Modulatory effects of curcumin and curcumin analog on circulatory lipid profiles during nicotine-induced toxicity in Wistar rats. J. Med. Food, 2005, 8(2), 246-250.
[http://dx.doi.org/10.1089/jmf.2005.8.246] [PMID: 16117619]
[114]
Kumar, A.; Dogra, S.; Prakash, A. Protective effect of curcumin (Curcuma longa), against aluminium toxicity: Possible behavioral and biochemical alterations in rats. Behav. Brain Res., 2009, 205(2), 384-390.
[http://dx.doi.org/10.1016/j.bbr.2009.07.012] [PMID: 19616038]
[115]
Somparn, P.; Phisalaphong, C.; Nakornchai, S.; Unchern, S.; Morales, N.P. Comparative antioxidant activities of curcumin and its demethoxy and hydrogenated derivatives. Biol. Pharm. Bull., 2007, 30(1), 74-78.
[http://dx.doi.org/10.1248/bpb.30.74] [PMID: 17202663]
[116]
Aggarwal, B.B.; Gupta, S.C.; Sung, B. Curcumin: An orally bioavailable blocker of TNF and other pro-inflammatory biomarkers. Br. J. Pharmacol., 2013, 169(8), 1672-1692.
[http://dx.doi.org/10.1111/bph.12131] [PMID: 23425071]
[117]
Kowalski, J.; Blada, P.; Kucia, K.; Madej, A.; Herman, Z.S. Neuroleptics normalize increased release of interleukin- 1 β and tumor necrosis factor-α from monocytes in schizophrenia. Schizophr. Res., 2001, 50(3), 169-175.
[http://dx.doi.org/10.1016/S0920-9964(00)00156-0] [PMID: 11439237]
[118]
Kotb, M.; Calandra, T. Cytokines and chemokines in infectious diseases handbook; Humana Press: Totowa, NJ, 2003.
[http://dx.doi.org/10.1385/1592593097]
[119]
Hogberg, H.T.; Kinsner-Ovaskainen, A.; Hartung, T.; Coecke, S.; Bal-Price, A.K. Gene expression as a sensitive endpoint to evaluate cell differentiation and maturation of the developing central nervous system in primary cultures of rat cerebellar granule cells (CGCs) exposed to pesticides. Toxicol. Appl. Pharmacol., 2009, 235(3), 268-286.
[http://dx.doi.org/10.1016/j.taap.2008.12.014] [PMID: 19146868]
[120]
Yurumez, Y.; Ikizceli, I.; Sozuer, E.M.; Soyuer, I.; Yavuz, Y.; Avsarogullari, L.; Durukan, P. Effect of interleukin-10 on tissue damage caused by organophosphate poisoning. Basic Clin. Pharmacol. Toxicol., 2007, 100(5), 323-327.
[http://dx.doi.org/10.1111/j.1742-7843.2007.00049.x] [PMID: 17448118]
[121]
Neishabouri, E.Z.; Hassan, Z.M.; Azizi, E.; Ostad, S.N. Evaluation of immunotoxicity induced by diazinon in C57bl/6 mice. Toxicology, 2004, 196(3), 173-179.
[http://dx.doi.org/10.1016/j.tox.2003.08.012] [PMID: 15036744]
[122]
Aziz, D. Study of some genotoxic and histopathological effects for dichlorvos and inhibition of these effects in white female rats by using the extract of turmeric rhizomes Curcuma longa, 2012,
[123]
Hadi, M.A.; Hameedi, E.H.; Kadhum, N.J.; Aziz, D.Z.; Al-Saddi, A.H.; Zaidan, H.K. Ameliorative Effect of Curcuma longa L. Rhizomes against Biochemical Toxicity Induced by Dichlorvos in Female Albino Rats. J. Chem. Pharm. Sci., 2016, 9, 1098-1106.
[124]
Rukkumani, R.; Aruna, K.; Varma, P.S.; Rajasekaran, K.N.; Menon, V.P. Comparative effects of curcumin and its analog on alcohol- and polyunsaturated fatty acid-induced alterations in circulatory lipid profiles. J. Med. Food, 2005, 8(2), 256-260.
[http://dx.doi.org/10.1089/jmf.2005.8.256] [PMID: 16117621]
[125]
Alp, H.; Aytekin, I.; Hatipoglu, N.K.; Alp, A.; Ogun, M. Effects of sulforophane and curcumin on oxidative stress created by acute malathion toxicity in rats. Eur. Rev. Med. Pharmacol. Sci., 2012, 16(Suppl. 3), 144-148.
[PMID: 22957429]
[126]
Şahinöz, E.; Aral, F.; Doğu, Z.; Koyuncu, I.; Yüksekdağ, O.J. Protective effect of curcumin on different tissues of rainbow trout (oncorhynchus mykiss w., 1792) against exposition to chlorphyrifos. Appl. Ecol. Environ. Res., 2019, 17(2), 3371-3385.
[http://dx.doi.org/10.15666/aeer/1702_33713385]
[127]
Samarghandian S, Borji A, Hidar Tabasi S. Effects of Cichorium intybus linn on blood glucose, lipid constituents and selected oxidative stress parameters in streptozotocin-induced diabetic rats. Cardiovascular & Haematological Disorders-Drug Targets (Formerly Current Drug Targets Cardiovascular & Hematological Disorders), 2013, 13(3):231-6
[128]
Akcay, A.; Nguyen, Q.; Edelstein, C.L. Mediators of inflammation in acute kidney injury. Mediat. Inflamm., 2009, 2009
[129]
Sarhan, O.; Al-Sahhaf, Z. Histological and biochemical effects of diazinon on liver and kidney of rabbits. Life Sci., 2011, 8(4), 1183-1189.
[130]
Shah, M.D.; Iqbal, M. Diazinon-induced oxidative stress and renal dysfunction in rats. Food Chem. Toxicol., 2010, 48(12), 3345-3353.
[http://dx.doi.org/10.1016/j.fct.2010.09.003] [PMID: 20828599]
[131]
El-Shenawy, N.S.; Al-Eisa, R.A.; El-Salmy, F.; Salah, O. Prophylactic effect of vitamin E against hepatotoxicity, nephrotoxicity, haematological indices and histopathology induced by diazinon insecticide in mice. Curr. Zool., 2009, 55(3), 219-226.
[http://dx.doi.org/10.1093/czoolo/55.3.219]
[132]
Mişe Yonar, S.; Yonar, M.E.; Ural, M.Ş. Antioxidant effect of curcumin against exposure to malathion in Cyprinus carpio. Cell. Mol. Biol., 2017, 63(3), 68-72.
[http://dx.doi.org/10.14715/cmb/2017.63.3.13] [PMID: 28466816]
[133]
Abd-Elhakim, Y.M.; Moustafa, G.G.; El-Sharkawy, N.I.; Hussein, M.M.A.; Ghoneim, M.H.; El Deib, M.M. The ameliorative effect of curcumin on hepatic CYP1A1 and CYP1A2 genes dysregulation and hepatorenal damage induced by fenitrothion oral intoxication in male rats. Pestic. Biochem. Physiol., 2021, 179, 104959.
[http://dx.doi.org/10.1016/j.pestbp.2021.104959] [PMID: 34802538]
[134]
Al‐Amoudi, W. Curcumin ameliorates nephrotoxicity and histopathological alterations induced by chlorpyrifos in albino rats (690.5). FASEB J., 2014, 28, 690-695.
[135]
Kumar, R.; Kumar, A.; Singh, J.; Nath, A.; Ali, M. Study of bioremedial impact of curcumin on chloropyrifos induced kidney damage in mice. Pharm. Glob., 2011, 2(8), 1-4.
[136]
Nahid, Z.; Tavakol, H.S.; Abolfazl, G.K.; Leila, M.; Negar, M.; Hamed, F.; Akram, R. Protective role of green tea on malathion-induced testicular oxidative damage in rats. Asian Pac. J. Reprod., 2016, 5(1), 42-45.
[http://dx.doi.org/10.1016/j.apjr.2015.12.007]
[137]
Madhavi, K.; Kumar, R. In vivo toxicological evaluation of organophosphate pesticide on female albino mice: Therapeutic effects of curcumin. Int. J. Pharm. Sci. Res., 2010, 1(9), 86-92.
[138]
Kumar, R.; Ali, M.; Kumar, A.; Gahlot, V. Comparative bioremedial effect of withania somnifera and Curcuma longa on ovaries of pesticide induced mice. Eur. J. Pharm. Sci., 2015, 2(7), 249-253.
[139]
Kumar, A. Restorative effect of Curcuma longa on estrogen and uterus of chlorpyrifos exposed mice. World J. Pharm. Res., 2013, 2(5), 1731-1744.
[140]
Ali, R.I.; Ibrahim, M.A. Malathion induced testicular toxicity and oxidative damage in male mice: The protective effect of curcumin. Egypt. J. Forensic Sci., 2018, 8(1), 1-13.
[141]
Zutshi, B. Ultrastructural studies on the effect of fenthion on pituitary (GTH cells) and testis of Glossogobius giuris. (HAM) during breeding phase. J. Environ. Biol., 2005, 26(1), 31-36.
[PMID: 16114458]
[142]
Othman, A.I.; Abdel-Hamid, M. Curcumin mitigates fenthion-induced testicular toxicity in rats: Histopathological and immunohistochemical study. Afr. Zool., 2017, 52(4), 209-215.
[http://dx.doi.org/10.1080/15627020.2017.1396194]
[143]
Ahmed, T.; Pathak, R.; Mustafa, M.D.; Kar, R.; Tripathi, A.K.; Ahmed, R.S.; Banerjee, B.D. Ameliorating effect of N-acetylcysteine and curcumin on pesticide-induced oxidative DNA damage in human peripheral blood mononuclear cells. Environ. Monit. Assess., 2011, 179(1-4), 293-299.
[http://dx.doi.org/10.1007/s10661-010-1736-5] [PMID: 21049288]
[144]
Eriksson, P.; Talts, U. Neonatal exposure to neurotoxic pesticides increases adult susceptibility: A review of current findings. Neurotoxicology, 2000, 21(1-2), 37-47.
[PMID: 10794383]
[145]
Flessel, P.; Quintana, P.J.; Hooper, K. Genetic toxicity of malathion: A review. Environ. Mol. Mutagen., 1993, 22(1), 7-17.
[http://dx.doi.org/10.1002/em.2850220104] [PMID: 8339727]
[146]
Moore, P.D.; Yedjou, C.G.; Tchounwou, P.B. Malathion-induced oxidative stress, cytotoxicity, and genotoxicity in human liver carcinoma (HepG2) cells. Environ. Toxicol., 2010, 25(3), 221-226.
[http://dx.doi.org/10.1002/tox.20492] [PMID: 19399848]
[147]
Kumar, N.; Yadav, A.; Gulati, S.; Aggarwal, N.; Gupta, R. Antigenotoxic potential of curcumin and carvacrol against malathion-induced DNA damage in cultured human peripheral blood and its relation to GSTM1 and GSTT1 polymorphism. Biomark. Genom. Med., 2015, 7(3), 98-104.
[http://dx.doi.org/10.1016/j.bgm.2015.02.002]
[148]
Chen, H.H.; Hsueh, J.L.; Sirianni, S.R.; Huang, C.C. Induction of sister-chromatid exchanges and cell cycle delay in cultured mammalian cells treated with eight organophosphorus pesticides. Mutat. Res., 1981, 88(3), 307-316.
[http://dx.doi.org/10.1016/0165-1218(81)90042-2] [PMID: 7254224]
[149]
Kumar, N.; Yadav, A.; Gulati, S.; Kanupriya; Aggarwal, N.; Gupta, R. Antigenotoxic effect of curcumin and carvacrol against parathion induced DNA damage in cultured human peripheral blood lymphocytes and its relation to GSTM1 and GSTT1 polymorphism. J. Toxicol., 2014, 2014, 404236.
[http://dx.doi.org/10.1155/2014/404236] [PMID: 25328519]
[150]
Bolt, H.M.; Thier, R. Relevance of the deletion polymorphisms of the glutathione S-transferases GSTT1 and GSTM1 in pharmacology and toxicology. Curr. Drug Metab., 2006, 7(6), 613-628.
[http://dx.doi.org/10.2174/138920006778017786] [PMID: 16918316]
[151]
Kumar, N.; Yadav, A.; Gulati, S.; Priya, K.; Aggarwal, N.; Gupta, R. Effects of GST polymorphism on ameliorative effect of curcumin and carvacrol against DNA damage induced by combined treatment of malathion and parathion. Iran. J. Toxicol., 2016, 10(3), 19-27.
[http://dx.doi.org/10.29252/arakmu.10.3.19]
[152]
Fatma, M.F.; Omima, I.A. Modulatory effects of Melatonin and Curcumin (Diferuloylmethane) against cytogenotoxic response of Trichlorfon. Egypt. J. Comp. Pathol. Clin. Pathol., 2008, 21(2), 142-160.
[153]
Siddique, Y.H.; Ara, G.; Beg, T.; Afzal, M. Protective effect of curcumin against the genotoxic damage induced by tinidazole in cultured human lymphocytes. Acta Pharm. Sci., 2010, 52(1), 106-110.
[154]
Eren, B.; Dinc, N.; Selcuk, A.Y.; Kefelioglu, H. Ameliorative and protective effect of antioxidant curcumin against chlorpyrifos induced chromosome aberrations. Biharean Biol., 2019, 13(2), 110-113.
[155]
Sahinoz, E.; Aral, F.; Dogu, Z.; Koyuncu, I.; Yuksekdag, O. The protective effects of curcumin on organophosphate insecticide chlorpyrifos-induced oxidative stress and DNA damage in Oncorhynchus mykiss. Turk. J. Fish. Aquat. Sci., 2019, 20(3), 185-195.
[156]
Abdollahzadeh, M. Comparison of curcumin and nanocurcumin on tissue toxicity in rat, cytotoxicity and gentoxicity on human peripheral blood lymphocytes induced by diazinon., 2018,
[157]
Sessa, W.C. The nitric oxide synthase family of proteins. J. Vasc. Res., 1994, 31(3), 131-143.
[http://dx.doi.org/10.1159/000159039] [PMID: 7511942]
[158]
Ashour, M.; Mohamed, M.; Elsawy, B. Adverse effects of organophosphorus insecticides on macrophage activity in persons at high risk for parasitic infection. Maced. J. Med. Sci., 2011, 4, 245-252.
[http://dx.doi.org/10.3889/MJMS.1857-5773.2011.0143]
[159]
Zhao, L.; Tang, G.; Xiong, C.; Han, S.; Yang, C.; He, K.; Liu, Q.; Luo, J.; Luo, W.; Wang, Y.; Li, Z.; Yang, S. Chronic chlorpyrifos exposure induces oxidative stress, apoptosis and immune dysfunction in largemouth bass (Micropterus salmoides). Environ. Pollut., 2021, 282, 117010.
[http://dx.doi.org/10.1016/j.envpol.2021.117010] [PMID: 33848913]
[160]
Ahmed, T.; Tripathi, A.K.; Ahmed, R.S.; Banerjee, B.D. Assessment of phosphamidon-induced apoptosis in human peripheral blood mononuclear cells: Protective effects of N-acetylcysteine and curcumin. J. Biochem. Mol. Toxicol., 2010, 24(5), 286-292.
[http://dx.doi.org/10.1002/jbt.20337] [PMID: 20979154]
[161]
Ježek, P.; Hlavatá, L. Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. Int. J. Biochem. Cell Biol., 2005, 37(12), 2478-2503.
[http://dx.doi.org/10.1016/j.biocel.2005.05.013] [PMID: 16103002]
[162]
Prakash, A.; Khan, S.; Kumar, D.; Telang, A.G.; Malik, J.K. Concurrent administration of curcumin mitigates arsenic-and chlorpyrifos-induced apoptosis in rat thymocytes. Adv. Anim. Vet. Sci., 2014, 2, 407-413.
[http://dx.doi.org/10.14737/journal.aavs/2014/2.7.407.413]
[163]
Calaf, G.M.; Echiburú-Chau, C. Synergistic effect of malathion and estrogen on mammary gland carcinogenesis. Oncol. Rep., 2012, 28(2), 640-646.
[http://dx.doi.org/10.3892/or.2012.1817] [PMID: 22614519]
[164]
Fritschi, L.; McLaughlin, J.; Sergi, C.; Calaf, G.; Le Curieux, F.; Forastiere, F.; Kromhout, H.; Egeghy, P.; Jahnke, G.; Jameson, C. Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazinon, and glyphosate. Lancet Oncol., 2015, 114(2), 70134-70138.
[165]
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Some traditional herbal medicines, some mycotoxins, naphthalene and styrene. IARC Monogr. Eval. Carcinog. Risks Hum., 2002, 82, 1-556.
[166]
Hreljac, I.; Zajc, I.; Lah, T.; Filipič, M. Effects of model organophosphorous pesticides on DNA damage and proliferation of HepG2 cells. Environ. Mol. Mutagen., 2008, 49(5), 360-367.
[http://dx.doi.org/10.1002/em.20392] [PMID: 18418871]
[167]
Russo, J.; Tait, L.; Russo, I.H. Morphological expression of cell transformation induced by c-Ha-ras oncogene in human breast epithelial cells. J. Cell Sci., 1991, 99(Pt 2), 453-463.
[http://dx.doi.org/10.1242/jcs.99.2.453] [PMID: 1885681]
[168]
Wellings, S.R.; Jensen, H.M.; Marcum, R.G. An atlas of subgross pathology of the human breast with special reference to possible precancerous lesions. J. Natl. Cancer Inst., 1975, 55(2), 231-273.
[PMID: 169369]
[169]
Calaf, G.M.; Urzua, U.; Termini, L.; Aguayo, F. Oxidative stress in female cancers. Oncotarget, 2018, 9(34), 23824-23842.
[http://dx.doi.org/10.18632/oncotarget.25323] [PMID: 29805775]
[170]
Kassab, F.; Taha, M. Possible role of organophosphorus in murine neoplasms in CCl 4 induced liver cirrhosis. Appl. Radiat. Isot., 2009, 41(4s2), 1581-1590.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy