Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

General Review Article

Strategies Employed to Evade the Host Immune Response and the Mechanism of Drug Resistance in Mycobacterium tuberculosis: In Search of Finding New Targets

Author(s): Bashir A. Sheikh, Basharat A. Bhat, Zahoor Ahmad* and Manzoor A. Mir*

Volume 23, Issue 14, 2022

Published on: 27 April, 2022

Page: [1704 - 1720] Pages: 17

DOI: 10.2174/1389201023666211222164938

Price: $65

Abstract

The partial effectiveness of the host immune response to M. tuberculosis drives bacteria into a latent state, but it is difficult to eliminate the bacteria completely. Usually, this latent condition of M. tuberculosis is reversible, and reactivation of tuberculosis is the leading cause of the majority of transmission. A number of studies performed on animal models and humans have not yet provided a detailed understanding of the mechanisms or correlates of immunity of M. tuberculosis infection or why there is a significant immunity failure to remove the pathogen. Moreover, the mechanism of resistance involved in drug-resistant M. tuberculosis leads to the emergence of strains of bacteria that show significant resistance to the majority of anti-tuberculosis drugs. We have also provided the recent findings and trends regarding the development of new drug molecules to treat drug and multidrug-resistant tuberculosis and the advancements in immunotherapy in the treatment of drug-resistant tuberculosis. This article provides an in-depth and critical analysis of various strategies employed by the drug-resistant M. tuberculosis to escape the host immune response. This bacterium persists in the host for a longer period of time and leads to the development of tuberculosis infection. Furthermore, we also discussed the new targets for the effective treatment of drug-resistant tuberculosis.

Keywords: Tuberculosis, anti-tuberculosis drugs, drug delivery, drug resistance, immunotherapy, cytokines, V5 immunitor.

Graphical Abstract
[1]
Joyce, A.M. Knowledge, Attitude and Practices regarding Tuberculosis among people diagnosed with tuberculosis and their immediate household contacts in an urban health care centre in vellore. Christian Medical College, Vellore: Tamil Nadu 2020.
[2]
Velayati, A.A.; Masjedi, M.R.; Farnia, P.; Tabarsi, P.; Gha-navi, J. ZiaZarifi, A.H.; Hoffner, S.E. Emergence of new forms of totally drug-resistant tuberculosis bacilli: Super ex-tensively drug-resistant tuberculosis or totally drug-resistant strains in iran. Chest, 2009, 136(2), 420-425.
[http://dx.doi.org/10.1378/chest.08-2427] [PMID: 19349380]
[3]
Falodun, O.I.; Cadmus, I.S.; Fagade, O.E. Patterns of drug re-sistance in mycobacterium tuberculosis from tuberculosis pa-tients in ibadan nigeria. MicroMedicine., 2020, 9(1), 8-17.
[4]
Udwadia, Z.; Vendoti, D. Totally drug-resistant tuberculosis (TDR-TB) in India: Every dark cloud has a silver lining; BMJ Publishing Group Ltd, 2013.
[5]
Mir, M.A. Introduction to costimulation and costimulatory molecules., 2015.
[http://dx.doi.org/10.1016/B978-0-12-802585-7.00001-7]
[6]
Mir, M.A.; Al-Baradie, R. Tuberculosis time bomb-a global emergency: Need for alternative vaccines. Majmaah J. Health Sci., 2013, 1(1), 77-82.
[http://dx.doi.org/10.12816/0004774]
[7]
Lata, M.; Sharma, D.; Deo, N.; Tiwari, P.K.; Bisht, D.; Venka-tesan, K. Proteomic analysis of ofloxacin-mono resistant mycobacterium tuberculosis isolates. J. Proteomics, 2015, 127(Pt A), 114-121.
[http://dx.doi.org/10.1016/j.jprot.2015.07.031] [PMID: 26238929]
[8]
Sharma, D.; Bisht, D.; Khan, A.U. Potential alternative strategy against drug resistant tuberculosis: A proteomics prospect. Proteomes, 2018, 6(2), 26.
[http://dx.doi.org/10.3390/proteomes6020026] [PMID: 29843395]
[9]
Sharma, D.; Bisht, D. tuberculosis hypothetical proteins and proteins of unknown function: Hope for exploring novel re-sistance mechanisms as well as future target of drug re-sistance. Front. Microbiol., 2017, 8, 465.
[http://dx.doi.org/10.3389/fmicb.2017.00465] [PMID: 28377758]
[10]
Sharma, D.; Bisht, D. Role of bacterioferritin & ferritin in M. tuberculosis pathogenesis and drug resistance: A future per-spective by interactomic approach. Front. Cell. Infect. Microbiol., 2017, 7, 240.
[http://dx.doi.org/10.3389/fcimb.2017.00240] [PMID: 28642844]
[11]
Sharma, D.; Kumar, B.; Lata, M.; Joshi, B.; Venkatesan, K.; Shukla, S.; Bisht, D. Comparative proteomic analysis of ami-noglycosides resistant and susceptible Mycobacterium tuber-culosis clinical isolates for exploring potential drug targets. PLoS One, 2015, 10(10), e0139414.
[http://dx.doi.org/10.1371/journal.pone.0139414] [PMID: 26436944]
[12]
Sharma, D.; Lata, M.; Faheem, M.; Ullah Khan, A.; Joshi, B.; Venkatesan, K. Cloning, expression and correlation of Rv0148 to amikacin & kanamycin resistance. Curr. Proteomics, 2015, 12(2), 96-100.
[http://dx.doi.org/10.2174/157016461202150903113053]
[13]
Adrian, J.; Bonsignore, P.; Hammer, S.; Frickey, T.; Hauck, C.R. Adaptation to host-specific bacterial pathogens drives rapid evolution of a human innate immune receptor. Curr. Bio., 2019, 29(4), 616-630.
[http://dx.doi.org/10.1016/j.cub.2019.01.058]
[14]
Chai, Q.; Wang, L.; Liu, C.H.; Ge, B. New insights into the evasion of host innate immunity by mycobacterium tubercu-losis. Cell. Mol. Immunol., 2020, 17(9), 901-913.
[http://dx.doi.org/10.1038/s41423-020-0502-z] [PMID: 32728204]
[15]
Ankley, L.; Thomas, S.; Olive, A.J. Fighting persistence: How chronic infections with Mycobacterium tuberculosis evade T cell-mediated clearance and new strategies to defeat them. Infect. Immun., 2020, 88(7), e00916-e00919.
[http://dx.doi.org/10.1128/IAI.00916-19] [PMID: 32094248]
[16]
Blanc, L.; Gilleron, M.; Prandi, J.; Song, O.R.; Jang, M-S.; Gicquel, B.; Drocourt, D.; Neyrolles, O.; Brodin, P.; Tiraby, G.; Vercellone, A.; Nigou, J. Mycobacterium tuberculosis in-hibits human innate immune responses via the production of TLR2 antagonist glycolipids. Proc. Natl. Acad. Sci. USA, 2017, 114(42), 11205-11210.
[http://dx.doi.org/10.1073/pnas.1707840114] [PMID: 28973928]
[17]
Khan, N.; Gowthaman, U.; Pahari, S.; Agrewala, J.N. Manipu-lation of costimulatory molecules by intracellular pathogens: Veni, vidi, vici!! PLoS Pathog., 2012, 8(6), e1002676.
[http://dx.doi.org/10.1371/journal.ppat.1002676] [PMID: 22719245]
[18]
Lugo-Villarino, G.; Neyrolles, O. Manipulation of the mono-nuclear phagocyte system by Mycobacterium tuberculosis. Cold Spring Harb. Perspect. Med., 2014, 4(11), a018549.
[http://dx.doi.org/10.1101/cshperspect.a018549] [PMID: 25147188]
[19]
Hmama, Z.; Sendide, K.; Talal, A.; Garcia, R.; Dobos, K.; Reiner, N.E. Quantitative analysis of phagolysosome fusion in intact cells: Inhibition by mycobacterial lipoarabinomannan and rescue by an 1α,25-dihydroxyvitamin D3-phosphoinositide 3-kinase pathway. J. Cell Sci., 2004, 117(Pt 10), 2131-2140.
[http://dx.doi.org/10.1242/jcs.01072] [PMID: 15090599]
[20]
Hussain, A.; Singh, S.; Das, S.S.; Anjireddy, K.; Karpagam, S.; Shakeel, F. Nanomedicines as drug delivery carriers of anti-tubercular drugs: From pathogenesis to infection control. Curr. Drug Deliv., 2019, 16(5), 400-429.
[http://dx.doi.org/10.2174/1567201816666190201144815] [PMID: 30714523]
[21]
Vergne, I.; Gilleron, M.; Nigou, J. Manipulation of the endo-cytic pathway and phagocyte functions by mycobacterium tu-berculosis lipoarabinomannan. Front. Cell. Infect. Microbiol., 2015, 4, 187.
[http://dx.doi.org/10.3389/fcimb.2014.00187] [PMID: 25629008]
[22]
Liu, C.H.; Liu, H.; Ge, B. Innate immunity in tuberculosis: Host defense vs pathogen evasion. Cell. Mol. Immunol., 2017, 14(12), 963-975.
[http://dx.doi.org/10.1038/cmi.2017.88] [PMID: 28890547]
[23]
Goldberg, M.F.; Saini, N.K.; Porcelli, S.A. Evasion of innate and adaptive immunity by Mycobacterium tuberculosis, Microbiol spect, 2014, 2(5), 2014, pp. 747-772.
[http://dx.doi.org/10.1128/9781555818845.ch36]
[24]
Sia, J.K.; Georgieva, M.; Rengarajan, J. Innate immune defenses in human tuberculosis: An overview of the interactions be-tween mycobacterium tuberculosis and innate immune cells. J. Immunol. Res., 2015, 2015, 747543.
[25]
Nguyen, L.; Pieters, J. Mycobacterial subversion of chemo-therapeutic reagents and host defense tactics: Challenges in tuberculosis drug development. Annu. Rev. Pharmacol. Toxicol., 2009, 49, 427-453.
[http://dx.doi.org/10.1146/annurev-pharmtox-061008-103123] [PMID: 19281311]
[26]
Yu, X.; Feng, J.; Huang, L.; Gao, H.; Liu, J.; Bai, S.; Wu, B.; Xie, J. Molecular basis underlying host immunity subversion by mycobacterium tuberculosis PE/PPE family molecules. DNA Cell Biol., 2019, 38(11), 1178-1187.
[http://dx.doi.org/10.1089/dna.2019.4852] [PMID: 31580738]
[27]
Mir, M.A.; Albaradie, R.S.; Agrewala, J.N. Innate-effector immune response elicitation against tuberculosis through An-ti-B7-1 (CD80) and Anti-B7-2 (CD86) signaling in macro-phages. IJBPAS, 2013, 2(5), 1024-1043.
[28]
Corleis, B.; Korbel, D.; Wilson, R.; Bylund, J.; Chee, R.; Schaible, U.E. Escape of mycobacterium tuberculosis from oxidative killing by neutrophils. Cell. Microbiol., 2012, 14(7), 1109-1121.
[http://dx.doi.org/10.1111/j.1462-5822.2012.01783.x] [PMID: 22405091]
[29]
Urban, C.F.; Lourido, S.; Zychlinsky, A. How do microbes evade neutrophil killing? Cell. Microbiol., 2006, 8(11), 1687-1696.
[http://dx.doi.org/10.1111/j.1462-5822.2006.00792.x] [PMID: 16939535]
[30]
Roos, D.; van Bruggen, R.; Meischl, C. Oxidative killing of microbes by neutrophils. Microbes Infect., 2003, 5(14), 1307-1315.
[http://dx.doi.org/10.1016/j.micinf.2003.09.009] [PMID: 14613774]
[31]
Cooper, A.M. Cell-mediated immune responses in tuberculo-sis. Annu. Rev. Immunol., 2009, 27, 393-422.
[http://dx.doi.org/10.1146/annurev.immunol.021908.132703] [PMID: 19302046]
[32]
Velmurugan, K.; Chen, B.; Miller, J.L.; Azogue, S.; Gurses, S.; Hsu, T.; Glickman, M.; Jacobs, W.R., Jr; Porcelli, S.A.; Briken, V. Mycobacterium tuberculosis nuoG is a virulence gene that inhibits apoptosis of infected host cells. PLoS Pathog., 2007, 3(7), e110.
[http://dx.doi.org/10.1371/journal.ppat.0030110] [PMID: 17658950]
[33]
Blomgran, R.; Desvignes, L.; Briken, V.; Ernst, J.D. Mycobac-terium tuberculosis inhibits neutrophil apoptosis, leading to delayed activation of naive CD4 T cells. Cell Host Microbe, 2012, 11(1), 81-90.
[http://dx.doi.org/10.1016/j.chom.2011.11.012] [PMID: 22264515]
[34]
Behar, S.M.; Divangahi, M.; Remold, H.G. Evasion of innate immunity by mycobacterium tuberculosis: Is death an exit strategy? Nat. Rev. Microbiol., 2010, 8(9), 668-674.
[http://dx.doi.org/10.1038/nrmicro2387] [PMID: 20676146]
[35]
Briken, V.; Miller, J.L. Living on the edge: Inhibition of host cell apoptosis by mycobacterium tuberculosis. Int. Microbiol., 2008, 3(4), 415-422.
[http://dx.doi.org/10.2217/17460913.3.4.415]
[36]
Behar, S.M.; Martin, C.J.; Booty, M.G.; Nishimura, T.; Zhao, X.; Gan, H.X.; Divangahi, M.; Remold, H.G. Apoptosis is an innate defense function of macrophages against mycobacte-rium tuberculosis. Mucosal Immunol., 2011, 4(3), 279-287.
[http://dx.doi.org/10.1038/mi.2011.3] [PMID: 21307848]
[37]
Macrophages in tuberculosis: Friend or foe. Seminars in immunopathology; Springer, 2013.
[38]
van Crevel, R.; Ottenhoff, T.H.; van der Meer, J.W. Innate immunity to mycobacterium tuberculosis. Tropical diseas-es; Springer, 2003, pp. 241-247.
[39]
Bruns, H.; Stenger, S. New insights into the interaction of my-cobacterium tuberculosis and human macrophages. Future Microbiol., 2014, 9(3), 327-341.
[http://dx.doi.org/10.2217/fmb.13.164] [PMID: 24762307]
[40]
Mohareer, K.; Asalla, S.; Banerjee, S. Cell death at the cross roads of host-pathogen interaction in mycobacterium tubercu-losis infection. Tuberculosis (Edinb.), 2018, 113, 99-121.
[http://dx.doi.org/10.1016/j.tube.2018.09.007] [PMID: 30514519]
[41]
Ernst, J.D. Mechanisms of M. tuberculosis immune evasion as challenges to TB vaccine design. Cell Host Microbe, 2018, 24(1), 34-42.
[http://dx.doi.org/10.1016/j.chom.2018.06.004] [PMID: 30001523]
[42]
Lam, A.; Prabhu, R.; Gross, C.M.; Riesenberg, L.A.; Singh, V.; Aggarwal, S. Role of apoptosis and autophagy in tubercu-losis. Am. J. Physiol. Lung Cell. Mol. Physiol., 2017, 313(2), L218-L229.
[http://dx.doi.org/10.1152/ajplung.00162.2017] [PMID: 28495854]
[43]
Jordao, L.; Vieira, O.V. Tuberculosis: New aspects of an old disease. Int. J. Cell Biol., 2011, 2011, 403623.
[http://dx.doi.org/10.1155/2011/403623]
[44]
Abebe, M.; Kim, L.; Rook, G.; Aseffa, A.; Wassie, L.; Zewdie, M. Modulation of cell death by M. tuberculosis as a strategy for pathogen survival. Clini. Develop Immunol., 2011, 2011, 678570.
[45]
Romagnoli, A.; Petruccioli, E.; Palucci, I.; Camassa, S.; Carata, E.; Petrone, L.; Mariano, S.; Sali, M.; Dini, L.; Girardi, E.; Delogu, G.; Goletti, D.; Fimia, G.M. Clinical isolates of the modern Mycobacterium tuberculosis lineage 4 evade host de-fense in human macrophages through eluding IL-1β-induced autophagy. Cell Death Dis., 2018, 9(6), 624.
[http://dx.doi.org/10.1038/s41419-018-0640-8] [PMID: 29795378]
[46]
Korb, V.C.; Chuturgoon, A.A.; Moodley, D. Mycobacterium tuberculosis: Manipulator of protective immunity. Int. J. Mol. Sci., 2016, 17(3), 131.
[http://dx.doi.org/10.3390/ijms17030131] [PMID: 26927066]
[47]
Upadhyay, S.; Mittal, E.; Philips, J.A. Tuberculosis and the art of macrophage manipulation. Pathog. Dis., 2018, 76(4), fty037.
[http://dx.doi.org/10.1093/femspd/fty037] [PMID: 29762680]
[48]
Mir, M.A. Agrewala, JN Influence of CD80 and CD86 Co-Stimulation in the modulation of the activation of antigen pre-senting cells. Current Immunology Reviews, 2007, 3(3), 160-169.
[49]
Krutzik, S.R.; Sieling, P.A.; Modlin, R.L. The role of toll-like receptors in host defense against microbial infection. Curr. Opin. Immunol., 2001, 13(1), 104-108.
[http://dx.doi.org/10.1016/S0952-7915(00)00189-8] [PMID: 11154925]
[50]
Swanson, B.I.; Mukundan, H.; Sakamuri, R.M. Discovery, de-tection and use of biomarkers; Google Patents, 2017.
[51]
M.A., Mir; J.N., Agrewala Influence of CD80 and CD86 co-stimulation in the modulation of the activation of antigen presenting cells. Curr. Immunol. Rev., 2007, 3(3), 160-169.
[http://dx.doi.org/10.1016/1074-7613(95)90161-2] [PMID: 7621080]
[52]
Huff, W.X.; Kwon, J.H.; Henriquez, M.; Fetcko, K.; Dey, M. The evolving role of CD8+CD28- immunosenescent t cells in cancer immunology. Int. J. Mol. Sci., 2019, 20(11), 2810.
[http://dx.doi.org/10.3390/ijms20112810] [PMID: 31181772]
[53]
Grewal, I.S.; Flavell, R.A. The role of CD40 ligand in costimu-lation and T-cell activation. Immunol. Rev., 1996, 153, 85-106.
[http://dx.doi.org/10.1111/j.1600-065X.1996.tb00921.x] [PMID: 9010720]
[54]
M.A., Mir; J.N., Agrewala Signaling through CD80: an approach for treating lymphomas. Expert opinion on therapeutic targets, 2008, 12(8), 969-979.
[http://dx.doi.org/10.3892/ol.2020.12037] [PMID: 32934743]
[55]
Xiao, X.; Wu, Z-C.; Chou, K-C. A multi-label classifier for predicting the subcellular localization of gram-negative bacte-rial proteins with both single and multiple sites. PLoS One, 2011, 6(6), e20592.
[http://dx.doi.org/10.1371/journal.pone.0020592] [PMID: 21698097]
[56]
Bonato, V.L.; Medeiros, A.I.; Lima, V.M.; Dias, A.R.; Faccio-liti, L.H.; Silva, C.L. Downmodulation of CD18 and CD86 on macrophages and VLA-4 on lymphocytes in experimental tu-berculosis. Scand. J. Immunol., 2001, 54(6), 564-573.
[http://dx.doi.org/10.1046/j.1365-3083.2001.00996.x] [PMID: 11902331]
[57]
Saha, B.; Das, G.; Vohra, H.; Ganguly, N.K.; Mishra, G.C. Macrophage-T cell interaction in experimental mycobacterial infection. Selective regulation of co-stimulatory molecules on mycobacterium-infected macrophages and its implication in the suppression of cell-mediated immune response. Eur. J. Immunol., 1994, 24(11), 2618-2624.
[http://dx.doi.org/10.1002/eji.1830241108] [PMID: 7525297]
[58]
Agrewala, J.N.; Kumar, B.; Vohra, H. Potential role of B7-1 and CD28 molecules in immunosuppression in leprosy. Clin. Exp. Immunol., 1998, 111(1), 56-63.
[http://dx.doi.org/10.1046/j.1365-2249.1998.00463.x] [PMID: 9472661]
[59]
Fuse, S.; Zhang, W.; Usherwood, E.J. Control of memory CD8+ T cell differentiation by CD80/CD86-CD28 costimula-tion and restoration by IL-2 during the recall response. J. Immunol., 2008, 180(2), 1148-1157.
[http://dx.doi.org/10.4049/jimmunol.180.2.1148] [PMID: 18178855]
[60]
Wang, H.; Kjer-Nielsen, L.; Shi, M.; D’Souza, C.; Pediongco, T.J.; Cao, H.; Kostenko, L.; Lim, X.Y.; Eckle, S.B.G.; Meehan, B.S.; Zhu, T.; Wang, B.; Zhao, Z.; Mak, J.Y.W.; Fair-lie, D.P.; Teng, M.W.L.; Rossjohn, J.; Yu, D.; de St Groth, B.F.; Lovrecz, G.; Lu, L.; McCluskey, J.; Strugnell, R.A.; Cor-bett, A.J.; Chen, Z. IL-23 costimulates antigen-specific MAIT cell activation and enables vaccination against bacterial infec-tion. Sci. Immunol., 2019, 4(41), eaaw0402.
[http://dx.doi.org/10.1126/sciimmunol.aaw0402] [PMID: 31732518]
[61]
Bhatt, K.; Uzelac, A.; Mathur, S.; McBride, A.; Potian, J.; Sal-game, P. B7 costimulation is critical for host control of chron-ic Mycobacterium tuberculosis infection. J. Immunol., 2009, 182(6), 3793-3800.
[http://dx.doi.org/10.4049/jimmunol.0802996] [PMID: 19265158]
[62]
Herold, K.C.; Lu, J.; Rulifson, I.; Vezys, V.; Taub, D.; Grus-by, M.J.; Bluestone, J.A. Regulation of C-C chemokine pro-duction by murine T cells by CD28/B7 costimulation. J. Immunol., 1997, 159(9), 4150-4153.
[PMID: 9379007]
[63]
Arias, M.A.; Jaramillo, G.; López, Y.P.; Mejía, N.; Mejía, C.; Pantoja, A.E.; Shattock, R.J.; García, L.F.; Griffin, G.E. My-cobacterium tuberculosis antigens specifically modulate CCR2 and MCP-1/CCL2 on lymphoid cells from human pulmonary hilar lymph nodes. J. Immunol., 2007, 179(12), 8381-8391.
[http://dx.doi.org/10.4049/jimmunol.179.12.8381] [PMID: 18056384]
[64]
Kan-Sutton, C.; Jagannath, C.; Hunter, R.L. Jr Trehalose 6,6′-dimycolate on the surface of Mycobacterium tuberculosis modulates surface marker expression for antigen presentation and costimulation in murine macrophages. Microbes Infect., 2009, 11(1), 40-48.
[http://dx.doi.org/10.1016/j.micinf.2008.10.006] [PMID: 19007905]
[65]
Singh, B.; Singh, G.; Trajkovic, V.; Sharma, P. Intracellular expression of Mycobacterium tuberculosis-specific 10-kDa antigen down-regulates macrophage B7.1 expression and ni-tric oxide release. Clin. Exp. Immunol., 2003, 134(1), 70-77.
[http://dx.doi.org/10.1046/j.1365-2249.2003.02258.x] [PMID: 12974757]
[66]
Grewal, I.S.; Borrow, P.; Pamer, E.G.; Oldstone, M.B.; Flavell, R.A. The CD40-CD154 system in anti-infective host defense. Curr. Opin. Immunol., 1997, 9(4), 491-497.
[http://dx.doi.org/10.1016/S0952-7915(97)80100-8] [PMID: 9287184]
[67]
Yamauchi, P.S.; Bleharski, J.R.; Uyemura, K.; Kim, J.; Sieling, P.A.; Miller, A.; Brightbill, H.; Schlienger, K.; Rea, T.H.; Modlin, R.L. A role for CD40-CD40 ligand interactions in the generation of type 1 cytokine responses in human leprosy. J. Immunol., 2000, 165(3), 1506-1512.
[http://dx.doi.org/10.4049/jimmunol.165.3.1506] [PMID: 10903757]
[68]
Murray, R.A.; Siddiqui, M.R.; Mendillo, M.; Krahenbuhl, J.; Kaplan, G. Mycobacterium leprae inhibits dendritic cell acti-vation and maturation. J. Immunol., 2007, 178(1), 338-344.
[http://dx.doi.org/10.4049/jimmunol.178.1.338] [PMID: 17182571]
[69]
Samten, B.; Thomas, E.K.; Gong, J.; Barnes, P.F. Depressed CD40 ligand expression contributes to reduced gamma inter-feron production in human tuberculosis. Infect. Immun., 2000, 68(5), 3002-3006.
[http://dx.doi.org/10.1128/IAI.68.5.3002-3006.2000] [PMID: 10769003]
[70]
Campos-Neto, A.; Ovendale, P.; Bement, T.; Koppi, T.A.; Fanslow, W.C.; Rossi, M.A.; Alderson, M.R. CD40 ligand is not essential for the development of cell-mediated immunity and resistance to mycobacterium tuberculosis. J. Immunol., 1998, 160(5), 2037-2041.
[PMID: 9498737]
[71]
Lazarevic, V.; Myers, A.J.; Scanga, C.A.; Flynn, J.L. CD40, but not CD40L, is required for the optimal priming of T cells and control of aerosol M. tuberculosis infection. Immunity, 2003, 19(6), 823-835.
[http://dx.doi.org/10.1016/S1074-7613(03)00324-8] [PMID: 14670300]
[72]
Stewart, G.R.; Snewin, V.A.; Walzl, G.; Hussell, T.; Tormay, P.; O’Gaora, P.; Goyal, M.; Betts, J.; Brown, I.N.; Young, D.B. Overexpression of heat-shock proteins reduces survival of mycobacterium tuberculosis in the chronic phase of infection. Nat. Med., 2001, 7(6), 732-737.
[http://dx.doi.org/10.1038/89113] [PMID: 11385512]
[73]
Sakai, S.; Kawamura, I.; Okazaki, T.; Tsuchiya, K.; Uchiyama, R.; Mitsuyama, M. PD-1-PD-L1 pathway impairs T(h)1 im-mune response in the late stage of infection with mycobacte-rium bovis bacillus calmette-guérin. Int. Immunol., 2010, 22(12), 915-925.
[http://dx.doi.org/10.1093/intimm/dxq446] [PMID: 21047981]
[74]
Jurado, J.O.; Alvarez, I.B.; Pasquinelli, V.; Martínez, G.J.; Quiroga, M.F.; Abbate, E.; Musella, R.M.; Chuluyan, H.E.; García, V.E. Programmed death (PD)-1:PD-ligand 1/PD-ligand 2 pathway inhibits T cell effector functions during human tu-berculosis. J. Immunol., 2008, 181(1), 116-125.
[http://dx.doi.org/10.4049/jimmunol.181.1.116] [PMID: 18566376]
[75]
Alvarez, I.B.; Pasquinelli, V.; Jurado, J.O.; Abbate, E.; Musel-la, R.M.; de la Barrera, S.S.; García, V.E. Role played by the programmed death-1-programmed death ligand pathway dur-ing innate immunity against mycobacterium tuberculosis. J. Infect. Dis., 2010, 202(4), 524-532.
[http://dx.doi.org/10.1086/654932] [PMID: 20617899]
[76]
Lázár-Molnár, E.; Chen, B.; Sweeney, K.A.; Wang, E.J.; Liu, W.; Lin, J.; Porcelli, S.A.; Almo, S.C.; Nathenson, S.G.; Ja-cobs, W.R. Jr Programmed death-1 (PD-1)-deficient mice are extraordinarily sensitive to tuberculosis. Proc. Natl. Acad. Sci. USA, 2010, 107(30), 13402-13407.
[http://dx.doi.org/10.1073/pnas.1007394107] [PMID: 20624978]
[77]
Barber, D.L.; Mayer-Barber, K.D.; Feng, C.G.; Sharpe, A.H.; Sher, A. CD4 T cells promote rather than control tuberculosis in the absence of PD-1-mediated inhibition. J. Immunol., 2011, 186(3), 1598-1607.
[http://dx.doi.org/10.4049/jimmunol.1003304] [PMID: 21172867]
[78]
Hanekom, W.A.; Mendillo, M.; Manca, C.; Haslett, P.A.; Sid-diqui, M.R.; Barry, C., III; Kaplan, G. Mycobacterium tuber-culosis inhibits maturation of human monocyte-derived den-dritic cells in vitro. J. Infect. Dis., 2003, 188(2), 257-266.
[http://dx.doi.org/10.1086/376451] [PMID: 12854081]
[79]
Shortman, K.; Heath, W.R. Immunity or tolerance? That is the question for dendritic cells. Nat. Immunol., 2001, 2(11), 988-989.
[http://dx.doi.org/10.1038/ni1101-988] [PMID: 11685217]
[80]
Levings, M.K.; Sangregorio, R.; Roncarolo, M-G. Human cd25(+)cd4(+) t regulatory cells suppress naive and memory T cell proliferation and can be expanded in vitro without loss of function. J. Exp. Med., 2001, 193(11), 1295-1302.
[http://dx.doi.org/10.1084/jem.193.11.1295] [PMID: 11390436]
[81]
Srivastava, S.; Grace, P.S.; Ernst, J.D. Antigen export reduces antigen presentation and limits T cell control of M. tuberculo-sis. Cell Host Microbe, 2016, 19(1), 44-54.
[http://dx.doi.org/10.1016/j.chom.2015.12.003] [PMID: 26764596]
[82]
Grace, P.S.; Ernst, J.D. Suboptimal antigen presentation con-tributes to virulence of mycobacterium tuberculosis in vivo. J. Immunol., 2016, 196(1), 357-364.
[http://dx.doi.org/10.4049/jimmunol.1501494] [PMID: 26573837]
[83]
Urdahl, K.B.; Shafiani, S.; Ernst, J.D. Initiation and regulation of T-cell responses in tuberculosis. Mucosal Immunol., 2011, 4(3), 288-293.
[http://dx.doi.org/10.1038/mi.2011.10] [PMID: 21451503]
[84]
Zwane, H. Investigation of the role of the TRK potassium transporter of mycobacterium tuberculosis in intra cellular sur-vival; University of Pretoria, 2012.
[85]
Elayati, K.M.M. Inflammatory dendritic cells in the host im-mune response to mycobacteria The Role of Cellular Metabo-lism; Trinity College, 2020.
[86]
Mishra, A.; Akhtar, S.; Jagannath, C.; Khan, A. Pattern recog-nition receptors and coordinated cellular pathways involved in tuberculosis immunopathogenesis: Emerging concepts and perspectives. Mol. Immunol., 2017, 87, 240-248.
[http://dx.doi.org/10.1016/j.molimm.2017.05.001] [PMID: 28514713]
[87]
Pahari, S.; Kaur, G.; Negi, S.; Aqdas, M.; Das, D.K.; Bashir, H.; Singh, S.; Nagare, M.; Khan, J.; Agrewala, J.N. Reinforcing the functionality of mononuclear phagocyte system to control tuberculosis. Front. Immunol., 2018, 9, 193.
[http://dx.doi.org/10.3389/fimmu.2018.00193] [PMID: 29479353]
[88]
Mantegazza, A.R.; Magalhaes, J.G.; Amigorena, S.; Marks, M.S. Presentation of phagocytosed antigens by MHC class I and II. Traffic, 2013, 14(2), 135-152.
[http://dx.doi.org/10.1111/tra.12026] [PMID: 23127154]
[89]
Queval, C.J.; Brosch, R.; Simeone, R. The macrophage: A dis-puted fortress in the battle against mycobacterium tuberculo-sis. Front. Microbiol., 2017, 8, 2284.
[http://dx.doi.org/10.3389/fmicb.2017.02284] [PMID: 29218036]
[90]
Kruh-Garcia, N.A.; Wolfe, L.M.; Dobos, K.M. Deciphering the role of exosomes in tuberculosis. Tuberculosis (Edinb.), 2015, 95(1), 26-30.
[http://dx.doi.org/10.1016/j.tube.2014.10.010] [PMID: 25496995]
[91]
Sá-Nunes, A.; Bafica, A.; Antonelli, L.R.; Choi, E.Y.; Francis-chetti, I.M.; Andersen, J.F.; Shi, G.P.; Chavakis, T.; Ribeiro, J.M.; Kotsyfakis, M. The immunomodulatory action of si-alostatin L on dendritic cells reveals its potential to interfere with autoimmunity. J. Immunol., 2009, 182(12), 7422-7429.
[http://dx.doi.org/10.4049/jimmunol.0900075] [PMID: 19494265]
[92]
Agerberth, B.; Guðmundsson, G.H. Host antimicrobial de-fence peptides in human disease.Antimicrobial Peptides and Human Disease; Springer, 2006, pp. 67-90.
[http://dx.doi.org/10.1007/3-540-29916-5_3]
[93]
Sheikh, B.A.; Bhat, B.A.; Mehraj, U.; Mir, W.; Hamadani, S.; Mir, M.A. Development of new therapeutics to meet the cur-rent challenge of drug resistant tuberculosis. Curr. Pharm. Biotechnol., 2021, 22(4), 480-500.
[http://dx.doi.org/10.2174/1389201021666200628021702] [PMID: 32600226]
[94]
Seaworth, B.J.; Griffith, D.E. Therapy of multidrug resistant and extensively drug resistant tuberculosis. Tuberculosis and Nontu. berculous Mycobacterial Infections, 2017, 129-58.
[http://dx.doi.org/10.1128/9781555819866.ch9]
[95]
Dooley, S.W.; Jarvis, W.R.; Marione, W.J.; Snider, D.E. Jr Multidrug-resistant tuberculosis; American College of Physi-cians, 1992.
[96]
Jacobs, W.R., Jr; Barletta, R.G.; Udani, R.; Chan, J.; Kalkut, G.; Sosne, G.; Kieser, T.; Sarkis, G.J.; Hatfull, G.F.; Bloom, B.R. Rapid assessment of drug susceptibilities of mycobacte-rium tuberculosis by means of luciferase reporter phages. Science, 1993, 260(5109), 819-822.
[http://dx.doi.org/10.1126/science.8484123] [PMID: 8484123]
[97]
Telenti, A.; Imboden, P.; Marchesi, F.; Lowrie, D.; Cole, S.; Colston, M.J.; Matter, L.; Schopfer, K.; Bodmer, T. Detection of rifampicin-resistance mutations in mycobacterium tubercu-losis. Lancet, 1993, 341(8846), 647-650.
[http://dx.doi.org/10.1016/0140-6736(93)90417-F] [PMID: 8095569]
[98]
Dookie, N.; Rambaran, S.; Padayatchi, N.; Mahomed, S.; Nai-doo, K. Evolution of drug resistance in mycobacterium tuber-culosis: A review on the molecular determinants of resistance and implications for personalized care. J. Antimicrob. Chemother., 2018, 73(5), 1138-1151.
[http://dx.doi.org/10.1093/jac/dkx506] [PMID: 29360989]
[99]
Nasiri, M.J.; Haeili, M.; Ghazi, M.; Goudarzi, H.; Pormoham-mad, A.; Imani Fooladi, A.A.; Feizabadi, M.M. New insights in to the intrinsic and acquired drug resistance mechanisms in mycobacteria. Front. Microbiol., 2017, 8, 681.
[http://dx.doi.org/10.3389/fmicb.2017.00681] [PMID: 28487675]
[100]
Manson, A.L.; Cohen, K.A.; Abeel, T.; Desjardins, C.A.; Armstrong, D.T.; Barry, C.E., III; Brand, J.; Chapman, S.B.; Cho, S.N.; Gabrielian, A.; Gomez, J.; Jodals, A.M.; Joloba, M.; Jureen, P.; Lee, J.S.; Malinga, L.; Maiga, M.; Nordenberg, D.; Noroc, E.; Romancenco, E.; Salazar, A.; Ssengooba, W.; Ve-layati, A.A.; Winglee, K.; Zalutskaya, A.; Via, L.E.; Cassell, G.H.; Dorman, S.E.; Ellner, J.; Farnia, P.; Galagan, J.E.; Rosenthal, A.; Crudu, V.; Homorodean, D.; Hsueh, P.R.; Na-rayanan, S.; Pym, A.S.; Skrahina, A.; Swaminathan, S.; Van der Walt, M.; Alland, D.; Bishai, W.R.; Cohen, T.; Hoffner, S.; Birren, B.W.; Earl, A.M. Genomic analysis of globally diverse Mycobacterium tuberculosis strains provides insights into the emergence and spread of multidrug resistance. Nat. Genet., 2017, 49(3), 395-402.
[http://dx.doi.org/10.1038/ng.3767] [PMID: 28092681]
[101]
Chen, S.; Teng, T.; Wen, S.; Zhang, T.; Huang, H. The aceE in-volves in mycolic acid synthesis and biofilm formation in my-cobacterium smematis. BMC Microbiol., 2020, 2020, 259.
[102]
Witzky, A.; Tollerson, R.I.I.; Ibba, M. Translational control of antibiotic resistance. Open Biol., 2019, 9(7), 190051.
[http://dx.doi.org/10.1098/rsob.190051] [PMID: 31288624]
[103]
Saravanan, M.; Niguse, S.; Abdulkader, M.; Tsegay, E.; Hailekiros, H.; Gebrekidan, A.; Araya, T.; Pugazhendhi, A. Review on emergence of drug-resistant tuberculosis (MDR & XDR-TB) and its molecular diagnosis in ethiopia. Microb. Pathog., 2018, 117, 237-242.
[http://dx.doi.org/10.1016/j.micpath.2018.02.047] [PMID: 29486274]
[104]
Nusrath Unissa, A.; Hanna, L.E. Molecular mechanisms of action, resistance, detection to the first-line anti tuberculosis drugs: Rifampicin and pyrazinamide in the post whole genome sequencing era. Tuberculosis (Edinb.), 2017, 105, 96-107.
[http://dx.doi.org/10.1016/j.tube.2017.04.008] [PMID: 28610794]
[105]
Sandhaus, S.; Chapagain, P.P.; Tse-Dinh, Y-C. Discovery of novel bacterial topoisomerase i inhibitors by use of in silico docking and in vitro assays. Sci. Rep., 2018, 8(1), 1437.
[http://dx.doi.org/10.1038/s41598-018-19944-4] [PMID: 29362471]
[106]
Dwivedi, M. Exploration of ion channels in mycobacterium tuberculosis: Implication on drug discovery and potent drug targets against tuberculosis. Curr. Chem. Biol., 2020, 14(1), 14-29.
[http://dx.doi.org/10.2174/2212796814666200310100746]
[107]
Singh, V.; Chibale, K. Strategies to combat multi-drug re-sistance in tuberculosis. Acc. Chem. Res., 2021, 54(10), 2361-2376.
[http://dx.doi.org/10.1021/acs.accounts.0c00878] [PMID: 33886255]
[108]
van der Werf, M.J.; Langendam, M.W.; Huitric, E.; Manissero, D. Multidrug resistance after inappropriate tuberculosis treat-ment: A meta-analysis. Eur Respiratory Soc, 2012, 39(6), 1511-1519.
[109]
Swain, S.S.; Sharma, D.; Hussain, T.; Pati, S. Molecular mech-anisms of underlying genetic factors and associated mutations for drug resistance in Mycobacterium tuberculosis. Emerg. Microbes Infect., 2020, 9(1), 1651-1663.
[http://dx.doi.org/10.1080/22221751.2020.1785334] [PMID: 32573374]
[110]
Marais, B.J.; Raviglione, M.C.; Donald, P.R.; Harries, A.D.; Kritski, A.L.; Graham, S.M.; El-Sadr, W.M.; Harrington, M.; Churchyard, G.; Mwaba, P.; Sanne, I.; Kaufmann, S.H.; Whit-ty, C.J.; Atun, R.; Zumla, A. Scale-up of services and research priorities for diagnosis, management, and control of tubercu-losis: A call to action. Lancet, 2010, 375(9732), 2179-2191.
[http://dx.doi.org/10.1016/S0140-6736(10)60554-5] [PMID: 20488521]
[111]
Bojang, A. Towards identifying intracellular drug targets of mycobacterium tuberculosis against hit compounds in defined growth media; University of British Columbia, 2020.
[112]
Cicchese, J.M.; Dartois, V.; Kirschner, D.E.; Linderman, J.J. Both pharmacokinetic variability and granuloma heterogeneity impact the ability of the first-line antibiotics to sterilize tuber-culosis granulomas. Front. Pharmacol., 2020, 11, 333.
[http://dx.doi.org/10.3389/fphar.2020.00333] [PMID: 32265707]
[113]
Tiberi, S.; Buchanan, R.; Caminero, J.A.; Centis, R.; Arbex, M.A.; Salazar, M.; Potter, J.; Migliori, G.B. The challenge of the new tuberculosis drugs. Presse Med., 2017, 46(2 Pt 2), e41-e51.
[http://dx.doi.org/10.1016/j.lpm.2017.01.016] [PMID: 28256383]
[114]
Qadri, H.; Haseeb, A.; Mir, M. Novel strategiesto combat the emerging drug resistance in human pathogenic microbes. Curr. Drug Targets, 2020.
[PMID: 33371847]
[115]
Braunstein, M.; Hickey, A.J.; Ekins, S. Why wait? The case for treating tuberculosis with inhaled drugs. Pharm. Res., 2019, 36(12), 166.
[http://dx.doi.org/10.1007/s11095-019-2704-6] [PMID: 31650321]
[116]
Esposito, S.; Bianchini, S.; Blasi, F. Bedaquiline and delamanid in tuberculosis. Expert Opin. Pharmacother., 2015, 16(15), 2319-2330.
[http://dx.doi.org/10.1517/14656566.2015.1080240] [PMID: 26293803]
[117]
Koul, A.; Vranckx, L.; Dendouga, N.; Balemans, W.; Van den Wyngaert, I.; Vergauwen, K.; Göhlmann, H.W.H.; Wil-lebrords, R.; Poncelet, A.; Guillemont, J.; Bald, D.; Andries, K. Diarylquinolines are bactericidal for dormant mycobacteria as a result of disturbed ATP homeostasis. J. Biol. Chem., 2008, 283(37), 25273-25280.
[http://dx.doi.org/10.1074/jbc.M803899200] [PMID: 18625705]
[118]
Andries, K.; Villellas, C.; Coeck, N.; Thys, K.; Gevers, T.; Vranckx, L.; Lounis, N.; de Jong, B.C.; Koul, A. Acquired re-sistance of mycobacterium tuberculosis to bedaquiline. PLoS One, 2014, 9(7), e102135.
[http://dx.doi.org/10.1371/journal.pone.0102135] [PMID: 25010492]
[119]
Hartkoorn, R.C.; Uplekar, S.; Cole, S.T. Cross-resistance be-tween clofazimine and bedaquiline through upregulation of MmpL5 in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2014, 58(5), 2979-2981.
[http://dx.doi.org/10.1128/AAC.00037-14] [PMID: 24590481]
[120]
Mase, S.; Chorba, T.; Lobue, P.; Castro, K. Provisional CDC guidelines for the use and safety monitoring of bedaquiline fumarate (Sirturo) for the treatment of multidrug-resistant tu-berculosis. MMWR Recomm. Rep., 2013, 62(RR-09), 1-12.
[PMID: 24157696]
[121]
Diacon, A.H.; Donald, P.R.; Pym, A.; Grobusch, M.; Patientia, R.F.; Mahanyele, R.; Bantubani, N.; Narasimooloo, R.; De Ma-rez, T.; van Heeswijk, R.; Lounis, N.; Meyvisch, P.; Andries, K.; McNeeley, D.F. Randomized pilot trial of eight weeks of bedaquiline (TMC207) treatment for multidrug-resistant tu-berculosis: Long-term outcome, tolerability, and effect on emergence of drug resistance. Antimicrob. Agents Chemother., 2012, 56(6), 3271-3276.
[http://dx.doi.org/10.1128/AAC.06126-11] [PMID: 22391540]
[122]
Tasneen, R.; Li, S-Y.; Peloquin, C.A.; Taylor, D.; Williams, K.N.; Andries, K.; Mdluli, K.E.; Nuermberger, E.L. Sterilizing activity of novel TMC207- and PA-824-containing regimens in a murine model of tuberculosis. Antimicrob. Agents Chemother., 2011, 55(12), 5485-5492.
[http://dx.doi.org/10.1128/AAC.05293-11] [PMID: 21930883]
[123]
Diacon, A.H.; Dawson, R.; von Groote-Bidlingmaier, F.; Sy-mons, G.; Venter, A.; Donald, P.R.; van Niekerk, C.; Everitt, D.; Winter, H.; Becker, P.; Mendel, C.M.; Spigelman, M.K. 14-day bactericidal activity of PA-824, bedaquiline, pyra-zinamide, and moxifloxacin combinations: A randomised tri-al. Lancet, 2012, 380(9846), 986-993.
[http://dx.doi.org/10.1016/S0140-6736(12)61080-0] [PMID: 22828481]
[124]
Cohen, K.; Maartens, G. A safety evaluation of bedaquiline for the treatment of multi-drug resistant tuberculosis. Expert Opin. Drug Saf., 2019, 18(10), 875-882.
[http://dx.doi.org/10.1080/14740338.2019.1648429] [PMID: 31339384]
[125]
Thind, M.; Rodriguez, I.; Kosari, S.; Turner, J.R. How to pre-scribe drugs with an identified proarrhythmic liability. J. Clin. Pharmacol., 2020, 60(3), 284-294.
[http://dx.doi.org/10.1002/jcph.1551] [PMID: 31743455]
[126]
Organization, W.H. WHO best-practice statement on the off-label use of bedaquiline and delamanid for the treatment of multidrug-resistant tuberculosis; World Health Organization, 2017.
[127]
Organization, WH The use of delamanid in the treatment of multidrug-resistant tuberculosis in children and adolescents: Interim policy guidance. 2016.
[128]
Machado, D.; Girardini, M.; Viveiros, M.; Pieroni, M. Chal-lenging the drug-likeness dogma for new drug discovery in tuberculosis. Front. Microbiol., 2018, 9, 1367.
[http://dx.doi.org/10.3389/fmicb.2018.01367] [PMID: 30018597]
[129]
Vasava, M.S.; Bhoi, M.N.; Rathwa, S.K.; Borad, M.A.; Nair, S.G.; Patel, H.D. Drug development against tuberculosis: Past, present and future. Indian J. Tuberc., 2017, 64(4), 252-275.
[http://dx.doi.org/10.1016/j.ijtb.2017.03.002] [PMID: 28941848]
[130]
Mallikaarjun, S.; Chapagain, M.L.; Sasaki, T.; Hariguchi, N.; Deshpande, D.; Srivastava, S.; Berg, A.; Hirota, K.; Inoue, Y.; Matsumoto, M.; Hafkin, J.; Geiter, L.; Wang, X.; Gumbo, T.; Liu, Y. Cumulative fraction of response for once-and twice-daily delamanid in patients with pulmonary multidrug-resistant tuberculosis. Antimicrob. Agents Chemother., 2020, 65(1), e01207-e01220.
[http://dx.doi.org/10.1128/AAC.01207-20] [PMID: 33106263]
[131]
Fujiwara, M.; Kawasaki, M.; Hariguchi, N.; Liu, Y.; Matsumo-to, M. Mechanisms of resistance to delamanid, a drug for My-cobacterium tuberculosis. Tuberculosis (Edinb.), 2018, 108, 186-194.
[http://dx.doi.org/10.1016/j.tube.2017.12.006] [PMID: 29523322]
[132]
Matsumoto, M.; Hashizume, H.; Tomishige, T.; Kawasaki, M.; Tsubouchi, H.; Sasaki, H.; Shimokawa, Y.; Komatsu, M. OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLoS Med., 2006, 3(11), e466.
[http://dx.doi.org/10.1371/journal.pmed.0030466] [PMID: 17132069]
[133]
Nguyen, T.V.A.; Anthony, R.M.; Cao, T.T.H.; Bañuls, A-L.; Nguyen, V.A.T.; Vu, D.H.; Nguyen, N.V.; Alffenaar, J.C. Delamanid resistance: Update and clinical management. Clin. Infect. Dis., 2020, 71(12), 3252-3259.
[http://dx.doi.org/10.1093/cid/ciaa755] [PMID: 32521000]
[134]
Organization, WH WHO consolidated guidelines on tuberculosis: Module 4: Treatment: Drug-resistant tuberculosis treatment: Online annexes. 2020.
[135]
Singh, R.; Manjunatha, U.; Boshoff, H.I.; Ha, Y.H.; Niyomrat-tanakit, P.; Ledwidge, R.; Dowd, C.S.; Lee, I.Y.; Kim, P.; Zhang, L.; Kang, S.; Keller, T.H.; Jiricek, J.; Barry, C.E., III PA-824 kills nonreplicating mycobacterium tuberculosis by intracellular no release. Science, 2008, 322(5906), 1392-1395.
[http://dx.doi.org/10.1126/science.1164571] [PMID: 19039139]
[136]
Somasundaram, S.; Anand, R.S.; Venkatesan, P.; Parama-sivan, C.N. Bactericidal activity of PA-824 against mycobacte-rium tuberculosis under anaerobic conditions and computa-tional analysis of its novel analogues against mutant Ddn re-ceptor. BMC Microbiol., 2013, 13(1), 218.
[http://dx.doi.org/10.1186/1471-2180-13-218] [PMID: 24083570]
[137]
Stover, C.K.; Warrener, P.; VanDevanter, D.R.; Sherman, D.R.; Arain, T.M.; Langhorne, M.H.; Anderson, S.W.; Towell, J.A.; Yuan, Y.; McMurray, D.N.; Kreiswirth, B.N.; Barry, C.E.; Baker, W.R. A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature, 2000, 405(6789), 962-966.
[http://dx.doi.org/10.1038/35016103] [PMID: 10879539]
[138]
Hu, Y.; Coates, A.R.; Mitchison, D.A. Comparison of the ster-ilising activities of the nitroimidazopyran PA-824 and moxi-floxacin against persisting mycobacterium tuberculosis. Int. J. Tuberc. Lung Dis., 2008, 12(1), 69-73.
[PMID: 18173880]
[139]
Olaru, I.D.; von Groote-Bidlingmaier, F.; Heyckendorf, J.; Yew, W.W.; Lange, C.; Chang, K.C. Novel drugs against tu-berculosis: A clinician’s perspective. Eur. Respir. J., 2015, 45(4), 1119-1131.
[http://dx.doi.org/10.1183/09031936.00162314] [PMID: 25431273]
[140]
Ginsberg, A.M.; Laurenzi, M.W.; Rouse, D.J.; Whitney, K.D.; Spigelman, M.K. Assessment of the effects of the nitroimid-azo-oxazine PA-824 on renal function in healthy subjects. Antimicrob. Agents Chemother., 2009, 53(9), 3726-3733.
[http://dx.doi.org/10.1128/AAC.00112-09] [PMID: 19528286]
[141]
Longmore, M.; Wilkinson, I.; Baldwin, A.; Wallin, E. Oxford handbook of clinical medicine-mini editionOUP Oxford; , 2014.
[142]
Alliance, T. FDA approves new treatment for highly drug-resistant forms of tuberculosis; New York, 2019.
[143]
Wallis, R.S.; Jakubiec, W.; Kumar, V.; Bedarida, G.; Silvia, A.; Paige, D.; Zhu, T.; Mitton-Fry, M.; Ladutko, L.; Campbell, S.; Miller, P.F. Biomarker-assisted dose selection for safety and efficacy in early development of PNU-100480 for tuberculo-sis. Antimicrob. Agents Chemother., 2011, 55(2), 567-574.
[http://dx.doi.org/10.1128/AAC.01179-10] [PMID: 21078950]
[144]
Shaw, K.J.; Barbachyn, M.R. The oxazolidinones: Past, pre-sent, and future. Ann. N. Y. Acad. Sci., 2011, 1241(1), 48-70.
[http://dx.doi.org/10.1111/j.1749-6632.2011.06330.x] [PMID: 22191526]
[145]
Lupien, A.; Vocat, A.; Foo, C.S-Y.; Blattes, E.; Gillon, J-Y.; Makarov, V.; Cole, S.T. Optimized background regimen for treatment of active tuberculosis with the next-generation ben-zothiazinone macozinone (PBTZ169). Antimicrob. Agents Chemother., 2018, 62(11), e00840-e18.
[http://dx.doi.org/10.1128/AAC.00840-18] [PMID: 30126954]
[146]
Zhu, T.; Friedrich, S.O.; Diacon, A.; Wallis, R.S. Population pharmacokinetic/pharmacodynamic analysis of the bactericid-al activities of sutezolid (PNU-100480) and its major metabo-lite against intracellular mycobacterium tuberculosis in ex vivo whole-blood cultures of patients with pulmonary tuberculosis. Antimicrob. Agents Chemother., 2014, 58(6), 3306-3311.
[http://dx.doi.org/10.1128/AAC.01920-13] [PMID: 24687496]
[147]
Reddy, V.M.; Dubuisson, T.; Einck, L.; Wallis, R.S.; Jakubiec, W.; Ladukto, L.; Campbell, S.; Nacy, C.A. SQ109 and PNU-100480 interact to kill Mycobacterium tuberculosis in vitro. J. Antimicrob. Chemother., 2012, 67(5), 1163-1166.
[http://dx.doi.org/10.1093/jac/dkr589] [PMID: 22258923]
[148]
Jia, L.; Tomaszewski, J.E.; Hanrahan, C.; Coward, L.; Noker, P.; Gorman, G.; Nikonenko, B.; Protopopova, M. Pharmaco-dynamics and pharmacokinetics of SQ109, a new diamine-based antitubercular drug. Br. J. Pharmacol., 2005, 144(1), 80-87.
[http://dx.doi.org/10.1038/sj.bjp.0705984] [PMID: 15644871]
[149]
de Knegt, G.J.; van der Meijden, A.; de Vogel, C.P.; Aarnoutse, R.E.; de Steenwinkel, J.E. Activity of moxifloxacin and linezolid against mycobacterium tuberculosis in combina-tion with potentiator drugs verapamil, timcodar, colistin and SQ109. Int. J. Antimicrob. Agents, 2017, 49(3), 302-307.
[http://dx.doi.org/10.1016/j.ijantimicag.2016.11.027] [PMID: 28162983]
[150]
Bahuguna, A.; Rawat, D.S. An overview of new antitubercular drugs, drug candidates, and their targets. Med. Res. Rev., 2020, 40(1), 263-292.
[http://dx.doi.org/10.1002/med.21602] [PMID: 31254295]
[151]
Gobedo, A.; Hwoldi, A.; Toma, A. Recent advances in the de-velopment of anti-tuberculosis drugs acting on multidrug-resistant strains: A review. Int. J. Pharm. Biol. Sci., 2015, 2, 1-18.
[152]
Makarov, V.; Manina, G.; Mikusova, K.; Möllmann, U.; Ryabova, O.; Saint-Joanis, B.; Dhar, N.; Pasca, M.R.; Buroni, S.; Lucarelli, A.P.; Milano, A.; De Rossi, E.; Belanova, M.; Bobovska, A.; Dianiskova, P.; Kordulakova, J.; Sala, C.; Ful-lam, E.; Schneider, P.; McKinney, J.D.; Brodin, P.; Chris-tophe, T.; Waddell, S.; Butcher, P.; Albrethsen, J.; Rosenkrands, I.; Brosch, R.; Nandi, V.; Bharath, S.; Gaonkar, S.; Shandil, R.K.; Balasubramanian, V.; Balganesh, T.; Tyagi, S.; Grosset, J.; Riccardi, G.; Cole, S.T. Benzothiazinones kill mycobacterium tuberculosis by blocking arabinan synthesis. Science, 2009, 324(5928), 801-804.
[http://dx.doi.org/10.1126/science.1171583] [PMID: 19299584]
[153]
Ribeiro, A.L.; Degiacomi, G.; Ewann, F.; Buroni, S.; Incande-la, M.L.; Chiarelli, L.R.; Mori, G.; Kim, J.; Contreras-Dominguez, M.; Park, Y.S.; Han, S.J.; Brodin, P.; Valentini, G.; Rizzi, M.; Riccardi, G.; Pasca, M.R. Analogous mecha-nisms of resistance to benzothiazinones and dinitroben-zamides in mycobacterium smegmatis. PLoS One, 2011, 6(11), e26675.
[http://dx.doi.org/10.1371/journal.pone.0026675] [PMID: 22069462]
[154]
Makarov, V.; Lechartier, B.; Zhang, M.; Neres, J.; van der Sar, A.M.; Raadsen, S.A.; Hartkoorn, R.C.; Ryabova, O.B.; Vocat, A.; Decosterd, L.A.; Widmer, N.; Buclin, T.; Bitter, W.; An-dries, K.; Pojer, F.; Dyson, P.J.; Cole, S.T. Towards a new combination therapy for tuberculosis with next generation benzothiazinones. EMBO Mol. Med., 2014, 6(3), 372-383.
[http://dx.doi.org/10.1002/emmm.201303575] [PMID: 24500695]
[155]
Foo, C.S-Y.; Lechartier, B.; Kolly, G.S.; Boy-Röttger, S.; Ne-res, J.; Rybniker, J.; Lupien, A.; Sala, C.; Piton, J.; Cole, S.T. Characterization of DprE1-mediated benzothiazinone re-sistance in mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2016, 60(11), 6451-6459.
[http://dx.doi.org/10.1128/AAC.01523-16] [PMID: 27527085]
[156]
Yang, S.; Li, F.; Jia, S.; Zhang, K.; Jiang, W.; Shang, Y.; Chang, K.; Deng, S.; Chen, M. Early secreted antigen ESAT-6 of mycobacterium tuberculosis promotes apoptosis of macro-phages via targeting the microRNA155-SOCS1 interaction. Cell. Physiol. Biochem., 2015, 35(4), 1276-1288.
[http://dx.doi.org/10.1159/000373950] [PMID: 25721573]
[157]
Dey, B.; Dey, R.J.; Cheung, L.S.; Pokkali, S.; Guo, H.; Lee, J-H.; Bishai, W.R. A bacterial cyclic dinucleotide activates the cytosolic surveillance pathway and mediates innate resistance to tuberculosis. Nat. Med., 2015, 21(4), 401-406.
[http://dx.doi.org/10.1038/nm.3813] [PMID: 25730264]
[158]
Herzog, E.L.; Chai, L.; Krause, D.S. Plasticity of marrow-derived stem cells. Blood, 2003, 102(10), 3483-3493.
[http://dx.doi.org/10.1182/blood-2003-05-1664] [PMID: 12893756]
[159]
Joshi, L.; Chelluri, L.K.; Gaddam, S. Mesenchymal stromal cell therapy in MDR/XDR tuberculosis: A concise review. Arch. Immunol. Ther. Exp. (Warsz.), 2015, 63(6), 427-433.
[http://dx.doi.org/10.1007/s00005-015-0347-9] [PMID: 26100384]
[160]
Khan, A.; Jagannath, C. Interactions of mycobacterium tuber-culosis with human mesenchymal stem cells. Tuberculosis host-pathogen interactions; Springer, 2019, pp. 95-111.
[http://dx.doi.org/10.1007/978-3-030-25381-3_5]
[161]
Young, C.; Walzl, G.; Du Plessis, N. Therapeutic host-directed strategies to improve outcome in tuberculosis. Mucosal Immunol., 2020, 13(2), 190-204.
[http://dx.doi.org/10.1038/s41385-019-0226-5] [PMID: 31772320]
[162]
Jiao, X.; Lo-Man, R.; Guermonprez, P.; Fiette, L.; Dériaud, E.; Burgaud, S.; Gicquel, B.; Winter, N.; Leclerc, C. Dendritic cells are host cells for mycobacteria in vivo that trigger innate and acquired immunity. J. Immunol., 2002, 168(3), 1294-1301.
[http://dx.doi.org/10.4049/jimmunol.168.3.1294] [PMID: 11801668]
[163]
Flesch, I.; Kaufmann, S.H. Mycobacterial growth inhibition by interferon-gamma-activated bone marrow macrophages and differential susceptibility among strains of mycobacterium tu-berculosis. J. Immunol., 1987, 138(12), 4408-4413.
[PMID: 3108389]
[164]
Koh, W-J.; Kwon, O.J.; Suh, G.Y.; Chung, M.P.; Kim, H.; Lee, N.Y.; Kim, T.S.; Lee, K.S. Six-month therapy with aerosolized interferon-γ for refractory multidrug-resistant pulmonary tu-berculosis. J. Korean Med. Sci., 2004, 19(2), 167-171.
[http://dx.doi.org/10.3346/jkms.2004.19.2.167] [PMID: 15082886]
[165]
Sommer, R.C. Innovative tools and in vivo methods for tuber-culosis drug discovery and development; EPFL, 2019.
[166]
Schrager, L.K.; Harris, R.C.; Vekemans, J. Research and de-velopment of new tuberculosis vaccines: A review. F1000 Res., 2018, 7, 1732.
[http://dx.doi.org/10.12688/f1000research.16521.1] [PMID: 30613395]
[167]
Balu, S.; Reljic, R.; Lewis, M.J.; Pleass, R.J.; McIntosh, R.; van Kooten, C.; van Egmond, M.; Challacombe, S.; Woof, J.M.; Ivanyi, J. A novel human IgA monoclonal antibody pro-tects against tuberculosis. J. Immunol., 2011, 186(5), 3113-3119.
[http://dx.doi.org/10.4049/jimmunol.1003189] [PMID: 21257971]
[168]
Shen, H.; Min, R.; Tan, Q.; Xie, W.; Wang, H.; Pan, H.; Zhang, L.; Xu, H.; Zhang, X.; Dai, J. The beneficial effects of adjunc-tive recombinant human interleukin-2 for multidrug resistant tuberculosis. Arch. Med. Sci., 2015, 11(3), 584-590.
[http://dx.doi.org/10.5114/aoms.2015.52362] [PMID: 26170852]
[169]
Chen, C.Y.; Yao, S.; Huang, D.; Wei, H.; Sicard, H.; Zeng, G.; Jomaa, H.; Larsen, M.H.; Jacobs, W.R., Jr; Wang, R.; Letvin, N.; Shen, Y.; Qiu, L.; Shen, L.; Chen, Z.W. Phosphoanti-gen/IL2 expansion and differentiation of Vγ2Vδ2 T cells in-crease resistance to tuberculosis in nonhuman primates. PLoS Pathog., 2013, 9(8), e1003501.
[http://dx.doi.org/10.1371/journal.ppat.1003501] [PMID: 23966854]
[170]
Fallahi-Sichani, M.; Flynn, J.L.; Linderman, J.J.; Kirschner, D.E. Differential risk of tuberculosis reactivation among anti-TNF therapies is due to drug binding kinetics and permeabil-ity. J. Immunol., 2012, 188(7), 3169-3178.
[http://dx.doi.org/10.4049/jimmunol.1103298] [PMID: 22379032]
[171]
Wallis, R.S.; Kyambadde, P.; Johnson, J.L.; Horter, L.; Kittle, R.; Pohle, M.; Ducar, C.; Millard, M.; Mayanja-Kizza, H.; Whalen, C.; Okwera, A. A study of the safety, immunology, virology, and microbiology of adjunctive etanercept in HIV-1-associated tuberculosis. AIDS, 2004, 18(2), 257-264.
[http://dx.doi.org/10.1097/00002030-200401230-00015] [PMID: 15075543]
[172]
Achkar, J.M.; Casadevall, A.; Glatman-Freedman, A. Immu-nological options for the treatment of tuberculosis: Evaluation of novel therapeutic approaches. Expert Rev. Anti Infect. Ther., 2007, 5(3), 461-474.
[http://dx.doi.org/10.1586/14787210.5.3.461] [PMID: 17547510]
[173]
Selwyn, P.A.; Hartel, D.; Wasserman, W.; Drucker, E. Impact of the AIDS epidemic on morbidity and mortality among in-travenous drug users in a New York City methadone mainte-nance program. Am. J. Public Health, 1989, 79(10), 1358-1362.
[http://dx.doi.org/10.2105/AJPH.79.10.1358] [PMID: 2782502]
[174]
Abate, G.; Hoft, D.F. Immunotherapy for tuberculosis: Future prospects. ImmunoTargets Ther., 2016, 5, 37-45.
[PMID: 27529060]
[175]
Portela, A.; Esteller, M. Epigenetic modifications and human disease. Nat. Biotechnol., 2010, 28(10), 1057-1068.
[http://dx.doi.org/10.1038/nbt.1685] [PMID: 20944598]
[176]
Arrowsmith, C.H.; Bountra, C.; Fish, P.V.; Lee, K.; Schapira, M. Epigenetic protein families: A new frontier for drug dis-covery. Nat. Rev. Drug Discov., 2012, 11(5), 384-400.
[http://dx.doi.org/10.1038/nrd3674] [PMID: 22498752]
[177]
Haberland, M.; Montgomery, R.L.; Olson, E.N. The many roles of histone deacetylases in development and physiology: Implications for disease and therapy. Nat. Rev. Genet., 2009, 10(1), 32-42.
[http://dx.doi.org/10.1038/nrg2485] [PMID: 19065135]
[178]
Lewies, A.; Du Plessis, L.H.; Wentzel, J.F. Antimicrobial pep-tides: The Achilles’ heel of antibiotic resistance? Probiotics Antimicrob. Proteins, 2019, 11(2), 370-381.
[http://dx.doi.org/10.1007/s12602-018-9465-0] [PMID: 30229514]
[179]
Chandran, A.; Antony, C.; Jose, L.; Mundayoor, S.; Natarajan, K.; Kumar, R.A. Mycobacterium tuberculosis infection induc-es HDAC1-mediated suppression of IL-12B gene expression in macrophages. Front. Cell. Infect. Microbiol., 2015, 5, 90.
[http://dx.doi.org/10.3389/fcimb.2015.00090] [PMID: 26697414]
[180]
Wang, X.; Tang, X.; Zhou, Z.; Huang, Q. Histone deacetylase 6 inhibitor enhances resistance to mycobacterium tuberculosis infection through innate and adaptive immunity in mice. Pathog. Dis., 2018, 76(6), fty064.
[http://dx.doi.org/10.1093/femspd/fty064] [PMID: 30085165]
[181]
Batdelger, D.; Dandii, D.; Jirathitikal, V.; Bourinbaiar, A.S. Open-label trial of therapeutic immunization with oral V-5 Immunitor (V5) vaccine in patients with chronic hepatitis C. Vaccine, 2008, 26(22), 2733-2737.
[http://dx.doi.org/10.1016/j.vaccine.2008.03.021] [PMID: 18455842]
[182]
Butov, D.A.; Pashkov, Y.N.; Stepanenko, A.L.; Choporova, A.I.; Butova, T.S.; Batdelger, D.; Jirathitikal, V.; Bourinbaiar, A.S.; Zaitzeva, S.I. Phase IIb randomized trial of adjunct im-munotherapy in patients with first-diagnosed tuberculosis, re-lapsed and multi-drug-resistant (MDR) TB. J. Immune Based Ther. Vaccines, 2011, 9(1), 3.
[http://dx.doi.org/10.1186/1476-8518-9-3] [PMID: 21244690]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy