Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Selenium-containing Peptides and their Biological Applications

Author(s): Kainat Ahmed, Delawar Ashraf, Ghayoor Abbas Chotana, Amir Faisal, Khalid Mohammed Khan* and Rahman Shah Zaib Saleem*

Volume 29, Issue 42, 2022

Published on: 30 March, 2022

Page: [6379 - 6421] Pages: 43

DOI: 10.2174/0929867329666220214104010

Price: $65

Abstract

Selenium (Se) has been known for its beneficial biological roles for several years, but interest in this trace element has seen a significant increase in the past couple of decades. It has been reported to be a part of important bioactive organic compounds, such as selenoproteins and amino acids, including selenocysteine (SeCys), selenomethionine (SeMet), selenazolidine (SeAzo), and selenoneine. The traditional Se supplementations (primarily as selenite and selenomethionine), though have been shown to carry some benefits, also have associated toxicities, thereby paving the way for the organoselenium compounds, especially the selenoproteins and peptides (SePs/SePPs) that offer several health benefits beyond fulfilling the elementary nutritional Se needs. This review aims to showcase the applications of selenium-containing peptides that have been reported in recent decades. This article summarizes their bioactivities, including neuroprotective, antiinflammatory, anticancer, antioxidant, hepatoprotective, and immunomodulatory roles. This will offer the readers a sneak peek into the current advancements to invoke further developments in this emerging research area.

Keywords: Selenium, selenium-amino acids, selenium-containing peptides, organoselenium compounds, bioactivities, peptidomimetic compounds.

[1]
Hanessian, S.; McNaughton-Smith, G.; Lombart, H-G.; Lubell, W.D. Design and synthesis of conformationally constrained amino acids as versatile scaffolds and peptide mimetics. Tetrahedron, 1997, 53(38), 12789-12854.
[http://dx.doi.org/10.1016/S0040-4020(97)00476-6]
[2]
Rainaldi, M.; Moretto, V.; Crisma, M.; Peggion, E.; Mammi, S.; Toniolo, C.; Cavicchioni, G. Peptoid residues and beta-turn formation. J. Pept. Sci., 2002, 8(6), 241-252.
[http://dx.doi.org/10.1002/psc.392] [PMID: 12093001]
[3]
Saitton, S.; Del Tredici, A.L.; Mohell, N.; Vollinga, R.C.; Boström, D.; Kihlberg, J.; Luthman, K. Design, synthesis and evaluation of a PLG tripeptidomimetic based on a pyridine scaffold. J. Med. Chem., 2004, 47(26), 6595-6602.
[http://dx.doi.org/10.1021/jm049484q] [PMID: 15588094]
[4]
Lu, Y. Design and engineering of metalloproteins containing unnatural amino acids or non-native metal-containing cofactors. Curr. Opin. Chem. Biol., 2005, 9(2), 118-126.
[http://dx.doi.org/10.1016/j.cbpa.2005.02.017] [PMID: 15811795]
[5]
Giannis, A.; Rübsam, F., Eds.; Advances in Drug Research; Academic Press: London, 1997.
[6]
Stadtman, T.C. Biosynthesis and function of selenocysteine-containing enzymes. J. Biol. Chem., 1991, 266(25), 16257-16260.
[http://dx.doi.org/10.1016/S0021-9258(18)55285-6] [PMID: 1832153]
[7]
Stadtman, T.C. Discoveries of vitamin B12 and selenium enzymes. Annu. Rev. Biochem., 2002, 71(1), 1-16.
[http://dx.doi.org/10.1146/annurev.biochem.71.083101.134224] [PMID: 12045088]
[8]
Bagley, M.C.; Dale, J.W.; Merritt, E.A.; Xiong, X. Thiopeptide antibiotics. Chem. Rev., 2005, 105(2), 685-714.
[http://dx.doi.org/10.1021/cr0300441] [PMID: 15700961]
[9]
Roy, G.; Sarma, B.K.; Phadnis, P.P.; Mugesh, G. Selenium-containing enzymes in mammals: chemical perspectives. J. Chem. Sci., 2005, 117(4), 287-303.
[http://dx.doi.org/10.1007/BF02708441]
[10]
Arnér, E.S.; Sarioglu, H.; Lottspeich, F.; Holmgren, A.; Böck, A. High-level expression in Escherichia coli of selenocysteine-containing rat thioredoxin reductase utilizing gene fusions with engineered bacterial-type SECIS elements and co-expression with the selA, selB and selC genes. J. Mol. Biol., 1999, 292(5), 1003-1016.
[http://dx.doi.org/10.1006/jmbi.1999.3085] [PMID: 10512699]
[11]
Mukai, T.; Englert, M.; Tripp, H.J.; Miller, C.; Ivanova, N.N.; Rubin, E.M.; Kyrpides, N.C.; Söll, D. Facile recoding of selenocysteine in nature. Angew. Chem. Int. Ed. Engl., 2016, 55(17), 5337-5341.
[http://dx.doi.org/10.1002/anie.201511657] [PMID: 26991476]
[12]
Iwaoka, M.; Arai, K. From sulfur to selenium. A new research arena in chemical biology and biological chemistry. Curr. Chem. Biol., 2013, 7(1), 2-24.
[http://dx.doi.org/10.2174/2212796811307010002]
[13]
Moroder, L. Isosteric replacement of sulfur with other chalcogens in peptides and proteins. J. Pept. Sci., 2005, 11(4), 187-214.
[http://dx.doi.org/10.1002/psc.654] [PMID: 15782428]
[14]
Frank, W. Syntheses of selenium-containing peptides. II. Preparation of Se-analogous oxidated glutathionee (Se-Se-glutathion). Hoppe Seylers Z. Physiol. Chem., 1964, 339(1), 214-221.
[http://dx.doi.org/10.1515/bchm2.1964.339.1.214] [PMID: 5829229]
[15]
Tamura, T.; Oikawa, T.; Ohtaka, A.; Fujii, N.; Esaki, N.; Soda, K. Synthesis and characterization of the selenium analog of glutathione disulfide. Anal. Biochem., 1993, 208(1), 151-154.
[http://dx.doi.org/10.1006/abio.1993.1021] [PMID: 8434784]
[16]
Walter, R.; Du Vigneaud, V. 6-Hemi-L-selenocystine-oxytocin and 1-deamino-6-hemi-L-selenocystine-oxytocin, highly potent isologs of oxytocin and 1-deamino-oxytocin. J. Am. Chem. Soc., 1965, 87(18), 4192-4193.
[http://dx.doi.org/10.1021/ja01096a036] [PMID: 5845279]
[17]
Theodoropoulos, D.; Schwartz, I.L.; Walter, R. Synthesis of selenium-containing peptides. Biochemistry, 1967, 6(12), 3927-3932.
[http://dx.doi.org/10.1021/bi00864a039] [PMID: 6076637]
[18]
Walter, R.; Chan, W-Y. Syntheses and pharmacological properties of selenium isologs of oxytocin and deamino-oxytocin. J. Am. Chem. Soc., 1967, 89(15), 3892-3898.
[http://dx.doi.org/10.1021/ja00991a037] [PMID: 6068786]
[19]
Walter, R.; du Vigneaud, V. 1-Deamino-1, 6-L-selenocystine-oxytocin, a highly potent isolog of 1-Deamino-oxytocin1. J. Am. Chem. Soc., 1966, 88(6), 1331-1332.
[http://dx.doi.org/10.1021/ja00958a053]
[20]
Wu, Z.P.; Hilvert, D. Selenosubtilisin as a glutathione peroxidase mimic. J. Am. Chem. Soc., 1990, 112(14), 5647-5648.
[http://dx.doi.org/10.1021/ja00170a043]
[21]
Wu, Z.P.; Hilvert, D. Conversion of a protease into an acyl transferase: Selenolsubtilisin. J. Am. Chem. Soc., 1989, 111(12), 4513-4514.
[http://dx.doi.org/10.1021/ja00194a064]
[22]
Oikawa, T.; Esaki, N.; Tanaka, H.; Soda, K. Metalloselenonein, the selenium analogue of metallothionein: synthesis and characterization of its complex with copper ions. Proc. Natl. Acad. Sci. USA, 1991, 88(8), 3057-3059.
[http://dx.doi.org/10.1073/pnas.88.8.3057] [PMID: 1826562]
[23]
Moroder, L.; Besse, D.; Musiol, H.J.; Rudolph-Böhner, S.; Siedler, F. Oxidative folding of cystine-rich peptides vs. regioselective cysteine pairing strategies. Biopolymers, 1996, 40(2), 207-234.
[http://dx.doi.org/10.1002/(SICI)1097-0282(1996)40:2<207::AID-BIP2>3.0.CO;2-#] [PMID: 8785364]
[24]
Besse, D.; Siedler, F.; Diercks, T.; Kessler, H.; Moroder, L. The redox potential of selenocystine in unconstrained cyclic peptides. Angew. Chem. Int. Ed. Engl., 1997, 36(8), 883-885.
[http://dx.doi.org/10.1002/anie.199708831]
[25]
Pegoraro, S.; Fiori, S.; Rudolph-Böhner, S.; Watanabe, T.X.; Moroder, L. Isomorphous replacement of cystine with selenocystine in endothelin: Oxidative refolding, biological and conformational properties of [Sec3,Sec11,Nle7]-endothelin-1. J. Mol. Biol., 1998, 284(3), 779-792.
[http://dx.doi.org/10.1006/jmbi.1998.2189] [PMID: 9826515]
[26]
Pegoraro, S.; Fiori, S.; Cramer, J.; Rudolph-Böhner, S.; Moroder, L. The disulfide-coupled folding pathway of apamin as derived from diselenide-quenched analogs and intermediates. Protein Sci., 1999, 8(8), 1605-1613.
[http://dx.doi.org/10.1110/ps.8.8.1605] [PMID: 10452604]
[27]
Fiori, S.; Pegoraro, S.; Rudolph-Böhner, S.; Cramer, J.; Moroder, L. Synthesis and conformational analysis of apamin analogues with natural and non-natural cystine/selenocystine connectivities. Biopolymers, 2000, 53(7), 550-564.
[http://dx.doi.org/10.1002/(SICI)1097-0282(200006)53:7<550::AID-BIP3>3.0.CO;2-O] [PMID: 10766951]
[28]
Rajarathnam, K.; Sykes, B.D.; Dewald, B.; Baggiolini, M.; Clark-Lewis, I. Disulfide bridges in interleukin-8 probed using non-natural disulfide analogues: dissociation of roles in structure from function. Biochemistry, 1999, 38(24), 7653-7658.
[http://dx.doi.org/10.1021/bi990033v] [PMID: 10387004]
[29]
Metanis, N.; Keinan, E.; Dawson, P.E. Synthetic seleno-glutaredoxin 3 analogues are highly reducing oxidoreductases with enhanced catalytic efficiency. J. Am. Chem. Soc., 2006, 128(51), 16684-16691.
[http://dx.doi.org/10.1021/ja0661414] [PMID: 17177418]
[30]
Beld, J.; Woycechowsky, K.J.; Hilvert, D. Selenoglutathione: Efficient oxidative protein folding by a diselenide. Biochemistry, 2007, 46(18), 5382-5390.
[http://dx.doi.org/10.1021/bi700124p] [PMID: 17419591]
[31]
Casi, G.; Hilvert, D. Reinvestigation of a selenopeptide with purportedly high glutathione peroxidase activity. J. Biol. Chem., 2007, 282(42), 30518-30522.
[http://dx.doi.org/10.1074/jbc.M705528200] [PMID: 17724019]
[32]
Schroll, A.L.; Hondal, R.J. Further development of new deprotection chemistry for cysteine and selenocysteine side chain protecting groups. In: Peptides for Youth; Springer, 2009; pp. 135-136.
[http://dx.doi.org/10.1007/978-0-387-73657-0_60]
[33]
Flemer, S., Jr.; Lacey, B. M.; Hondal, R. J. Synthesis of peptide substrates for mammalian thioredoxin reductase. J. Peptide Sci., 2008, 14(5), 637-647.
[34]
Berzelius, J.J. Försök att, genom användandet af den electrokemiska theorien och de kemiska proportionerna: Grundlägga ett rent vettensk. system för mineralogien. 1814. Available from: https://www.europeana.eu/en/item/358/item_BHDBBRT7T5HSZVBT7CANBCNHLHAQY2GC
[35]
Reich, H.J.; Hondal, R.J. Why Nature Chose Selenium. ACS Chem. Biol., 2016, 11(4), 821-841.
[http://dx.doi.org/10.1021/acschembio.6b00031] [PMID: 26949981]
[36]
Schwarz, K.; Foltz, C.M. Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. J. Am. Chem. Soc., 1957, 79(12), 3292-3293.
[http://dx.doi.org/10.1021/ja01569a087]
[37]
Andreesen, J.R.; Ljungdahl, L.G. Formate dehydrogenase of Clostridium thermoaceticum: Incorporation of selenium-75, and the effects of selenite, molybdate, and tungstate on the enzyme. J. Bacteriol., 1973, 116(2), 867-873.
[http://dx.doi.org/10.1128/jb.116.2.867-873.1973] [PMID: 4147651]
[38]
Cone, J.E.; Del Río, R.M.; Davis, J.N.; Stadtman, T.C. Chemical characterization of the selenoprotein component of clostridial glycine reductase: Identification of selenocysteine as the organoselenium moiety. Proc. Natl. Acad. Sci. USA, 1976, 73(8), 2659-2663.
[http://dx.doi.org/10.1073/pnas.73.8.2659] [PMID: 1066676]
[39]
Flohe, L.; Günzler, W.A.; Schock, H.H. Glutathione peroxidase: A selenoenzyme. FEBS Lett., 1973, 32(1), 132-134.
[http://dx.doi.org/10.1016/0014-5793(73)80755-0] [PMID: 4736708]
[40]
Rotruck, J.T.; Pope, A.L.; Ganther, H.E.; Swanson, A.B.; Hafeman, D.G.; Hoekstra, W.G. Selenium: biochemical role as a component of glutathione peroxidase. Science, 1973, 179(4073), 588-590.
[http://dx.doi.org/10.1126/science.179.4073.588] [PMID: 4686466]
[41]
Rayman, M.P. The importance of selenium to human health. Lancet, 2000, 356(9225), 233-241.
[http://dx.doi.org/10.1016/S0140-6736(00)02490-9] [PMID: 10963212]
[42]
Bodnar, M.; Szczyglowska, M.; Konieczka, P.; Namiesnik, J. Methods of selenium supplementation: Bioavailability and determination of selenium compounds. Crit. Rev. Food Sci. Nutr., 2016, 56(1), 36-55.
[http://dx.doi.org/10.1080/10408398.2012.709550] [PMID: 24987868]
[43]
Köhrle, J. The trace element selenium and the thyroid gland. Biochimie, 1999, 81(5), 527-533.
[http://dx.doi.org/10.1016/S0300-9084(99)80105-9] [PMID: 10403185]
[44]
Ganther, H.E. Selenium metabolism, selenoproteins and mechanisms of cancer prevention: Complexities with thioredoxin reductase. Carcinogenesis, 1999, 20(9), 1657-1666.
[http://dx.doi.org/10.1093/carcin/20.9.1657] [PMID: 10469608]
[45]
Burk, R.F. Selenium in biology and human health; Springer, 1994.
[http://dx.doi.org/10.1007/978-1-4612-2592-8]
[46]
Levander, O.A. A global view of human selenium nutrition. Annu. Rev. Nutr., 1987, 7(1), 227-250.
[http://dx.doi.org/10.1146/annurev.nu.07.070187.001303] [PMID: 3300734]
[47]
Nève, J. Physiological and nutritional importance of selenium. Experientia, 1991, 47(2), 187-193.
[http://dx.doi.org/10.1007/BF01945424] [PMID: 2001724]
[48]
Kryukov, G.V.; Castellano, S.; Novoselov, S.V.; Lobanov, A.V.; Zehtab, O.; Guigó, R.; Gladyshev, V.N. Characterization of mammalian selenoproteomes. Science, 2003, 300(5624), 1439-1443.
[http://dx.doi.org/10.1126/science.1083516] [PMID: 12775843]
[49]
Boyington, J.C.; Gladyshev, V.N.; Khangulov, S.V.; Stadtman, T.C.; Sun, P.D. Crystal structure of formate dehydrogenase H: catalysis involving Mo, molybdopterin, selenocysteine, and an Fe4S4 cluster. Science, 1997, 275(5304), 1305-1308.
[http://dx.doi.org/10.1126/science.275.5304.1305] [PMID: 9036855]
[50]
Wilting, R.; Schorling, S.; Persson, B.; Böck, A. Selenoprotein synthesis in archaea: identification of an mRNA element of Methanococcus jannaschii probably directing selenocysteine insertion; Elsevier, 1997.
[51]
Garcin, E.; Vernede, X.; Hatchikian, E.C.; Volbeda, A.; Frey, M.; Fontecilla-Camps, J.C. The crystal structure of a reduced [NiFeSe] hydrogenase provides an image of the activated catalytic center. Structure, 1999, 7(5), 557-566.
[http://dx.doi.org/10.1016/S0969-2126(99)80072-0] [PMID: 10378275]
[52]
Pfeiffer, M.; Bingemann, R.; Klein, A. Fusion of two subunits does not impair the function of a [NiFeSe]-hydrogenase in the archaeon Methanococcus voltae. Eur. J. Biochem., 1998, 256(2), 447-452.
[http://dx.doi.org/10.1046/j.1432-1327.1998.2560447.x] [PMID: 9760186]
[53]
Andreesen, J.R.; Wagner, M.; Sonntag, D.; Kohlstock, M.; Harms, C.; Gursinsky, T.; Jäger, J.; Parther, T.; Kabisch, U.; Gräntzdörffer, A.; Pich, A.; Söhling, B. Various functions of selenols and thiols in anaerobic gram-positive, amino acids-utilizing bacteria. Biofactors, 1999, 10(2-3), 263-270.
[http://dx.doi.org/10.1002/biof.5520100226] [PMID: 10609892]
[54]
Dobbek, H.; Gremer, L.; Meyer, O.; Huber, R. Crystal structure and mechanism of CO dehydrogenase, a molybdo iron-sulfur flavoprotein containing S-selanylcysteine. Proc. Natl. Acad. Sci. USA, 1999, 96(16), 8884-8889.
[http://dx.doi.org/10.1073/pnas.96.16.8884] [PMID: 10430865]
[55]
Behne, D.; Kyriakopoulos, A.; Meinhold, H.; Köhrle, J. Identification of type I iodothyronine 5′-deiodinase as a selenoenzyme. Biochem. Biophys. Res. Commun., 1990, 173(3), 1143-1149.
[http://dx.doi.org/10.1016/S0006-291X(05)80905-2] [PMID: 2268318]
[56]
Arthur, J.R.; Nicol, F.; Beckett, G.J. Hepatic iodothyronine 5′-deiodinase. The role of selenium. Biochem. J., 1990, 272(2), 537-540.
[http://dx.doi.org/10.1042/bj2720537] [PMID: 2268281]
[57]
Williams, C.H., Jr; Arscott, L.D.; Müller, S.; Lennon, B.W.; Ludwig, M.L.; Wang, P.F.; Veine, D.M.; Becker, K.; Schirmer, R.H. Thioredoxin reductase two modes of catalysis have evolved. Eur. J. Biochem., 2000, 267(20), 6110-6117.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01702.x] [PMID: 11012662]
[58]
Lescure, A.; Gautheret, D.; Carbon, P.; Krol, A. Novel selenoproteins identified in silico and in vivo by using a conserved RNA structural motif. J. Biol. Chem., 1999, 274(53), 38147-38154.
[http://dx.doi.org/10.1074/jbc.274.53.38147] [PMID: 10608886]
[59]
Lee, S.R.; Kim, J.R.; Kwon, K.S.; Yoon, H.W.; Levine, R.L.; Ginsburg, A.; Rhee, S.G. Molecular cloning and characterization of a mitochondrial selenocysteine-containing thioredoxin reductase from rat liver. J. Biol. Chem., 1999, 274(8), 4722-4734.
[http://dx.doi.org/10.1074/jbc.274.8.4722] [PMID: 9988709]
[60]
Mustacich, D.; Powis, G. Thioredoxin reductase. Biochem. J., 2000, 346 Pt 1(1), 1-8.
[http://dx.doi.org/10.1042/bj3460001]
[61]
Motsenbocker, M.A.; Tappel, A.L. Effect of dietary selenium on plasma selenoprotein P, selenoprotein P1 and glutathione peroxidase in the rat. J. Nutr., 1984, 114(2), 279-285.
[http://dx.doi.org/10.1093/jn/114.2.279] [PMID: 6693989]
[62]
Ursini, F.; Maiorino, M.; Valente, M.; Ferri, L.; Gregolin, C. Purification from pig liver of a protein which protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidylcholine hydroperoxides. Biochim. Biophys. Acta, 1982, 710(2), 197-211.
[http://dx.doi.org/10.1016/0005-2760(82)90150-3] [PMID: 7066358]
[63]
Chu, F.F.; Doroshow, J.H.; Esworthy, R.S. Expression, characterization, and tissue distribution of a new cellular selenium-dependent glutathione peroxidase, GSHPx-GI. J. Biol. Chem., 1993, 268(4), 2571-2576.
[http://dx.doi.org/10.1016/S0021-9258(18)53812-6] [PMID: 8428933]
[64]
Mills, G.C. Hemoglobin catabolism. I. Glutathione peroxidase, an erythrocyte enzyme which protects hemoglobin from oxidative breakdown. J. Biol. Chem., 1957, 229(1), 189-197.
[http://dx.doi.org/10.1016/S0021-9258(18)70608-X] [PMID: 13491573]
[65]
Letavayová, L.; Vlcková, V.; Brozmanová, J. Selenium: From cancer prevention to DNA damage. Toxicology, 2006, 227(1-2), 1-14.
[http://dx.doi.org/10.1016/j.tox.2006.07.017] [PMID: 16935405]
[66]
Zhu, Y.G.; Pilon-Smits, E.A.; Zhao, F.J.; Williams, P.N.; Meharg, A.A. Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. Trends Plant Sci., 2009, 14(8), 436-442.
[http://dx.doi.org/10.1016/j.tplants.2009.06.006] [PMID: 19665422]
[67]
Coppinger, R.J.; Diamond, A.M. Selenium deficiency and human disease. In: Selenium; Springer, 2001; pp. 219-233.
[http://dx.doi.org/10.1007/978-1-4615-1609-5_18]
[68]
Vinceti, M.; Filippini, T.; Wise, L.A. Environmental selenium and human health: An update. Curr. Environ. Health Rep., 2018, 5(4), 464-485.
[http://dx.doi.org/10.1007/s40572-018-0213-0] [PMID: 30280317]
[69]
Ge, K.; Yang, G. The epidemiology of selenium deficiency in the etiological study of endemic diseases in China. Am. J. Clin. Nutr., 1993, 57(2)(Suppl.), 259S-263S.
[http://dx.doi.org/10.1093/ajcn/57.2.259S] [PMID: 8427200]
[70]
Yao, Y.; Pei, F.; Kang, P. Selenium, iodine, and the relation with Kashin-Beck disease. Nutrition, 2011, 27(11-12), 1095-1100.
[http://dx.doi.org/10.1016/j.nut.2011.03.002] [PMID: 21967994]
[71]
Contempre, B.; Dumont, J.E.; Ngo, B.; Thilly, C.H.; Diplock, A.T.; Vanderpas, J. Effect of selenium supplementation in hypothyroid subjects of an iodine and selenium deficient area: the possible danger of indiscriminate supplementation of iodine-deficient subjects with selenium. J. Clin. Endocrinol. Metab., 1991, 73(1), 213-215.
[http://dx.doi.org/10.1210/jcem-73-1-213] [PMID: 2045471]
[72]
Moghaddam, A.; Heller, R.A.; Sun, Q.; Seelig, J.; Cherkezov, A.; Seibert, L.; Hackler, J.; Seemann, P.; Diegmann, J.; Pilz, M.; Bachmann, M.; Minich, W.B.; Schomburg, L. Selenium deficiency is associated with mortality risk from COVID-19. Nutrients, 2020, 12(7), 2098.
[http://dx.doi.org/10.3390/nu12072098] [PMID: 32708526]
[73]
Zhang, J.; Taylor, E.W.; Bennett, K.; Saad, R.; Rayman, M.P. Association between regional selenium status and reported outcome of COVID-19 cases in China. Am. J. Clin. Nutr., 2020, 111(6), 1297-1299.
[http://dx.doi.org/10.1093/ajcn/nqaa095] [PMID: 32342979]
[74]
Beck, M.A.; Nelson, H.K.; Shi, Q.; Van Dael, P.; Schiffrin, E.J.; Blum, S.; Barclay, D.; Levander, O.A. Selenium deficiency increases the pathology of an influenza virus infection. FASEB J., 2001, 15(8), 1481-1483.
[http://dx.doi.org/10.1096/fj.00-0721fje] [PMID: 11387264]
[75]
Nelson, H.K.; Shi, Q.; Van Dael, P.; Schiffrin, E.J.; Blum, S.; Barclay, D.; Levander, O.A.; Beck, M.A. Host nutritional selenium status as a driving force for influenza virus mutations. FASEB J., 2001, 15(10), 1727-1738.
[http://dx.doi.org/10.1096/fj.01-0108com] [PMID: 11481250]
[76]
Beck, M.A.; Shi, Q.; Morris, V.C.; Levander, O.A. Rapid genomic evolution of a non-virulent coxsackievirus B3 in selenium-deficient mice results in selection of identical virulent isolates. Nat. Med., 1995, 1(5), 433-436.
[http://dx.doi.org/10.1038/nm0595-433] [PMID: 7585090]
[77]
Ahmad, H.; Tian, J.; Wang, J.; Khan, M.A.; Wang, Y.; Zhang, L.; Wang, T. Effects of dietary sodium selenite and selenium yeast on antioxidant enzyme activities and oxidative stability of chicken breast meat. J. Agric. Food Chem., 2012, 60(29), 7111-7120.
[http://dx.doi.org/10.1021/jf3017207] [PMID: 22732007]
[78]
Fang, Y.; Zhang, Y.; Catron, B.; Chan, Q.; Hu, Q.; Caruso, J.A. Identification of selenium compounds using HPLC-ICPMS and nano-ESI-MS in selenium-enriched rice via foliar application. J. Anal. At. Spectrom., 2009, 24(12), 1657-1664.
[http://dx.doi.org/10.1039/b912538h]
[79]
Hu, J.; Zhao, Q.; Cheng, X.; Selomulya, C.; Bai, C.; Zhu, X.; Li, X.; Xiong, H. Antioxidant activities of Se-SPI produced from soybean as accumulation and biotransformation reactor of natural selenium. Food Chem., 2014, 146, 531-537.
[http://dx.doi.org/10.1016/j.foodchem.2013.09.087] [PMID: 24176378]
[80]
Liu, K.; Gu, Z. Selenium accumulation in different brown rice cultivars and its distribution in fractions. J. Agric. Food Chem., 2009, 57(2), 695-700.
[http://dx.doi.org/10.1021/jf802948k] [PMID: 19154168]
[81]
Maseko, T.; Howell, K.; Dunshea, F.R.; Ng, K. Selenium-enriched Agaricus bisporus increases expression and activity of glutathione peroxidase-1 and expression of glutathione peroxidase-2 in rat colon. Food Chem., 2014, 146, 327-333.
[http://dx.doi.org/10.1016/j.foodchem.2013.09.074] [PMID: 24176350]
[82]
Li, C.P.; He, Z.; Wang, X.; Yang, L.; Yin, C.; Zhang, N.; Lin, J.; Zhao, H. Selenization of ovalbumin by dry-heating in the presence of selenite: Effect on protein structure and antioxidant activity. Food Chem., 2014, 148, 209-217.
[http://dx.doi.org/10.1016/j.foodchem.2013.10.033] [PMID: 24262548]
[83]
Li, F.; Wang, F.; Yu, F.; Fang, Y.; Xin, Z.; Yang, F.; Xu, J.; Zhao, L.; Hu, Q. In vitro antioxidant and anticancer activities of ethanolic extract of selenium-enriched green tea. Food Chem., 2008, 111(1), 165-170.
[http://dx.doi.org/10.1016/j.foodchem.2008.03.057]
[84]
Molan, A.L. Antioxidant and prebiotic activities of selenium-containing green tea. Nutrition, 2013, 29(2), 476-477.
[http://dx.doi.org/10.1016/j.nut.2012.08.003] [PMID: 23085011]
[85]
Alhasan, R.; Nasim, M.J.; Jacob, C.; Gaucher, C. Selenoneine: A unique Reactive Selenium Species from the blood of tuna with implications for human diseases. Curr. Pharmacol. Rep., 2019, 5(3), 163-173.
[http://dx.doi.org/10.1007/s40495-019-00175-8]
[86]
Ečimović, S.; Velki, M.; Vuković, R.; Štolfa Čamagajevac, I.; Petek, A.; Bošnjaković, R.; Grgić, M.; Engelmann, P.; Bodó, K.; Filipović-Marijić, V.; Ivanković, D.; Erk, M.; Mijošek, T.; Lončarić, Z. Acute toxicity of selenate and selenite and their impacts on oxidative status, efflux pump activity, cellular and genetic parameters in earthworm Eisenia andrei. Chemosphere, 2018, 212, 307-318.
[http://dx.doi.org/10.1016/j.chemosphere.2018.08.095] [PMID: 30145422]
[87]
Burk, R.F.; Norsworthy, B.K.; Hill, K.E.; Motley, A.K.; Byrne, D.W. Effects of chemical form of selenium on plasma biomarkers in a high-dose human supplementation trial. Cancer Epidemiol. Biomarkers Prev., 2006, 15(4), 804-810.
[http://dx.doi.org/10.1158/1055-9965.EPI-05-0950] [PMID: 16614127]
[88]
Löwig, C. Constitution of the organic compounds and comparison with the inorganics. Poggendorff’s Ann. Phys., 1836, 37, 552-561.
[89]
Klayman, D.L.; Günther, W.H. Organic selenium compounds: their chemistry and biology; John Wiley & Sons, 1973.
[90]
Shamberger, R.J. Selenium in health and disease. In: Biochemistry of selenium; Springer, 1983; pp. 207-271.
[http://dx.doi.org/10.1007/978-1-4684-4313-4_8]
[91]
Parnham, M.J.; Graf, E. Pharmacology of synthetic organic selenium compounds. Prog. Drug Res., 1991, 36, 9-47.
[PMID: 1876711]
[92]
Terry, N.; Zayed, A.M.; De Souza, M.P.; Tarun, A.S. Selenium in Higher Plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 2000, 51(1), 401-432.
[http://dx.doi.org/10.1146/annurev.arplant.51.1.401] [PMID: 15012198]
[93]
Kyriakopoulos, A.; Behne, D. Selenium-containing proteins in mammals and other forms of life. Rev. Physiol. Biochem. Pharmacol., 2002, 145, 1-46.
[http://dx.doi.org/10.1007/BFb0116430] [PMID: 12224526]
[94]
Eustice, D.C.; Foster, I.; Kull, F.J.; Shrift, A. In vitro incorporation of selenomethionine into protein by Vigna radiata polysomes. Plant Physiol., 1980, 66(1), 182-186.
[http://dx.doi.org/10.1104/pp.66.1.182] [PMID: 16661384]
[95]
Shelar, A.; Singh, A.V.; Maharjan, R.S.; Laux, P.; Luch, A.; Gemmati, D.; Tisato, V.; Singh, S.P.; Santilli, M.F.; Shelar, A.; Chaskar, M.; Patil, R. Sustainable agriculture through multidisciplinary seed nanopriming: Prospects of opportunities and challenges. Cells, 2021, 10(9), 2428.
[http://dx.doi.org/10.3390/cells10092428] [PMID: 34572078]
[96]
Tastet, L.; Schaumlöffel, D.; Lobinski, R. ICP-MS-assisted proteomics approach to the identification of selenium-containing proteins in selenium-rich yeast. J. Anal. At. Spectrom., 2008, 23(3), 309-317.
[http://dx.doi.org/10.1039/B713805A]
[97]
Tastet, L.; Schaumlöffel, D.; Bouyssiere, B.; Lobinski, R. Identification of selenium-containing proteins in selenium-rich yeast aqueous extract by 2D gel electrophoresis, nanoHPLC-ICP MS and nanoHPLC-ESI MS/MS. Talanta, 2008, 75(4), 1140-1145.
[http://dx.doi.org/10.1016/j.talanta.2008.01.003] [PMID: 18585195]
[98]
Giusti, P.; Schaumlöffel, D.; Preud’homme, H.; Szpunar, J.; Lobinski, R. Selenopeptide mapping in a selenium–yeast protein digest by parallel nanoHPLC-ICP-MS and nanoHPLC-electrospray-MS/MS after on-line preconcentration. J. Anal. At. Spectrom., 2006, 21(1), 26-32.
[http://dx.doi.org/10.1039/B511288E]
[99]
Encinar, J.R.; Ouerdane, L.; Buchmann, W.; Tortajada, J.; Lobinski, R.; Szpunar, J. Identification of water-soluble selenium-containing proteins in selenized yeast by size-exclusion-reversed-phase HPLC/ICPMS followed by MALDI-TOF and electrospray Q-TOF mass spectrometry. Anal. Chem., 2003, 75(15), 3765-3774.
[http://dx.doi.org/10.1021/ac034103m] [PMID: 14572042]
[100]
Balakrishnan, R.; Parthasarathy, R.; Sulkowski, E. Alzheimer’s beta-amyloid peptide: affinity for metal chelates. J. Pept. Res., 1998, 51(2), 91-95.
[http://dx.doi.org/10.1111/j.1399-3011.1998.tb00624.x] [PMID: 9516042]
[101]
Li, M.; Meares, C.F. Synthesis, metal chelate stability studies, and enzyme digestion of a peptide-linked DOTA derivative and its corresponding radiolabeled immunoconjugates. Bioconjug. Chem., 1993, 4(4), 275-283.
[http://dx.doi.org/10.1021/bc00022a005] [PMID: 8218484]
[102]
Zhou, Z.; Wu, X.; Kresak, A.; Griswold, M.; Lu, Z.R. Peptide targeted tripod macrocyclic Gd(III) chelates for cancer molecular MRI. Biomaterials, 2013, 34(31), 7683-7693.
[http://dx.doi.org/10.1016/j.biomaterials.2013.06.057] [PMID: 23863450]
[103]
Bao, Y-h.; Wang, F.; Wang, W-q. Preparation and antioxidant activity of selenium-chelating soybean peptides. Food Sci., 2013, 34(16), 27-32.
[104]
Ye, Q.; Wu, X.; Zhang, X.; Wang, S. Organic selenium derived from chelation of soybean peptide-selenium and its functional properties in vitro and in vivo. Food Funct., 2019, 10(8), 4761-4770.
[http://dx.doi.org/10.1039/C9FO00729F] [PMID: 31309961]
[105]
Zhang, Z.; Kolodziej, A.F.; Qi, J.; Nair, S.A.; Wang, X.; Case, A.W.; Greenfield, M.T.; Graham, P.B.; McMurry, T.J.; Caravan, P. Effect of peptide-chelate architecture on metabolic stability of peptide-based MRI contrast agents. New J. Chem., 2010, 2010(34), 611-616.
[http://dx.doi.org/10.1039/b9nj00787c] [PMID: 20526382]
[106]
Qin, X-Y.; Zhang, J-T.; Li, G-M.; Zhou, M.; Gu, R-Z.; Lu, J.; Liu, W-Y. Structure and composition of a potential antioxidant obtained from the chelation of pea oligopeptide and sodium selenite. J. Funct. Foods, 2020, 64, 103619.
[http://dx.doi.org/10.1016/j.jff.2019.103619]
[107]
Fredga, A. Synthesis of α, α-diaminodiseleniumdihydroacrylic acid. Svensk Kemisk Tidskrift, 1936, 48, 160-165.
[108]
Tanaka, H.; Soda, K. Selenocysteine. Methods Enzymol., 1987, 143, 240-243.
[http://dx.doi.org/10.1016/0076-6879(87)43045-0] [PMID: 2958675]
[109]
Zinoni, F.; Birkmann, A.; Stadtman, T.C.; Böck, A. Nucleotide sequence and expression of the selenocysteine-containing polypeptide of formate dehydrogenase (formate-hydrogen-lyase-linked) from Escherichia coli. Proc. Natl. Acad. Sci. USA, 1986, 83(13), 4650-4654.
[http://dx.doi.org/10.1073/pnas.83.13.4650] [PMID: 2941757]
[110]
Chambers, I.; Frampton, J.; Goldfarb, P.; Affara, N.; McBain, W.; Harrison, P.R. The structure of the mouse glutathione peroxidase gene: the selenocysteine in the active site is encoded by the ‘termination’ codon, TGA. EMBO J., 1986, 5(6), 1221-1227.
[http://dx.doi.org/10.1002/j.1460-2075.1986.tb04350.x] [PMID: 3015592]
[111]
Conrad, M.; Schneider, M.; Seiler, A.; Bornkamm, G.W. Physiological role of phospholipid hydroperoxide glutathione peroxidase in mammals. Biol. Chem., 2007, 388(10), 1019-1025.
[http://dx.doi.org/10.1515/BC.2007.130] [PMID: 17937615]
[112]
Tamura, T.; Stadtman, T.C. A new selenoprotein from human lung adenocarcinoma cells: purification, properties, and thioredoxin reductase activity. Proc. Natl. Acad. Sci. USA, 1996, 93(3), 1006-1011.
[http://dx.doi.org/10.1073/pnas.93.3.1006] [PMID: 8577704]
[113]
Arnold, A.P.; Tan, K.S.; Rabenstein, D.L. Nuclear magnetic resonance studies of the solution chemistry of metal complexes. 23. Complexation of methylmercury by selenohydryl-containing amino acids and related molecules. Inorg. Chem., 1986, 25(14), 2433-2437.
[http://dx.doi.org/10.1021/ic00234a030]
[114]
Byun, B.J.; Kang, Y.K. Conformational preferences and pK(a) value of selenocysteine residue. Biopolymers, 2011, 95(5), 345-353.
[http://dx.doi.org/10.1002/bip.21581] [PMID: 21213257]
[115]
Reddy, K.M.; Mugesh, G. Application of dehydroalanine as a building block for the synthesis of selenocysteine-containing peptides. RSC Advances, 2019, 9(1), 34-43.
[http://dx.doi.org/10.1039/C8RA09880H]
[116]
Leinfelder, W.; Zehelein, E.; Mandrand-Berthelot, M.A.; Böck, A. Gene for a novel tRNA species that accepts L-serine and cotranslationally inserts selenocysteine. Nature, 1988, 331(6158), 723-725.
[http://dx.doi.org/10.1038/331723a0] [PMID: 2963963]
[117]
Masters, P.M. In vivo decomposition of phosphoserine and serine in noncollagenous protein from human dentin. Calcif. Tissue Int., 1985, 37(3), 236-241.
[http://dx.doi.org/10.1007/BF02554869] [PMID: 3926273]
[118]
Knerr, P.J.; van der Donk, W.A. Discovery, biosynthesis, and engineering of lantipeptides. Annu. Rev. Biochem., 2012, 81, 479-505.
[http://dx.doi.org/10.1146/annurev-biochem-060110-113521] [PMID: 22404629]
[119]
Palioura, S.; Sherrer, R.L.; Steitz, T.A.; Söll, D.; Simonovic, M. The human SepSecS-tRNASec complex reveals the mechanism of selenocysteine formation. Science, 2009, 325(5938), 321-325.
[http://dx.doi.org/10.1126/science.1173755] [PMID: 19608919]
[120]
Mousa, R.; Notis Dardashti, R.; Metanis, N. Selenium and selenocysteine in protein chemistry. Angew. Chem. Int. Ed. Engl., 2017, 56(50), 15818-15827.
[http://dx.doi.org/10.1002/anie.201706876] [PMID: 28857389]
[121]
Yang, A.; Ha, S.; Ahn, J.; Kim, R.; Kim, S.; Lee, Y.; Kim, J.; Söll, D.; Lee, H-Y.; Park, H-S. A chemical biology route to site-specific authentic protein modifications. Science, 2016, 354(6312), 623-626.
[http://dx.doi.org/10.1126/science.aah4428] [PMID: 27708052]
[122]
Wright, T.H.; Bower, B.J.; Chalker, J.M.; Bernardes, G.J.; Wiewiora, R.; Ng, W-L.; Raj, R.; Faulkner, S.; Vallée, M.R.J.; Phanumartwiwath, A.; Coleman, O.D.; Thézénas, M.L.; Khan, M.; Galan, S.R.; Lercher, L.; Schombs, M.W.; Gerstberger, S.; Palm-Espling, M.E.; Baldwin, A.J.; Kessler, B.M.; Claridge, T.D.; Mohammed, S.; Davis, B.G. Posttranslational mutagenesis: A chemical strategy for exploring protein side-chain diversity. Science, 2016, 354(6312), aag1465.
[http://dx.doi.org/10.1126/science.aag1465] [PMID: 27708059]
[123]
Nathani, R.; Moody, P.; Smith, M.E.; Fitzmaurice, R.J.; Caddick, S. Bioconjugation of green fluorescent protein via an unexpectedly stable cyclic sulfonium intermediate. ChemBioChem, 2012, 13(9), 1283-1285.
[http://dx.doi.org/10.1002/cbic.201200231] [PMID: 22639110]
[124]
Okeley, N.M.; Zhu, Y.; van Der Donk, W.A. Facile chemoselective synthesis of dehydroalanine-containing peptides. Org. Lett., 2000, 2(23), 3603-3606.
[http://dx.doi.org/10.1021/ol006485d] [PMID: 11073655]
[125]
Levengood, M.R.; van der Donk, W.A. Dehydroalanine-containing peptides: preparation from phenylselenocysteine and utility in convergent ligation strategies. Nat. Protoc., 2006, 1(6), 3001-3010.
[http://dx.doi.org/10.1038/nprot.2006.470] [PMID: 17406561]
[126]
Lin, Y.A.; Boutureira, O.; Lercher, L.; Bhushan, B.; Paton, R.S.; Davis, B.G. Rapid cross-metathesis for reversible protein modifications via chemical access to Se-allyl-selenocysteine in proteins. J. Am. Chem. Soc., 2013, 135(33), 12156-12159.
[http://dx.doi.org/10.1021/ja403191g] [PMID: 23889088]
[127]
Thapa, P.; Zhang, R.Y.; Menon, V.; Bingham, J.P. Native chemical ligation: a boon to peptide chemistry. Molecules, 2014, 19(9), 14461-14483.
[http://dx.doi.org/10.3390/molecules190914461] [PMID: 25221869]
[128]
Chalker, J.M.; Bernardes, G.J.; Lin, Y.A.; Davis, B.G. Chemical modification of proteins at cysteine: Opportunities in chemistry and biology. Chem. Asian J., 2009, 4(5), 630-640.
[http://dx.doi.org/10.1002/asia.200800427] [PMID: 19235822]
[129]
Yamashita, K.; Inoue, K.; Kinoshita, K.; Ueda, Y.; Murao, H. Processes for producing β-halogeno-α-amino-carboxylic acids and phenylcysteine derivatives and intermediates thereof. Google Patents, US6372941B1, 2002.
[130]
Hondal, R.J.; Nilsson, B.L.; Raines, R.T. Selenocysteine in native chemical ligation and expressed protein ligation. J. Am. Chem. Soc., 2001, 123(21), 5140-5141.
[http://dx.doi.org/10.1021/ja005885t] [PMID: 11457362]
[131]
Dery, S.; Reddy, P.S.; Dery, L.; Mousa, R.; Dardashti, R.N.; Metanis, N. Insights into the deselenization of selenocysteine into alanine and serine. Chem. Sci. (Camb.), 2015, 6(11), 6207-6212.
[http://dx.doi.org/10.1039/C5SC02528A] [PMID: 30090236]
[132]
Malins, L.R.; Mitchell, N.J.; McGowan, S.; Payne, R.J. Oxidative deselenization of selenocysteine: Applications for programmed ligation at serine. Angew. Chem. Int. Ed. Engl., 2015, 54(43), 12716-12721.
[http://dx.doi.org/10.1002/anie.201504639] [PMID: 26384718]
[133]
Gieselman, M.D.; Xie, L.; van Der Donk, W.A. Synthesis of a selenocysteine-containing peptide by native chemical ligation. Org. Lett., 2001, 3(9), 1331-1334.
[http://dx.doi.org/10.1021/ol015712o] [PMID: 11348227]
[134]
Quaderer, R.; Sewing, A.; Hilvert, D. Selenocysteine-mediated native chemical ligation. Helv. Chim. Acta, 2001, 84(5), 1197-1206.
[http://dx.doi.org/10.1002/1522-2675(20010516)84:5<1197::AID-HLCA1197>3.0.CO;2-#]
[135]
Quaderer, R.; Hilvert, D. Selenocysteine-mediated backbone cyclization of unprotected peptides followed by alkylation, oxidative elimination or reduction of the selenol. Chem. Commun. (Camb.), 2002, (22), 2620-2621.
[http://dx.doi.org/10.1039/b208288h] [PMID: 12510266]
[136]
Muttenthaler, M.; Alewood, P.F. Selenopeptide chemistry. J. Pept. Sci., 2008, 14(12), 1223-1239.
[http://dx.doi.org/10.1002/psc.1075] [PMID: 18951416]
[137]
Gieselman, M.D.; Zhu, Y.; Zhou, H.; Galonic, D.; van der Donk, W.A. Selenocysteine derivatives for chemoselective ligations. ChemBioChem, 2002, 3(8), 709-716.
[http://dx.doi.org/10.1002/1439-7633(20020802)3:8<709::AID-CBIC709>3.0.CO;2-8] [PMID: 12203969]
[138]
Chocat, P.; Esaki, N.; Tanaka, H.; Soda, K. Synthesis of L-selenodjenkolate and its degradation with methionine gamma-lyase. Anal. Biochem., 1985, 148(2), 485-489.
[http://dx.doi.org/10.1016/0003-2697(85)90256-8] [PMID: 4061824]
[139]
Siebum, A.H.; Woo, W.S.; Raap, J.; Lugtenburg, J. Access to any site-directed isotopomer of methionine, selenomethionine, cysteine, and selenocysteine− use of simple, efficient modular synthetic reaction schemes for isotope incorporation. Eur. J. Org. Chem., 2004, 2004(13), 2905-2913.
[http://dx.doi.org/10.1002/ejoc.200400063]
[140]
Stocking, E.M.; Schwarz, J.N.; Senn, H.; Salzmann, M.; Silks, L.A. Synthesis of L-selenocystine, L-[77 Se] selenocystine and L-tellurocystine. J. Chem. Soc., Perkin Trans. 1, 1997, (16), 2443-2448.
[http://dx.doi.org/10.1039/a600180g]
[141]
Armishaw, C.J.; Daly, N.L.; Nevin, S.T.; Adams, D.J.; Craik, D.J.; Alewood, P.F. Alpha-selenoconotoxins, a new class of potent alpha7 neuronal nicotinic receptor antagonists. J. Biol. Chem., 2006, 281(20), 14136-14143.
[http://dx.doi.org/10.1074/jbc.M512419200] [PMID: 16500898]
[142]
Tian, F.; Yu, Z.; Lu, S. Efficient reductive selenation of aromatic aldehydes to symmetrical diselenides with Se/CO/H(2)O under atmospheric pressure. J. Org. Chem., 2004, 69(13), 4520-4523.
[http://dx.doi.org/10.1021/jo049733i] [PMID: 15202911]
[143]
Nicolaou, K.C.; Estrada, A.A.; Zak, M.; Lee, S.H.; Safina, B.S. A mild and selective method for the hydrolysis of esters with trimethyltin hydroxide. Angew. Chem. Int. Ed., 2005, 44(9), 1378-1382.
[http://dx.doi.org/10.1002/anie.200462207] [PMID: 15674985]
[144]
Roy, J.; Gordon, W.; Schwartz, I.L.; Walter, R. Optically active selenium-containing amino acids. The synthesis of L-selenocystine and L-selenolanthionine. J. Org. Chem., 1970, 35(2), 510-513.
[http://dx.doi.org/10.1021/jo00827a052] [PMID: 5412141]
[145]
Hashimoto, K.; Sakai, M.; Okuno, T.; Shirahama, H. β-Phenylselenoalanine as a dehydroalanine precursor–efficient synthesis of alternariolide (AM-toxin I). Chem. Commun., 1996, (10), 1139-1140.
[http://dx.doi.org/10.1039/CC9960001139]
[146]
Sakai, M.; Hashimoto, K.; Shirahama, H. Synthesis of optically pure β-phenylselenoalanine through serine-β-lactone: A useful precursor of dehydroalanine. Heterocycles, 1997, 1(44), 319-324.
[147]
Koide, T.; Itoh, H.; Otaka, A.; Yasui, H.; Kuroda, M.; Esaki, N.; Fujii, N. Synthetic study on selenocystine-contaning peptides. Chem. Pharm. Bull. (Tokyo), 1993, 41(3), 502-506.
[PMID: 8477500]
[148]
Merrifield, R.B. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc., 1963, 85(14), 2149-2154.
[http://dx.doi.org/10.1021/ja00897a025]
[149]
Amblard, M.; Fehrentz, J.A.; Martinez, J.; Subra, G. Methods and protocols of modern solid phase Peptide synthesis. Mol. Biotechnol., 2006, 33(3), 239-254.
[http://dx.doi.org/10.1385/MB:33:3:239] [PMID: 16946453]
[150]
Müller, P.; Müller-Dolezal, H.; Stoltz, R.; Söll, H.; Wünsch, E. Houben-Weyl Methods of Organic Chemistry Vol. XV/2: Synthesis of Peptides (including the Chemistry of Protection Groups) II; Georg Thieme: Verlag, 2014.
[151]
Zhang, X. Allium organoselenium chemistry and synthesis and photochemistry of 1, 2-dithiins; State University of New York at Albany, 1997.
[152]
Kamber, B.; Hartmann, A.; Eisler, K.; Riniker, B.; Rink, H.; Sieber, P.; Rittel, W. The synthesis of cystine peptides by iodine oxidation of S-trityl-cysteine and S-acetamidomethyl-cysteine peptides. Helv. Chim. Acta, 1980, 63(4), 899-915.
[http://dx.doi.org/10.1002/hlca.19800630418]
[153]
Shin, Y.; Winans, K.A.; Backes, B.J.; Kent, S.B.; Ellman, J.A.; Bertozzi, C.R. Fmoc-based synthesis of peptide-αthioesters: application to the total chemical synthesis of a glycoprotein by native chemical ligation. J. Am. Chem. Soc., 1999, 121(50), 11684-11689.
[http://dx.doi.org/10.1021/ja992881j]
[154]
Gokula, R.P.; Mahato, J.; Singh, H.B.; Chowdhury, A. Self-assembly of penta-selenopeptides into amyloid fibrils. Chem. Commun. (Camb.), 2018, 54(83), 11697-11700.
[http://dx.doi.org/10.1039/C8CC06528D] [PMID: 30255865]
[155]
Harris, K.M.; Flemer, S., Jr; Hondal, R.J. Studies on deprotection of cysteine and selenocysteine side-chain protecting groups. J. Pept. Sci., 2007, 13(2), 81-93.
[http://dx.doi.org/10.1002/psc.795] [PMID: 17031870]
[156]
Ste Marie, E.J.; Ruggles, E.L.; Hondal, R.J. Removal of the 5-nitro-2-pyridine-sulfenyl protecting group from selenocysteine and cysteine by ascorbolysis. J. Pept. Sci., 2016, 22(9), 571-576.
[http://dx.doi.org/10.1002/psc.2908] [PMID: 27480992]
[157]
Reddy, P.S.; Dery, S.; Metanis, N. Chemical synthesis of proteins with non-strategically placed cysteines using selenazolidine and selective deselenization. Angew. Chem. Int. Ed. Engl., 2016, 55(3), 992-995.
[http://dx.doi.org/10.1002/anie.201509378] [PMID: 26636774]
[158]
Whedon, S.D.; Markandeya, N.; Rana, A.S.J.B.; Senger, N.A.; Weller, C.E.; Tureček, F.; Strieter, E.R.; Chatterjee, C. Selenocysteine as a latent bioorthogonal electrophilic probe for deubiquitylating enzymes. J. Am. Chem. Soc., 2016, 138(42), 13774-13777.
[http://dx.doi.org/10.1021/jacs.6b05688] [PMID: 27723317]
[159]
Dery, L.; Reddy, P.S.; Dery, S.; Mousa, R.; Ktorza, O.; Talhami, A.; Metanis, N. Accessing human selenoproteins through chemical protein synthesis. Chem. Sci. (Camb.), 2017, 8(3), 1922-1926.
[http://dx.doi.org/10.1039/C6SC04123J] [PMID: 28451306]
[160]
Poerschke, R.L.; Franklin, M.R.; Moos, P.J. Modulation of redox status in human lung cell lines by organoselenocompounds: selenazolidines, selenomethionine, and methylseleninic acid. Toxicol. In vitro, 2008, 22(7), 1761-1767.
[http://dx.doi.org/10.1016/j.tiv.2008.08.003] [PMID: 18768157]
[161]
Franklin, M.R.; Moos, P.J.; El-Sayed, W.M.; Aboul-Fadl, T.; Roberts, J.C. Pre- and post-initiation chemoprevention activity of 2-alkyl/aryl selenazolidine-4(R)-carboxylic acids against tobacco-derived nitrosamine (NNK)-induced lung tumors in the A/J mouse. Chem. Biol. Interact., 2007, 168(3), 211-220.
[http://dx.doi.org/10.1016/j.cbi.2007.04.012] [PMID: 17543294]
[162]
Nagasawa, H.T.; Goon, D.J.; Zera, R.T.; Yuzon, D.L. Prodrugs of L-cysteine as liver-protective agents. 2(RS)-Methylthiazolidine-4(R)-carboxylic acid, a latent cysteine. J. Med. Chem., 1982, 25(5), 489-491.
[http://dx.doi.org/10.1021/jm00347a001] [PMID: 7086831]
[163]
Roberts, J.C.; Nagasawa, H.T.; Zera, R.T.; Fricke, R.F.; Goon, D.J. Prodrugs of L-cysteine as protective agents against acetaminophen-induced hepatotoxicity. 2-(Polyhydroxyalkyl)- and 2-(polyacetoxyalkyl)thiazolidine-4(R)-carboxylic acids. J. Med. Chem., 1987, 30(10), 1891-1896.
[http://dx.doi.org/10.1021/jm00393a034] [PMID: 3656363]
[164]
Xie, Y.; Short, M.D.; Cassidy, P.B.; Roberts, J.C. Selenazolidines as novel organoselenium delivery agents. Bioorg. Med. Chem. Lett., 2001, 11(22), 2911-2915.
[http://dx.doi.org/10.1016/S0960-894X(01)00590-X] [PMID: 11677125]
[165]
El-Sayed, W.M.; Aboul-Fadl, T.; Lamb, J.G.; Roberts, J.C.; Franklin, M.R. Acute effects of novel selenazolidines on murine chemoprotective enzymes. Chem. Biol. Interact., 2006, 162(1), 31-42.
[http://dx.doi.org/10.1016/j.cbi.2006.05.002] [PMID: 16765927]
[166]
Cordeau, E.; Cantel, S.; Gagne, D.; Lebrun, A.; Martinez, J.; Subra, G.; Enjalbal, C. Selenazolidine: A selenium containing proline surrogate in peptide science. Org. Biomol. Chem., 2016, 14(34), 8101-8108.
[http://dx.doi.org/10.1039/C6OB01450J] [PMID: 27506250]
[167]
Short, M.D.; Xie, Y.; Li, L.; Cassidy, P.B.; Roberts, J.C. Characteristics of selenazolidine prodrugs of selenocysteine: Toxicity and glutathione peroxidase induction in V79 cells. J. Med. Chem., 2003, 46(15), 3308-3313.
[http://dx.doi.org/10.1021/jm020496q] [PMID: 12852761]
[168]
Jubilut, G.N.; Cilli, E.M.; Tominaga, M.; Miranda, A.; Okada, Y.; Nakaie, C.R. Evaluation of the trifluoromethanosulfonic acid/trifluoroacetic acid/thioanisole cleavage procedure for application in solid-phase peptide synthesis. Chem. Pharm. Bull. (Tokyo), 2001, 49(9), 1089-1092.
[http://dx.doi.org/10.1248/cpb.49.1089] [PMID: 11558592]
[169]
Fülöp, F.; Mattinen, J.; Pihlaja, K. Ring-chain tautomerism in 1, 3-thiazolidines. Tetrahedron, 1990, 46(18), 6545-6552.
[http://dx.doi.org/10.1016/S0040-4020(01)96019-3]
[170]
Fülöp, F.; Pihlajaa, K. Ring-chain tautomerism of oxazolidines derived from serine esters. Tetrahedron, 1993, 49(30), 6701-6706.
[http://dx.doi.org/10.1016/S0040-4020(01)81839-1]
[171]
Tickler, A. K.; Barrow, C. J.; Wade, J. D. Improved preparation of amyloid-β peptides using DBU as Nα-Fmoc deprotection reagent. J. Peptide Sci., 2001, 7(9), 488-494.
[172]
Yamashita, Y.; Yamashita, M. Identification of a novel selenium-containing compound, selenoneine, as the predominant chemical form of organic selenium in the blood of bluefin tuna. J. Biol. Chem., 2010, 285(24), 18134-18138.
[http://dx.doi.org/10.1074/jbc.C110.106377] [PMID: 20388714]
[173]
Yamashita, Y.; Yabu, T.; Yamashita, M. Discovery of the strong antioxidant selenoneine in tuna and selenium redox metabolism. World J. Biol. Chem., 2010, 1(5), 144-150.
[http://dx.doi.org/10.4331/wjbc.v1.i5.144] [PMID: 21540999]
[174]
Yamashita, Y.; Amlund, H.; Suzuki, T.; Hara, T.; Hossain, M.A.; Yabu, T.; Touhata, K.; Yamashita, M. Selenoneine, total selenium, and total mercury content in the muscle of fishes. Fish. Sci., 2011, 77(4), 679-686.
[http://dx.doi.org/10.1007/s12562-011-0360-9]
[175]
Suzuki, T.; Hongo, T.; Ohba, T.; Kobayashi, K.; Imai, H.; Ishida, H.; Suzuki, H. The relation of dietary selenium to erythrocyte and plasma selenium concentrations in Japanese college women. Nutr. Res., 1989, 9(8), 839-848.
[http://dx.doi.org/10.1016/S0271-5317(89)80029-6]
[176]
Imai, H.; Suzuki, T.; Kashiwazaki, H.; Takemoto, T-i.; Izumi, T.; Moji, K. Dietary habit and selenium concentrations in erythrocyte and serum in a group of middle-aged and elderly Japanese. Nutr. Res., 1990, 10(11), 1205-1214.
[http://dx.doi.org/10.1016/S0271-5317(05)80159-9]
[177]
Fairweather-Tait, S.J.; Collings, R.; Hurst, R. Selenium bioavailability: Current knowledge and future research requirements. Am. J. Clin. Nutr., 2010, 91(5), 1484S-1491S.
[http://dx.doi.org/10.3945/ajcn.2010.28674J] [PMID: 20200264]
[178]
Fox, T.E.; Atherton, C.; Dainty, J.R.; Lewis, D.J.; Langford, N.J.; Baxter, M.J.; Crews, H.M.; Fairweather-Tait, S.J. Absorption of selenium from wheat, garlic, and cod intrinsically labeled with Se-77 and Se-82 stable isotopes. Int. J. Vitam. Nutr. Res., 2005, 75(3), 179-186.
[http://dx.doi.org/10.1024/0300-9831.75.3.179] [PMID: 16028633]
[179]
Rayman, M.P.; Infante, H.G.; Sargent, M. Food-chain selenium and human health: spotlight on speciation. Br. J. Nutr., 2008, 100(2), 238-253.
[http://dx.doi.org/10.1017/S0007114508922522] [PMID: 18346307]
[180]
Turrini, N.G.; Kroepfl, N.; Jensen, K.B.; Reiter, T.C.; Francesconi, K.A.; Schwerdtle, T.; Kroutil, W.; Kuehnelt, D. Biosynthesis and isolation of selenoneine from genetically modified fission yeast. Metallomics, 2018, 10(10), 1532-1538.
[http://dx.doi.org/10.1039/C8MT00200B] [PMID: 30246828]
[181]
Pandey, A.T.; Pandey, I.; Hachenberger, Y.; Krause, B-C.; Haidar, R.; Laux, P.; Luch, A.; Singh, M.P.; Singh, A.V. Emerging paradigm against global antimicrobial resistance via bioprospecting of fungi into novel nanotherapeutics development. Trends Food Sci. Technol., 2020, 106, 333-344.
[http://dx.doi.org/10.1016/j.tifs.2020.10.025]
[182]
Pluskal, T.; Ueno, M.; Yanagida, M. Genetic and metabolomic dissection of the ergothioneine and selenoneine biosynthetic pathway in the fission yeast, S. pombe, and construction of an overproduction system. PLoS One, 2014, 9(5), e97774.
[http://dx.doi.org/10.1371/journal.pone.0097774] [PMID: 24828577]
[183]
Yamashita, M. Quality control of tuna meat by optimization of fishing and handling. Koseisha-Koseikaku; Tokyo, Japan, 2010.
[184]
Weber, G.J.; Choe, S.E.; Dooley, K.A.; Paffett-Lugassy, N.N.; Zhou, Y.; Zon, L.I. Mutant-specific gene programs in the zebrafish. Blood, 2005, 106(2), 521-530.
[http://dx.doi.org/10.1182/blood-2004-11-4541] [PMID: 15827125]
[185]
Gründemann, D.; Harlfinger, S.; Golz, S.; Geerts, A.; Lazar, A.; Berkels, R.; Jung, N.; Rubbert, A.; Schömig, E. Discovery of the ergothioneine transporter. Proc. Natl. Acad. Sci. USA, 2005, 102(14), 5256-5261.
[http://dx.doi.org/10.1073/pnas.0408624102] [PMID: 15795384]
[186]
Nilsson, R.; Schultz, I.J.; Pierce, E.L.; Soltis, K.A.; Naranuntarat, A.; Ward, D.M.; Baughman, J.M.; Paradkar, P.N.; Kingsley, P.D.; Culotta, V.C.; Kaplan, J.; Palis, J.; Paw, B.H.; Mootha, V.K. Discovery of genes essential for heme biosynthesis through large-scale gene expression analysis. Cell Metab., 2009, 10(2), 119-130.
[http://dx.doi.org/10.1016/j.cmet.2009.06.012] [PMID: 19656490]
[187]
Ripka, A.S.; Rich, D.H. Peptidomimetic design. Curr. Opin. Chem. Biol., 1998, 2(4), 441-452.
[http://dx.doi.org/10.1016/S1367-5931(98)80119-1] [PMID: 9736916]
[188]
Braga, A.L.; Vargas, F.; Sehnem, J.A.; Braga, R.C. Efficient synthesis of chiral β-seleno amides via ring-opening reaction of 2-oxazolines and their application in the palladium-catalyzed asymmetric allylic alkylation. J. Org. Chem., 2005, 70(22), 9021-9024.
[http://dx.doi.org/10.1021/jo051451a] [PMID: 16238343]
[189]
Braga, A.L.; Galetto, F.Z.; Taube, P.S.; Paixão, M.W.; Silveira, C.C.; Singh, D.; Vargas, F. Mild and efficient one-pot synthesis of chiral β-chalcogen amides via 2-oxazoline ring-opening reaction mediated by indium metal. J. Organomet. Chem., 2008, 693(24), 3563-3566.
[http://dx.doi.org/10.1016/j.jorganchem.2008.08.031]
[190]
Braga, A.L.; Lüdtke, D.S.; Paixão, M.W.; Alberto, E.E.; Stefani, H.A.; Juliano, L. Straightforward Synthesis of Non-Natural Selenium Containing Amino Acid Derivatives and Peptides; Wiley Online Library, 2005.
[http://dx.doi.org/10.1002/ejoc.200500530]
[191]
McKennon, M.J.; Meyers, A.; Drauz, K.; Schwarm, M. A convenient reduction of amino acids and their derivatives. J. Org. Chem., 1993, 58(13), 3568-3571.
[http://dx.doi.org/10.1021/jo00065a020]
[192]
Braga, A.L.; Paixão, M.W.; Lüdtke, D.S.; Silveira, C.C.; Rodrigues, O.E. Synthesis of new chiral aliphatic amino diselenides and their application as catalysts for the enantioselective addition of diethylzinc to aldehydes. Org. Lett., 2003, 5(15), 2635-2638.
[http://dx.doi.org/10.1021/ol034773e] [PMID: 12868877]
[193]
Braga, A.L.; Sehnem, J.A.; Luedtke, D.S.; Zeni, G.; Silveira, C.C.; Marchi, M.I. New simple chiral phosphine oxazolidine ligands: Easy synthesis and application in the palladium-catalyzed asymmetric allylic alkylation. Synlett, 2005, 2005(08), 1331-1333.
[http://dx.doi.org/10.1055/s-2005-868475]
[194]
Braga, A.L.; Vargas, F.c.; Silveira, C.C.; de Andrade, L.H. Synthesis of new chiral imidazolidine disulfides derived from L-cystine and their application in the enantioselective addition of diethylzinc to aldehydes. Tetrahedron Lett., 2002, 43(13), 2335-2337.
[http://dx.doi.org/10.1016/S0040-4039(02)00300-3]
[195]
Hai-zhen, M.; Zhang, M.; Li, X.-l. Brassica chinensis enriched selenium regularity and its effect on nutrient content. J. Food Sci. Biotechnol., 2006, 5, 1.
[196]
Wrobel, J.K.; Power, R.; Toborek, M. Biological activity of selenium: Revisited. IUBMB Life, 2016, 68(2), 97-105.
[http://dx.doi.org/10.1002/iub.1466] [PMID: 26714931]
[197]
Ferguson, L.R.; Karunasinghe, N.; Zhu, S.; Wang, A.H. Selenium and its’ role in the maintenance of genomic stability. Mutat. Res., 2012, 733(1-2), 100-110.
[http://dx.doi.org/10.1016/j.mrfmmm.2011.12.011] [PMID: 22234051]
[198]
Zhu, C.; Ling, Q.; Cai, Z.; Wang, Y.; Zhang, Y.; Hoffmann, P.R.; Zheng, W.; Zhou, T.; Huang, Z. Selenium-containing phycocyanin from se-enriched spirulina platensis reduces inflammation in dextran sulfate sodium-induced colitis by inhibiting NF-κB activation. J. Agric. Food Chem., 2016, 64(24), 5060-5070.
[http://dx.doi.org/10.1021/acs.jafc.6b01308] [PMID: 27223481]
[199]
Cong, M.; Zhang, L.; Zhang, L.; Zhao, J.; Wu, H.; Chen, H.; Kong, J. Molecular characterization of a Se-containing glutathione peroxidases gene and its expressions to heavy metals compared with non-Se-containing glutathione peroxidases in Venerupis philippinarum. Agri Gene, 2016, 1, 46-52.
[http://dx.doi.org/10.1016/j.aggene.2016.06.003]
[200]
Sarmadi, B.H.; Ismail, A. Antioxidative peptides from food proteins: A review. Peptides, 2010, 31(10), 1949-1956.
[http://dx.doi.org/10.1016/j.peptides.2010.06.020] [PMID: 20600423]
[201]
Xie, Z.; Huang, J.; Xu, X.; Jin, Z. Antioxidant activity of peptides isolated from alfalfa leaf protein hydrolysate. Food Chem., 2008, 111(2), 370-376.
[http://dx.doi.org/10.1016/j.foodchem.2008.03.078] [PMID: 26047437]
[202]
Zhao, X.; Zhao, Q.; Chen, H.; Xiong, H. Distribution and effects of natural selenium in soybean proteins and its protective role in soybean β-conglycinin (7S globulins) under AAPH-induced oxidative stress. Food Chem., 2019, 272, 201-209.
[http://dx.doi.org/10.1016/j.foodchem.2018.08.039] [PMID: 30309533]
[203]
Fang, Y.; Pan, X.; Zhao, E.; Shi, Y.; Shen, X.; Wu, J.; Pei, F.; Hu, Q.; Qiu, W. Isolation and identification of immunomodulatory selenium-containing peptides from selenium-enriched rice protein hydrolysates. Food Chem., 2019, 275, 696-702.
[http://dx.doi.org/10.1016/j.foodchem.2018.09.115] [PMID: 30724251]
[204]
Guo, D.; Zhang, Y.; Zhao, J.; He, H.; Hou, T. Selenium-biofortified corn peptides: Attenuating concanavalin A-Induced liver injury and structure characterization. J. Trace Elem. Med. Biol., 2019, 51, 57-64.
[http://dx.doi.org/10.1016/j.jtemb.2018.09.010] [PMID: 30466939]
[205]
Mishra, B.; Sharma, A.; Naumov, S.; Priyadarsini, K.I. Novel reactions of one-electron oxidized radicals of selenomethionine in comparison with methionine. J. Phys. Chem. B, 2009, 113(21), 7709-7715.
[http://dx.doi.org/10.1021/jp900322z] [PMID: 19408939]
[206]
Payne, N.C.; Geissler, A.; Button, A.; Sasuclark, A.R.; Schroll, A.L.; Ruggles, E.L.; Gladyshev, V.N.; Hondal, R.J. Comparison of the redox chemistry of sulfur- and selenium-containing analogs of uracil. Free Radic. Biol. Med., 2017, 104, 249-261.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.01.028] [PMID: 28108278]
[207]
Schöneich, C. Methionine oxidation by reactive oxygen species: reaction mechanisms and relevance to Alzheimer’s disease. Biochim. Biophys. Acta, 2005, 1703(2), 111-119.
[http://dx.doi.org/10.1016/j.bbapap.2004.09.009] [PMID: 15680219]
[208]
Liu, K.; Du, R.; Chen, F. Antioxidant activities of Se-MPS: A selenopeptide identified from selenized brown rice protein hydrolysates. Lebensm. Wiss. Technol., 2019, 111, 555-560.
[http://dx.doi.org/10.1016/j.lwt.2019.05.076]
[209]
Yoshida, S.; Kumakura, F.; Komatsu, I.; Arai, K.; Onuma, Y.; Hojo, H.; Singh, B.G.; Priyadarsini, K.I.; Iwaoka, M. Antioxidative glutathione peroxidase activity of selenoglutathione. Angew. Chem. Int. Ed. Engl., 2011, 50(9), 2125-2128.
[http://dx.doi.org/10.1002/anie.201006939] [PMID: 21344566]
[210]
Zhu, S.; Du, C.; Yu, T.; Cong, X.; Liu, Y.; Chen, S.; Li, Y. Antioxidant activity of selenium-enriched peptides from the protein hydrolysate of Cardamine violifolia. J. Food Sci., 2019, 84(12), 3504-3511.
[http://dx.doi.org/10.1111/1750-3841.14843] [PMID: 31665556]
[211]
Liu, K.; Zhao, Y.; Chen, F.; Fang, Y. Purification and identification of Se-containing antioxidative peptides from enzymatic hydrolysates of Se-enriched brown rice protein. Food Chem., 2015, 187, 424-430.
[http://dx.doi.org/10.1016/j.foodchem.2015.04.086] [PMID: 25977046]
[212]
Takeda, H.; Takai, A.; Inuzuka, T.; Marusawa, H. Genetic basis of hepatitis virus-associated hepatocellular carcinoma: Linkage between infection, inflammation, and tumorigenesis. J. Gastroenterol., 2017, 52(1), 26-38.
[http://dx.doi.org/10.1007/s00535-016-1273-2] [PMID: 27714455]
[213]
Hamid, M.; Abdulrahim, Y.; Liu, D.; Qian, G.; Khan, A.; Huang, K. The hepatoprotective effect of selenium-enriched yeast and gum arabic combination on carbon tetrachloride-induced chronic liver injury in rats. J. Food Sci., 2018, 83(2), 525-534.
[http://dx.doi.org/10.1111/1750-3841.14030] [PMID: 29350750]
[214]
Hamid, M.; Abdulrahim, Y.; Liu, D.; Awad, F.N.; Omer, N.A.; Khan, A.; Huang, K. Selenium enriched yeast and Gum Arabic combination attenuate oxidative liver damage via suppression of oxidative stress, inhibition of caspase-3 and pro-inflammatory genes expression in carbon tetrachloride-intoxicated rats. Bioactive Carbohydr. Dietary Fibre, 2021, 26, 100267.
[http://dx.doi.org/10.1016/j.bcdf.2021.100267]
[215]
Tichati, L.; Trea, F.; Ouali, K. Potential role of selenium against hepatotoxicity induced by 2,4-dichlorophenoxyacetic acid in albino wistar rats. Biol. Trace Elem. Res., 2020, 194(1), 228-236.
[http://dx.doi.org/10.1007/s12011-019-01773-9] [PMID: 31190189]
[216]
Fan, C.; Jiang, J.; Yin, X.; Wong, K-H.; Zheng, W.; Chen, T. Purification of selenium-containing allophycocyanin from selenium-enriched Spirulina platensis and its hepatoprotective effect against t-BOOH-induced apoptosis. Food Chem., 2012, 134(1), 253-261.
[http://dx.doi.org/10.1016/j.foodchem.2012.02.130]
[217]
Liu, W.; Hou, T.; Shi, W.; Guo, D.; He, H. Hepatoprotective effects of selenium-biofortified soybean peptides on liver fibrosis induced by tetrachloromethane. J. Funct. Foods, 2018, 50, 183-191.
[http://dx.doi.org/10.1016/j.jff.2018.09.034]
[218]
Liu, W.; Hou, T.; Zhang, X.; He, H. TGF-β1/Smad7 signaling pathway and cell apoptosis: Two key aspects of Selenium-biofortified soybean peptide attenuating liver fibrosis. J. Funct. Foods, 2019, 63, 103583.
[http://dx.doi.org/10.1016/j.jff.2019.103583]
[219]
Umar, A.; Dunn, B.K.; Greenwald, P. Future directions in cancer prevention. Nat. Rev. Cancer, 2012, 12(12), 835-848.
[http://dx.doi.org/10.1038/nrc3397] [PMID: 23151603]
[220]
Dharap, S.S.; Wang, Y.; Chandna, P.; Khandare, J.J.; Qiu, B.; Gunaseelan, S.; Sinko, P.J.; Stein, S.; Farmanfarmaian, A.; Minko, T. Tumor-specific targeting of an anticancer drug delivery system by LHRH peptide. Proc. Natl. Acad. Sci. USA, 2005, 102(36), 12962-12967.
[http://dx.doi.org/10.1073/pnas.0504274102] [PMID: 16123131]
[221]
Hatakeyama, S.; Sugihara, K.; Shibata, T.K.; Nakayama, J.; Akama, T.O.; Tamura, N.; Wong, S.M.; Bobkov, A.A.; Takano, Y.; Ohyama, C.; Fukuda, M.; Fukuda, M.N. Targeted drug delivery to tumor vasculature by a carbohydrate mimetic peptide. Proc. Natl. Acad. Sci. USA, 2011, 108(49), 19587-19592.
[http://dx.doi.org/10.1073/pnas.1105057108] [PMID: 22114188]
[222]
Cai, L.L.; Liu, P.; Li, X.; Huang, X.; Ye, Y.Q.; Chen, F.Y.; Yuan, H.; Hu, F.Q.; Du, Y.Z. RGD peptide-mediated chitosan-based polymeric micelles targeting delivery for integrin-overexpressing tumor cells. Int. J. Nanomedicine, 2011, 6, 3499-3508.
[PMID: 22282676]
[223]
Li, C.; Wang, Y.; Zhang, X.; Deng, L.; Zhang, Y.; Chen, Z. Tumor-targeted liposomal drug delivery mediated by a diseleno bond-stabilized cyclic peptide. Int. J. Nanomedicine, 2013, 8, 1051-1062.
[http://dx.doi.org/10.2147/IJN.S40498] [PMID: 23515368]
[224]
Yan, Z.; Zhan, C.; Wen, Z.; Feng, L.; Wang, F.; Liu, Y.; Yang, X.; Dong, Q.; Liu, M.; Lu, W. LyP-1-conjugated doxorubicin-loaded liposomes suppress lymphatic metastasis by inhibiting lymph node metastases and destroying tumor lymphatics. Nanotechnology, 2011, 22(41), 415103.
[http://dx.doi.org/10.1088/0957-4484/22/41/415103] [PMID: 21914940]
[225]
Guo, X.; Shi, J.; Tang, Z.; Cui, D.; Zhang, Y. Synthesis and biological activity of seleno sunflower trypsin inhibitor analog. Chem. Biol. Drug Des., 2006, 68(6), 341-344.
[http://dx.doi.org/10.1111/j.1747-0285.2006.00457.x] [PMID: 17177897]
[226]
Yan, Z.; Wang, F.; Wen, Z.; Zhan, C.; Feng, L.; Liu, Y.; Wei, X.; Xie, C.; Lu, W. LyP-1-conjugated PEGylated liposomes: a carrier system for targeted therapy of lymphatic metastatic tumor. J. Control. Release, 2012, 157(1), 118-125.
[http://dx.doi.org/10.1016/j.jconrel.2011.07.034] [PMID: 21827801]
[227]
Liao, W.; Zhang, R.; Dong, C.; Yu, Z.; Ren, J. Novel walnut peptide-selenium hybrids with enhanced anticancer synergism: Facile synthesis and mechanistic investigation of anticancer activity. Int. J. Nanomedicine, 2016, 11, 1305-1321.
[PMID: 27143875]
[228]
Gadakh, B.; Van Aerschot, A. Renaissance in antibiotic discovery: Some novel approaches for finding drugs to treat bad bugs. Curr. Med. Chem., 2015, 22(18), 2140-2158.
[http://dx.doi.org/10.2174/0929867322666150319115828] [PMID: 25787965]
[229]
Penesyan, A.; Gillings, M.; Paulsen, I.T. Antibiotic discovery: combatting bacterial resistance in cells and in biofilm communities. Molecules, 2015, 20(4), 5286-5298.
[http://dx.doi.org/10.3390/molecules20045286] [PMID: 25812150]
[230]
Giurg, M.; Gołąb, A.; Suchodolski, J.; Kaleta, R.; Krasowska, A.; Piasecki, E.; Piętka-Ottlik, M. Reaction of bis[(2-chlorocarbonyl)phenyl] diselenide with phenols, aminophenols, and other amines towards diphenyl diselenides with antimicrobial and antiviral properties. Molecules, 2017, 22(6), 974.
[http://dx.doi.org/10.3390/molecules22060974] [PMID: 28604620]
[231]
Jastrzebska, I.; Mellea, S.; Salerno, V.; Grzes, P.A.; Siergiejczyk, L.; Niemirowicz-Laskowska, K.; Bucki, R.; Monti, B.; Santi, C. PhSeZnCl in the synthesis of steroidal β-hydroxy-phenylselenides having antibacterial activity. Int. J. Mol. Sci., 2019, 20(9), 2121.
[http://dx.doi.org/10.3390/ijms20092121] [PMID: 31032813]
[232]
Asquith, C.R.M.; Meili, T.; Laitinen, T.; Baranovsky, I.V.; Konstantinova, L.S.; Poso, A.; Rakitin, O.A.; Hofmann-Lehmann, R. Synthesis and comparison of substituted 1,2,3-dithiazole and 1,2,3-thiaselenazole as inhibitors of the feline immunodeficiency virus (FIV) nucleocapsid protein as a model for HIV infection. Bioorg. Med. Chem. Lett., 2019, 29(14), 1765-1768.
[http://dx.doi.org/10.1016/j.bmcl.2019.05.016] [PMID: 31101470]
[233]
Sancineto, L.; Mariotti, A.; Bagnoli, L.; Marini, F.; Desantis, J.; Iraci, N.; Santi, C.; Pannecouque, C.; Tabarrini, O. Design and synthesis of diselenobisbenzamides (DISeBAs) as nucleocapsid protein 7 (NCp7) inhibitors with anti-HIV activity. J. Med. Chem., 2015, 58(24), 9601-9614.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01183] [PMID: 26613134]
[234]
Tran, P.; Kopel, J.; Fralick, J.A.; Reid, T.W. The use of an organo-selenium peptide to develop new antimicrobials that target a specific bacteria. Antibiotics (Basel), 2021, 10(6), 611.
[http://dx.doi.org/10.3390/antibiotics10060611] [PMID: 34063816]
[235]
Schepetkin, I.A.; Quinn, M.T. Botanical polysaccharides: Macrophage immunomodulation and therapeutic potential. Int. Immunopharmacol., 2006, 6(3), 317-333.
[http://dx.doi.org/10.1016/j.intimp.2005.10.005] [PMID: 16428067]
[236]
Kápolna, E.; Fodor, P. Bioavailability of selenium from selenium-enriched green onions (Allium fistulosum) and chives (Allium schoenoprasum) after ‘in vitro’ gastrointestinal digestion. Int. J. Food Sci. Nutr., 2007, 58(4), 282-296.
[http://dx.doi.org/10.1080/09637480601154335] [PMID: 17566890]
[237]
Oropeza-Moe, M.; Wisløff, H.; Bernhoft, A. Selenium deficiency associated porcine and human cardiomyopathies. J. Trace Elem. Med. Biol., 2015, 31, 148-156.
[http://dx.doi.org/10.1016/j.jtemb.2014.09.011] [PMID: 25456335]
[238]
Chen, L.; Yang, F.; Xu, J.; Hu, Y.; Hu, Q.; Zhang, Y.; Pan, G. Determination of selenium concentration of rice in china and effect of fertilization of selenite and selenate on selenium content of rice. J. Agric. Food Chem., 2002, 50(18), 5128-5130.
[http://dx.doi.org/10.1021/jf0201374] [PMID: 12188618]
[239]
Wang, Y-D.; Wang, X.; Wong, Y-S. Generation of selenium-enriched rice with enhanced grain yield, selenium content and bioavailability through fertilisation with selenite. Food Chem., 2013, 141(3), 2385-2393.
[http://dx.doi.org/10.1016/j.foodchem.2013.05.095] [PMID: 23870972]
[240]
Wu, J.; Li, P.; Shi, Y.; Fang, Y.; Zhu, Y.; Fan, F.; Pei, F.; Xia, J.; Xie, M.; Hu, Q. Neuroprotective effects of two selenium-containing peptides, TSeMMM and SeMDPGQQ, derived from selenium-enriched rice protein hydrolysates on Pb2+-induced oxidative stress in HT22 cells. Food Chem. Toxicol., 2020, 135, 110932.
[http://dx.doi.org/10.1016/j.fct.2019.110932] [PMID: 31682935]
[241]
Singh, A.V.; Chandrasekar, V.; Janapareddy, P.; Mathews, D.E.; Laux, P.; Luch, A.; Yang, Y.; Garcia-Canibano, B.; Balakrishnan, S.; Abinahed, J.; Al Ansari, A.; Dakua, S.P. Emerging application of nanorobotics and artificial intelligence to cross the bbb: Advances in design, controlled maneuvering, and targeting of the barriers. ACS Chem. Neurosci., 2021, 12(11), 1835-1853.
[http://dx.doi.org/10.1021/acschemneuro.1c00087] [PMID: 34008957]
[242]
Singh, A.V.; Maharjan, R.S.; Kromer, C.; Laux, P.; Luch, A.; Vats, T.; Chandrasekar, V.; Dakua, S.P.; Park, B-W. Advances in smoking related in vitro inhalation toxicology: A perspective case of challenges and opportunities from progresses in lung-on-chip technologies. Chem. Res. Toxicol., 2021, 34(9), 1984-2002.
[http://dx.doi.org/10.1021/acs.chemrestox.1c00219] [PMID: 34397218]
[243]
Christophersen, B.O. Formation of monohydroxy-polyenic fatty acids from lipid peroxides by a glutathione peroxidase. Biochim. Biophys. Acta, 1968, 164(1), 35-46.
[http://dx.doi.org/10.1016/0005-2760(68)90068-4] [PMID: 5680294]
[244]
Little, C.; O’Brien, P.J. An intracellular GSH-peroxidase with a lipid peroxide substrate. Biochem. Biophys. Res. Commun., 1968, 31(2), 145-150.
[http://dx.doi.org/10.1016/0006-291X(68)90721-3] [PMID: 5656060]
[245]
Ursini, F. Selenium-Dependent Peroxidases. Oxidative Processes and Antioxidants, 1994, 1, 25.
[246]
Brigelius-Flohé, R. Tissue-specific functions of individual glutathione peroxidases. Free Radic. Biol. Med., 1999, 27(9-10), 951-965.
[http://dx.doi.org/10.1016/S0891-5849(99)00173-2] [PMID: 10569628]
[247]
Rocher, C.; Lalanne, J.L.; Chaudière, J. Purification and properties of a recombinant sulfur analog of murine selenium-glutathione peroxidase. Eur. J. Biochem., 1992, 205(3), 955-960.
[http://dx.doi.org/10.1111/j.1432-1033.1992.tb16862.x] [PMID: 1577013]
[248]
Maiorino, M.; Gregolin, C.; Ursini, F. Phospholipid hydroperoxide glutathione peroxidase. Methods Enzymol., 1990, 186, 448-457.
[http://dx.doi.org/10.1016/0076-6879(90)86139-M] [PMID: 2233312]
[249]
Davis, R.L.; Lavine, C.L.; Arredondo, M.A.; McMahon, P.; Tenner, T.E., Jr Differential indicators of diabetes-induced oxidative stress in New Zealand White rabbits: Role of dietary vitamin E supplementation. Int. J. Exp. Diabetes Res., 2002, 3(3), 185-192.
[http://dx.doi.org/10.1080/15604280214279] [PMID: 12458660]
[250]
Forgione, M.A.; Cap, A.; Liao, R.; Moldovan, N.I.; Eberhardt, R.T.; Lim, C.C.; Jones, J.; Goldschmidt-Clermont, P.J.; Loscalzo, J. Heterozygous cellular glutathione peroxidase deficiency in the mouse: Abnormalities in vascular and cardiac function and structure. Circulation, 2002, 106(9), 1154-1158.
[http://dx.doi.org/10.1161/01.CIR.0000026820.87824.6A] [PMID: 12196344]
[251]
Burke, M.P.; Opeskin, K. Fulminant heart failure due to selenium deficiency cardiomyopathy (Keshan disease). Med. Sci. Law, 2002, 42(1), 10-13.
[http://dx.doi.org/10.1177/002580240204200103] [PMID: 11848134]
[252]
Babizhayev, M.A. Failure to withstand oxidative stress induced by phospholipid hydroperoxides as a possible cause of the lens opacities in systemic diseases and ageing. Biochim. Biophys. Acta, 1996, 1315(2), 87-99.
[http://dx.doi.org/10.1016/0925-4439(95)00091-7] [PMID: 8608175]
[253]
Behne, D.; Kyriakopoulos, A. Mammalian selenium-containing proteins. Annu. Rev. Nutr., 2001, 21(1), 453-473.
[http://dx.doi.org/10.1146/annurev.nutr.21.1.453] [PMID: 11375445]
[254]
Sies, H. Ebselen, a selenoorganic compound as glutathione peroxidase mimic. Free Radic. Biol. Med., 1993, 14(3), 313-323.
[http://dx.doi.org/10.1016/0891-5849(93)90028-S] [PMID: 8458589]
[255]
Dawson, D.A.; Masayasu, H.; Graham, D.I.; Macrae, I.M. The neuroprotective efficacy of ebselen (a glutathione peroxidase mimic) on brain damage induced by transient focal cerebral ischaemia in the rat. Neurosci. Lett., 1995, 185(1), 65-69.
[http://dx.doi.org/10.1016/0304-3940(94)11226-9] [PMID: 7731557]
[256]
Yamaguchi, T.; Sano, K.; Takakura, K.; Saito, I.; Shinohara, Y.; Asano, T.; Yasuhara, H. Ebselen in acute ischemic stroke: A placebo-controlled, double-blind clinical trial. Stroke, 1998, 29(1), 12-17.
[http://dx.doi.org/10.1161/01.STR.29.1.12] [PMID: 9445321]
[257]
Müller, A.; Cadenas, E.; Graf, P.; Sies, H. A novel biologically active seleno-organic compound--I. Glutathione peroxidase-like activity in vitro and antioxidant capacity of PZ 51 (Ebselen). Biochem. Pharmacol., 1984, 33(20), 3235-3239.
[PMID: 6487370]
[258]
Wendel, A.; Fausel, M.; Safayhi, H.; Tiegs, G.; Otter, R. A novel biologically active seleno-organic compound--II. Activity of PZ 51 in relation to glutathione peroxidase. Biochem. Pharmacol., 1984, 33(20), 3241-3245.
[http://dx.doi.org/10.1016/0006-2952(84)90084-4] [PMID: 6487371]
[259]
Ziegler, D.M.; Graf, P.; Poulsen, L.L.; Stahl, W.; Sies, H. NADPH-dependent oxidation of reduced ebselen, 2-selenylbenzanilide, and of 2-(methylseleno)benzanilide catalyzed by pig liver flavin-containing monooxygenase. Chem. Res. Toxicol., 1992, 5(2), 163-166.
[http://dx.doi.org/10.1021/tx00026a004] [PMID: 1643246]
[260]
Akerboom, T.P.; Sies, H.; Ziegler, D.M. The oxidation of ebselen metabolites to thiol oxidants catalyzed by liver microsomes and perfused rat liver. Arch. Biochem. Biophys., 1995, 316(1), 220-226.
[http://dx.doi.org/10.1006/abbi.1995.1031] [PMID: 7840620]
[261]
Chen, G.P.; Ziegler, D.M. Liver microsome and flavin-containing monooxygenase catalyzed oxidation of organic selenium compounds. Arch. Biochem. Biophys., 1994, 312(2), 566-572.
[http://dx.doi.org/10.1006/abbi.1994.1346] [PMID: 8037472]
[262]
Chaudiere, J.; Courtin, O.; Leclaire, J. Glutathione oxidase activity of selenocystamine: a mechanistic study. Arch. Biochem. Biophys., 1992, 296(1), 328-336.
[http://dx.doi.org/10.1016/0003-9861(92)90580-P] [PMID: 1605642]
[263]
Cotgreave, I.A.; Morgenstern, R.; Engman, L.; Ahokas, J. Characterisation and quantitation of a selenol intermediate in the reaction of ebselen with thiols. Chem. Biol. Interact., 1992, 84(1), 69-76.
[http://dx.doi.org/10.1016/0009-2797(92)90121-Z] [PMID: 1394616]
[264]
Maiorino, M.; Roveri, A.; Coassin, M.; Ursini, F. Kinetic mechanism and substrate specificity of glutathione peroxidase activity of ebselen (PZ51). Biochem. Pharmacol., 1988, 37(11), 2267-2271.
[http://dx.doi.org/10.1016/0006-2952(88)90591-6] [PMID: 3377822]
[265]
Morgenstern, R.; Cotgreave, I.A.; Engman, L. Determination of the relative contributions of the diselenide and selenol forms of ebselen in the mechanism of its glutathione peroxidase-like activity. Chem. Biol. Interact., 1992, 84(1), 77-84.
[http://dx.doi.org/10.1016/0009-2797(92)90122-2] [PMID: 1394617]
[266]
Haenen, G.R.; De Rooij, B.M.; Vermeulen, N.P.; Bast, A. Mechanism of the reaction of ebselen with endogenous thiols: Dihydrolipoate is a better cofactor than glutathione in the peroxidase activity of ebselen. Mol. Pharmacol., 1990, 37(3), 412-422.
[PMID: 2107391]
[267]
Biewenga, G.P.; Bast, A. Reaction of lipoic acid with ebselen and hypochlorous acid. Methods Enzymol., 1995, 251, 303-314.
[http://dx.doi.org/10.1016/0076-6879(95)51133-4] [PMID: 7651210]
[268]
Reich, H.J.; Jasperse, C.P. Organoselenium chemistry. Redox chemistry of selenocysteine model systems. J. Am. Chem. Soc., 1987, 109(18), 5549-5551.
[http://dx.doi.org/10.1021/ja00252a055]
[269]
Parnham, M.J.; Biedermann, J.; Bittner, C.; Dereu, N.; Leyck, S.; Wetzig, H. Structure-activity relationships of a series of anti-inflammatory benzisoselenazolones (BISAs). Agents Actions, 1989, 27(3-4), 306-308.
[http://dx.doi.org/10.1007/BF01972806] [PMID: 2801314]
[270]
Jacquemin, P.V.; Christiaens, L.E.; Renson, M.J.; Evers, M.J.; Dereu, N. Synthesis of 2H, 3-4-Dihydro-1, 2-benzoselenazin-3-one and derivatives: A new heterocyclic ring system. Tetrahedron Lett., 1992, 33(27), 3863-3866.
[http://dx.doi.org/10.1016/S0040-4039(00)74805-2]
[271]
Ostrovidov, S.; Franck, P.; Joseph, D.; Martarello, L.; Kirsch, G.; Belleville, F.; Nabet, P.; Dousset, B. Screening of new antioxidant molecules using flow cytometry. J. Med. Chem., 2000, 43(9), 1762-1769.
[http://dx.doi.org/10.1021/jm991019j] [PMID: 10794693]
[272]
Sun, Y.; Li, T.; Chen, H.; Zhang, K.; Zheng, K.; Mu, Y.; Yan, G.; Li, W.; Shen, J.; Luo, G. Selenium-containing 15-mer peptides with high glutathione peroxidase-like activity. J. Biol. Chem., 2004, 279(36), 37235-37240.
[http://dx.doi.org/10.1074/jbc.M403032200] [PMID: 15148324]
[273]
He, H.; Liu, S.; Li, H.; Chen, T. Selenium–phycocyanin from selenium-enriched cultures of Nostoc sp. isolated from rice field prevents human kidney cells from paraquat-induced damage. RSC Advances, 2017, 7(68), 43266-43272.
[http://dx.doi.org/10.1039/C7RA08250A]
[274]
Stohs, S.J.; Bagchi, D. Oxidative mechanisms in the toxicity of metal ions. Free Radic. Biol. Med., 1995, 18(2), 321-336.
[http://dx.doi.org/10.1016/0891-5849(94)00159-H] [PMID: 7744317]
[275]
White, R.R.; Hardaway, C.J.; Richert, J.C.; Sneddon, J. Selenium–lead interactions in crawfish (Procambrus clarkii) in a controlled laboratory environment. Microchem. J., 2012, 102, 91-114.
[http://dx.doi.org/10.1016/j.microc.2011.12.005]
[276]
Xu, Z.; Fang, Y.; Chen, Y.; Yang, W.; Ma, N.; Pei, F.; Kimatu, B.M.; Hu, Q.; Qiu, W. Protective effects of Se-containing protein hydrolysates from Se-enriched rice against Pb(2+)-induced cytotoxicity in PC12 and RAW264.7 cells. Food Chem., 2016, 202, 396-403.
[http://dx.doi.org/10.1016/j.foodchem.2016.02.021] [PMID: 26920310]
[277]
Fang, Y.; Xu, Z.; Shi, Y.; Pei, F.; Yang, W.; Ma, N.; Kimatu, B.M.; Liu, K.; Qiu, W.; Hu, Q. Protection mechanism of Se-containing protein hydrolysates from Se-enriched rice on Pb2+-induced apoptosis in PC12 and RAW264.7 cells. Food Chem., 2017, 219, 391-398.
[http://dx.doi.org/10.1016/j.foodchem.2016.09.131] [PMID: 27765242]
[278]
Zhang, X.; He, H.; Xiang, J.; Yin, H.; Hou, T. Selenium-containing proteins/peptides from plants: A review on the structures and functions. J. Agric. Food Chem., 2020, 68(51), 15061-15073.
[http://dx.doi.org/10.1021/acs.jafc.0c05594] [PMID: 33315396]
[279]
Wang, Y.; Fang, W.; Huang, Y.; Hu, F.; Ying, Q.; Yang, W.; Xiong, B. Reduction of selenium-binding protein 1 sensitizes cancer cells to selenite via elevating extracellular glutathione: a novel mechanism of cancer-specific cytotoxicity of selenite. Free Radic. Biol. Med., 2015, 79, 186-196.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.11.015] [PMID: 25445402]
[280]
Walewska, A.; Jaśkiewicz, A.; Bulaj, G.; Rolka, K. Selenopeptide analogs of EETI-II retain potent trypsin inhibitory activities. Chem. Biol. Drug Des., 2011, 77(1), 93-97.
[http://dx.doi.org/10.1111/j.1747-0285.2010.01046.x] [PMID: 20958922]
[281]
Zhang, J.; Zhou, H.; Li, H.; Ying, Z.; Liu, X. Research progress on separation of selenoproteins/Se-enriched peptides and their physiological activities. Food Funct., 2021, 12(4), 1390-1401.
[http://dx.doi.org/10.1039/D0FO02236E] [PMID: 33464257]
[282]
Tie, M.; Li, B.; Zhuang, X.; Han, J.; Liu, L.; Hu, Y.; Li, H. Selenium speciation in soybean by high performance liquid chromatography coupled to electrospray ionization–tandem mass spectrometry (HPLC–ESI–MS/MS). Microchem. J., 2015, 123, 70-75.
[http://dx.doi.org/10.1016/j.microc.2015.05.017]
[283]
Singh, A.V.; Maharjan, R-S.; Kanase, A.; Siewert, K.; Rosenkranz, D.; Singh, R.; Laux, P.; Luch, A. Machine-learning-based approach to decode the influence of nanomaterial properties on their interaction with cells. ACS Appl. Mater. Interfaces, 2021, 13(1), 1943-1955.
[http://dx.doi.org/10.1021/acsami.0c18470] [PMID: 33373205]
[284]
Barghash, R.F.; Fawzy, I.M.; Chandrasekar, V.; Singh, A.V.; Katha, U.; Mandour, A.A. In silico modeling as a perspective in developing potential vaccine candidates and therapeutics for COVID-19. Coatings, 2021, 11(11), 1273.
[http://dx.doi.org/10.3390/coatings11111273]
[285]
Pettem, C.M.; Briens, J.M.; Janz, D.M.; Weber, L.P. Cardiometabolic response of juvenile rainbow trout exposed to dietary selenomethionine. Aquat. Toxicol., 2018, 198, 175-189.
[http://dx.doi.org/10.1016/j.aquatox.2018.02.022] [PMID: 29550715]
[286]
Naderi, M.; Salahinejad, A.; Jamwal, A.; Chivers, D.P.; Niyogi, S. Chronic dietary selenomethionine exposure induces oxidative stress, dopaminergic dysfunction, and cognitive impairment in adult zebrafish (Danio rerio). Environ. Sci. Technol., 2017, 51(21), 12879-12888.
[http://dx.doi.org/10.1021/acs.est.7b03937] [PMID: 28981273]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy