Review Article

糖衍生脒和同系物:结构、糖苷酶抑制和应用

卷 29, 期 7, 2022

发表于: 11 February, 2022

页: [1271 - 1292] 页: 22

弟呕挨: 10.2174/0929867329666211222164545

价格: $65

摘要

糖苷酶是负责分解糖缀合物(包括二糖、寡糖和多糖)的酶,存在于所有生命王国中。糖苷键的极端化学稳定性与糖苷酶实现的催化速率相结合,使它们成为所有酶中最精通的。鉴于它们在体内的多种作用,对这些酶的抑制非常有吸引力,具有治疗从溶酶体贮积症和糖尿病到病毒感染等大量疾病的潜力。因此,在过去的 30 年中,人们投入了巨大的努力来设计和合成糖苷酶抑制剂,从而导致了目前市场上的许多药物。在已公开的大量结构中,掺入脒部分的糖因其糖苷酶过渡态样结构而成为世界各地许多研究小组的焦点。在这篇综述中,我们报告并讨论了这些分子的结构、抑制谱和用途,包括相关的结构同源物作为过渡态类似物。

关键词: 糖苷酶、抑制剂、过渡态、脒、氧碳鎓、酶

[1]
Wolfenden, R.; Lu, X.; Young, G. Spontaneous hydrolysis of glycosides. J. Am. Chem. Soc., 1998, 120(27), 6814-6815.
[http://dx.doi.org/10.1021/ja9813055]
[2]
Pereira, D.M.; Valentão, P.; Andrade, P.B. Tuning protein folding in lysosomal storage diseases: the chemistry behind pharmacological chaperones. Chem. Sci. (Camb.), 2018, 9(7), 1740-1752.
[http://dx.doi.org/10.1039/C7SC04712F] [PMID: 29719681]
[3]
Sánchez-Fernández, E.M.; García Fernández, J.M.; Mellet, C.O. Glycomimetic-based pharmacological chaperones for lysosomal storage disorders: lessons from Gaucher, GM1-gangliosidosis and Fabry diseases. Chem. Commun. (Camb.), 2016, 52(32), 5497-5515.
[http://dx.doi.org/10.1039/C6CC01564F] [PMID: 27043200]
[4]
Krentz, A.J.; Bailey, C.J. Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs, 2005, 65(3), 385-411.
[http://dx.doi.org/10.2165/00003495-200565030-00005] [PMID: 15669880]
[5]
Chang, J.; Block, T.M.; Guo, J-T. Antiviral therapies targeting host ER alpha-glucosidases: current status and future directions. Antiviral Res., 2013, 99(3), 251-260.
[http://dx.doi.org/10.1016/j.antiviral.2013.06.011] [PMID: 23816430]
[6]
(a)Lillelund, V.H.; Jensen, H.H.; Liang, X.; Bols, M. Recent developments of transition-state analogue glycosidase inhibitors of non-natural product origin. Chem. Rev., 2002, 102(2), 515-553.
[http://dx.doi.org/10.1021/cr000433k] [PMID: 11841253]
(b)Asano, N. Glycosidase inhibitors: update and perspectives on practical use. Glycobiology, 2003, 13(10), 93R-104R.
[http://dx.doi.org/10.1093/glycob/cwg090] [PMID: 12851286]
(c)Asano, N. Naturally occurring iminosugars and related compounds: structure, distribution, and biological activity. Curr. Top. Med. Chem., 2003, 3(5), 471-484.
[http://dx.doi.org/10.2174/1568026033452438] [PMID: 12570862]
(d)Wadood, A.; Ghufran, M.; Khan, A.; Azam, S.S.; Jelani, M.; Uddin, R. Selective glycosidase inhibitors: A patent review (2012-present). Int. J. Biol. Macromol., 2018, 111, 82-91.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.148] [PMID: 29305216]
(e)Conforti, I.; Marra, A. Iminosugars as glycosyltransferase inhibitors. Org. Biomol. Chem., 2021, 19(25), 5439-5475. [Erratum in: Org Biomol Chem. 2021 Jun 18;].
[http://dx.doi.org/10.1039/D1OB00382H] [PMID: 33881114]
[7]
Wiley, J., Eds.; Compain, P; Martin, O.R., Eds.; Iminosugars: From Synthesis to Therapeutic Applications; J. Wiley: Chichester, West Sussex, England; Hoboken, NJ, USA. , 2007.
[8]
Nash, R.J.; Kato, A.; Yu, C-Y.; Fleet, G.W. Iminosugars as therapeutic agents: recent advances and promising trends. Future Med. Chem., 2011, 3(12), 1513-1521.
[http://dx.doi.org/10.4155/fmc.11.117] [PMID: 21882944]
[9]
Vocadlo, D.J.; Davies, G.J. Mechanistic insights into glycosidase chemistry. Curr. Opin. Chem. Biol., 2008, 12(5), 539-555.
[http://dx.doi.org/10.1016/j.cbpa.2008.05.010] [PMID: 18558099]
[10]
(a)Pauling, L. Nature of forces between large molecules of biological interest. Nature, 1948, 161(4097), 707-709.
[http://dx.doi.org/10.1038/161707a0] [PMID: 18860270]
(b)Wicki, J.; Williams, S.J.; Withers, S.G. Transition-state mimicry by glycosidase inhibitors: a critical kinetic analysis. J. Am. Chem. Soc., 2007, 129(15), 4530-4531.
[http://dx.doi.org/10.1021/ja0707254] [PMID: 17385869]
(c)Gloster, T.M.; Meloncelli, P.; Stick, R.V.; Zechel, D.; Vasella, A.; Davies, G.J. Glycosidase inhibition: an assessment of the binding of 18 putative transition-state mimics. J. Am. Chem. Soc., 2007, 129(8), 2345-2354.
[http://dx.doi.org/10.1021/ja066961g] [PMID: 17279749]
[11]
Wolfenden, R.; Snider, M.J. The depth of chemical time and the power of enzymes as catalysts. Acc. Chem. Res., 2001, 34(12), 938-945.
[http://dx.doi.org/10.1021/ar000058i] [PMID: 11747411]
[12]
Martin, A.; Arda, A.; Désiré, J.; Martin-Mingot, A.; Probst, N.; Sinaÿ, P.; Jiménez-Barbero, J.; Thibaudeau, S.; Blériot, Y. Catching elusive glycosyl cations in a condensed phase with HF/SbF5 superacid. Nat. Chem., 2016, 8(2), 186-191.
[http://dx.doi.org/10.1038/nchem.2399] [PMID: 26791903]
[13]
Davies, G.J.; Ducros, V.M-A.; Varrot, A.; Zechel, D.L. Mapping the conformational itinerary of β-glycosidases by X-ray crystallography. Biochem. Soc. Trans., 2003, 31(Pt 3), 523-527.
[http://dx.doi.org/10.1042/bst0310523] [PMID: 12773149]
[14]
Marcelo, F.; He, Y.; Yuzwa, S.A.; Nieto, L.; Jiménez-Barbero, J.; Sollogoub, M.; Vocadlo, D.J.; Davies, G.D.; Blériot, Y. Molecular basis for inhibition of GH84 glycoside hydrolases by substituted azepanes: Conformational flexibility enables probing of substrate distortion. J. Am. Chem. Soc., 2009, 131(15), 5390-5392.
[http://dx.doi.org/10.1021/ja809776r] [PMID: 19331390]
[15]
Tong, M.K.; Papandreou, G.; Ganem, B. Potent, Broad-Spectrum Inhibition of Glycosidases by an Amidine Derivative of D-Glucose. J. Am. Chem. Soc., 1990, 112(16), 6137-6139.
[http://dx.doi.org/10.1021/ja00172a045]
[16]
Ganem, B. Inhibitors of carbohydrate-processing enzymes: design and synthesis of sugar-shaped heterocycles. Acc. Chem. Res., 1996, 29(7), 340-347.
[http://dx.doi.org/10.1021/ar9502184]
[17]
Speciale, G.; Thompson, A.J.; Davies, G.J.; Williams, S.J. Dissecting conformational contributions to glycosidase catalysis and inhibition. Curr. Opin. Struct. Biol., 2014, 28, 1-13.
[http://dx.doi.org/10.1016/j.sbi.2014.06.003] [PMID: 25016573]
[18]
Conchie, J.; Levvy, G.A. Inhibition of glycosidases by aldonolactones of corresponding configuration. Biochem. J., 1957, 65(2), 389-395.
[http://dx.doi.org/10.1042/bj0650389] [PMID: 13403921]
[19]
Aly, A.A.; El-Din, A.M.N. Functionality of amidines and amidrazones. ARKIVOC, 2008, 2008(1), 153-194.
[http://dx.doi.org/10.3998/ark.5550190.0009.106]
[20]
Sinnott, M.L. Catalytic mechanism of enzymic glycosyl transfer. Chem. Rev., 1990, 90(7), 1171-1202.
[http://dx.doi.org/10.1021/cr00105a006]
[21]
Reese, E.T.; Parrish, F.W.; Ettlinger, M. Nojirimycin and D-Glucono-1,5-lactone as inhibitors of carbohydrases. Carbohydr. Res., 1971, 18(3), 381-388.
[http://dx.doi.org/10.1016/S0008-6215(00)80274-8]
[22]
Bird, P.; Dolphin, D.H.; Withers, S.G. The synthesis of protected 5-Azido-5-Deoxy- D -glucononitriles as precursors of glycosidase inhibitors. Can. J. Chem., 1990, 68(2), 317-322.
[http://dx.doi.org/10.1139/v90-045]
[23]
Papandreou, G.; Tong, M.K.; Ganem, B. Amidine, amidrazone, and amidoxime derivatives of monosaccharide aldonolactams: Synthesis and evaluation as glycosidase inhibitors. J. Am. Chem. Soc., 1993, 115(25), 11682-11690.
[http://dx.doi.org/10.1021/ja00078a004]
[24]
Yoon, H.; King, S.B.; Ganem, B. Synthesis of 1-β-Amino-Deoxynojirimycins: a new family of glucosidase inhibitors. Tetrahedron Lett., 1991, 32(49), 7199-7202.
[http://dx.doi.org/10.1016/0040-4039(91)80475-L]
[25]
Blériot, Y.; Genre-Grandpierre, A.; Tellier, C. Synthesis of a benzylamidine derived from D-Mannose. A potent mannosidase inhibitor. Tetrahedron Lett., 1994, 35(12), 1867-1870.
[http://dx.doi.org/10.1016/S0040-4039(00)73182-0]
[26]
Kanso, R.; Yancey, E.A.; Striegler, S. N-Benzylgalactonoamidines as potent β-galactosidase inhibitors. Tetrahedron, 2012, 68(1), 47-52.
[http://dx.doi.org/10.1016/j.tet.2011.10.048]
[27]
Fan, Q-H.; Striegler, S.; Langston, R.G.; Barnett, J.D. Evaluating N-benzylgalactonoamidines as putative transition state analogs for β-galactoside hydrolysis. Org. Biomol. Chem., 2014, 12(17), 2792-2800.
[http://dx.doi.org/10.1039/C4OB00153B] [PMID: 24668069]
[28]
Fan, Q-H.; Claunch, K.A.; Striegler, S. Structure-activity relationship of highly potent galactonoamidine inhibitors toward β-galactosidase (Aspergillus oryzae). J. Med. Chem., 2014, 57(21), 8999-9009.
[http://dx.doi.org/10.1021/jm501111y] [PMID: 25295392]
[29]
Pickens, J.B.; Wang, F.; Striegler, S. Picomolar inhibition of β-galactosidase (bovine liver) attributed to loop closure. Bioorg. Med. Chem., 2017, 25(20), 5194-5202.
[http://dx.doi.org/10.1016/j.bmc.2017.07.020] [PMID: 28844803]
[30]
Pickens, J.B.; Striegler, S.; Fan, Q-H. Arabinoamidine synthesis and its inhibition toward β-glucosidase (sweet almonds) in comparison to a library of galactonoamidines. Bioorg. Med. Chem., 2016, 24(16), 3371-3377.
[http://dx.doi.org/10.1016/j.bmc.2016.04.069] [PMID: 27298003]
[31]
Heck, M-P.; Vincent, S.P.; Murray, B.W.; Bellamy, F.; Wong, C-H.; Mioskowski, C. Cyclic amidine sugars as transition-state analogue inhibitors of glycosidases: potent competitive inhibitors of mannosidases. J. Am. Chem. Soc., 2004, 126(7), 1971-1979.
[http://dx.doi.org/10.1021/ja037822r] [PMID: 14971930]
[32]
Tailford, L.E.; Offen, W.A.; Smith, N.L.; Dumon, C.; Morland, C.; Gratien, J.; Heck, M-P.; Stick, R.V.; Blériot, Y.; Vasella, A.; Gilbert, H.J.; Davies, G.J. Structural and biochemical evidence for a boat-like transition state in β-mannosidases. Nat. Chem. Biol., 2008, 4(5), 306-312.
[http://dx.doi.org/10.1038/nchembio.81] [PMID: 18408714]
[33]
Williams, S.J.; Hoos, R.; Withers, S.G. Nanomolar versus millimolar inhibition by xylobiose-derived azasugars: Significant differences between two structurally distinct xylanases. J. Am. Chem. Soc., 2000, 122(10), 2223-2235.
[http://dx.doi.org/10.1021/ja993805j]
[34]
Varrot, A.; Tarling, C.A.; Macdonald, J.M.; Stick, R.V.; Zechel, D.L.; Withers, S.G.; Davies, G.J. Direct observation of the protonation state of an imino sugar glycosidase inhibitor upon binding. J. Am. Chem. Soc., 2003, 125(25), 7496-7497.
[http://dx.doi.org/10.1021/ja034917k] [PMID: 12812472]
[35]
Lindbäck, E.; López, O.; Fernández-Bolaños, J.G.; Sauer, S.P.A.; Bols, M. An isofagomine analogue with an amidine at the pseudoanomeric position. Org. Lett., 2011, 13(11), 2908-2911.
[http://dx.doi.org/10.1021/ol200942g] [PMID: 21548609]
[36]
Blériot, Y.; Dintinger, T.; Genre-Grandpierre, A.; Padrines, M.; Tellier, C. Inhibition of glycosidases by substituted amidines. Bioorg. Med. Chem. Lett., 1995, 5(22), 2655-2660.
[http://dx.doi.org/10.1016/0960-894X(95)00474-8]
[37]
Horne, G.; Wilson, F.X.; Tinsley, J.; Williams, D.H.; Storer, R. Iminosugars past, present and future: medicines for tomorrow. Drug Discov. Today, 2011, 16(3-4), 107-118.
[http://dx.doi.org/10.1016/j.drudis.2010.08.017] [PMID: 20817006]
[38]
Campbell, L.K.; Baker, D.E.; Campbell, R.K. Miglitol: assessment of its role in the treatment of patients with diabetes mellitus. Ann. Pharmacother., 2000, 34(11), 1291-1301.
[http://dx.doi.org/10.1345/aph.19269] [PMID: 11098345]
[39]
Lindbäck, E.; Lopéz, Ó.; Tobiesen, Å.; Fernández-Bolaños, J.G.; Sydnes, M.O. Sugar hydrazide imides: a new family of glycosidase inhibitors. Org. Biomol. Chem., 2017, 15(41), 8709-8712.
[http://dx.doi.org/10.1039/C7OB01673E] [PMID: 29039854]
[40]
Asano, N.; Nash, R.J.; Molyneux, R.J.; Fleet, G.W.J. Sugar-mimic glycosidase inhibitors: natural occurrence, biological activity and prospects for therapeutic application. Tetrahedron Asymm., 2000, 11(8), 1645-1680.
[http://dx.doi.org/10.1016/S0957-4166(00)00113-0]
[41]
Haarr, M.B.; Lopéz, Ó.; Pejov, L.; Fernández-Bolaños, J.G.; Lindbäck, E.; Sydnes, M.O. 1,4-Dideoxy-1,4-imino-D-arabinitol (DAB) analogues possessing a hydrazide imide moiety as potent and selective α-mannosidase inhibitors. ACS Omega, 2020, 5(29), 18507-18514.
[http://dx.doi.org/10.1021/acsomega.0c02466] [PMID: 32743229]
[42]
Oszczapowicz, J.; Krawczyk, W.; Lyzwinski, P. Amidines. Part 30. Influence of substitution at amino nitrogen atom on pKa values of N2-phenylacetamidines and N2-phenylformamidines. J. Chem. Soc., Perkin Trans. 2, 1990, 2, 311-314.
[http://dx.doi.org/10.1039/P29900000311]
[43]
Hall, H.K., Jr Correlation of the Base Strengths of Amines. J. Am. Chem. Soc., 1957, 79(20), 5441-5444.
[http://dx.doi.org/10.1021/ja01577a030]
[44]
Hoos, R.; Vasella, A.; Rupitz, K.; Withers, S.G. D-Glyconhydroximolactams strongly inhibit α-glycosidases. Carbohydr. Res., 1991, 298(4), 291-298.
[http://dx.doi.org/10.1016/S0008-6215(96)00320-5]
[45]
Ganem, B.; Papandreou, G. Mimicking the glucosidase transition state: shape/charge considerations. J. Am. Chem. Soc., 1991, 113(23), 8984-8985.
[http://dx.doi.org/10.1021/ja00023a078]
[46]
Pan, Y.T.; Kaushal, G.P.; Papandreou, G.; Ganem, B.; Elbein, A.D. D-mannonolactam amidrazone. A new mannosidase inhibitor that also inhibits the endoplasmic reticulum or cytoplasmic alpha-mannosidase. J. Biol. Chem., 1992, 267(12), 8313-8318.
[http://dx.doi.org/10.1016/S0021-9258(18)42444-1] [PMID: 1569086]
[47]
Schedler, D.J.A.; Bowen, B.R.; Ganem, B. A Novel inhibitor of human α-L-fucosidase: Enantioselective synthesis of L-Fucoamidrazone. Tetrahedron Lett., 1994, 35(23), 3845-3848.
[http://dx.doi.org/10.1016/S0040-4039(00)76682-2]
[48]
Notenboom, V.; Williams, S.J.; Hoos, R.; Withers, S.G.; Rose, D.R. Detailed structural analysis of glycosidase/inhibitor interactions: complexes of Cex from Cellulomonas fimi with xylobiose-derived aza-sugars. Biochemistry, 2000, 39(38), 11553-11563.
[http://dx.doi.org/10.1021/bi0010625] [PMID: 10995222]
[49]
Vasella, A.; Davies, G.J.; Böhm, M. Glycosidase mechanisms. Curr. Opin. Chem. Biol., 2002, 6(5), 619-629.
[http://dx.doi.org/10.1016/S1367-5931(02)00380-0] [PMID: 12413546]
[50]
McCullough, A.K.; Dodson, M.L.; Lloyd, R.S. Initiation of base excision repair: glycosylase mechanisms and structures. Annu. Rev. Biochem., 1999, 68(1), 255-285.
[http://dx.doi.org/10.1146/annurev.biochem.68.1.255] [PMID: 10872450]
[51]
Walsh, M.J.; Dodd, J.E.; Hautbergue, G.M. Ribosome-inactivating proteins: potent poisons and molecular tools. Virulence, 2013, 4(8), 774-784.
[http://dx.doi.org/10.4161/viru.26399] [PMID: 24071927]
[52]
Zhou, G-C.; Parikh, S.L.; Tyler, P.C.; Evans, G.B.; Furneaux, R.H.; Zubkova, O.V.; Benjes, P.A.; Schramm, V.L. Inhibitors of ADP-ribosylating bacterial toxins based on oxacarbenium ion character at their transition states. J. Am. Chem. Soc., 2004, 126(18), 5690-5698.
[http://dx.doi.org/10.1021/ja038159+] [PMID: 15125661]
[53]
Schramm, V.L.; Horenstein, B.A.; Kline, P.C. Transition state analysis and inhibitor design for enzymatic reactions. J. Biol. Chem., 1994, 269(28), 18259-18262.
[http://dx.doi.org/10.1016/S0021-9258(17)32294-9] [PMID: 8034566]
[54]
Boutellier, M.; Horenstein, B.A.; Semenyaka, A.; Schramm, V.L.; Ganem, B. Amidrazone analogues of D-ribofuranose as transition-state inhibitors of nucleoside hydrolase. Biochemistry, 1994, 33(13), 3994-4000.
[http://dx.doi.org/10.1021/bi00179a028] [PMID: 8142404]
[55]
Deng, H.; Chan, A.W-Y.; Bagdassarian, C.K.; Estupiñán, B.; Ganem, B.; Callender, R.H.; Schramm, V.L. Trypanosomal nucleoside hydrolase. Resonance Raman spectroscopy of a transition-state inhibitor complex. Biochemistry, 1996, 35(19), 6037-6047.
[http://dx.doi.org/10.1021/bi9526544] [PMID: 8634245]
[56]
Witte, J.F.; Bray, K.E.; Thornburg, C.K.; McClard, R.W. ‘Irreversible’ slow-onset inhibition of orotate phosphoribosyltransferase by an amidrazone phosphate transition-state mimic. Bioorg. Med. Chem. Lett., 2006, 16(23), 6112-6115.
[http://dx.doi.org/10.1016/j.bmcl.2006.08.109] [PMID: 16979338]
[57]
von Itzstein, M.; Wu, W-Y.; Kok, G.B.; Pegg, M.S.; Dyason, J.C.; Jin, B.; Van Phan, T.; Smythe, M.L.; White, H.F.; Oliver, S.W.; Colman, P.M.; Varghese, J.N.; Ryan, D.M.; Woods, J.M.; Bethell, R.C.; Hotham, V.J.; Cameron, J.M.; Penn, C.R. Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature, 1993, 363(6428), 418-423.
[http://dx.doi.org/10.1038/363418a0] [PMID: 8502295]
[58]
Fotsch, C.H.; Wong, C-H. Synthesis of a guanidino-sugar as a glycosyl cation mimic. Tetrahedron Lett., 1994, 35(21), 3481-3484.
[http://dx.doi.org/10.1016/S0040-4039(00)73215-1]
[59]
Chan, A.W-Y.; Ganem, B. Guanidine analogs of a deoxysugar. Tetrahedron Lett., 1995, 36(6), 811-814.
[http://dx.doi.org/10.1016/0040-4039(94)02392-O]
[60]
Lehmann, J.; Rob, B. Cyclische guanidinium-ionen als glycosylkation-analoga sind kompetitive und nichtkompetitive inhibitoren für glycosidhydrolasen. Liebigs Ann. Chem., 1994, 1994(8), 805-809.
[http://dx.doi.org/10.1002/jlac.199419940808]
[61]
Grein, F.; Deslongchamps, P. The anomeric and reverse anomeric effect. A simple energy decomposition model for acetals and protonated acetals. Can. J. Chem., 1992, 70(5), 1562-1572.
[http://dx.doi.org/10.1139/v92-192]
[62]
(a)Le, V-D.; Wong, C-H. Synthesis of 2-substituted polyhydroxytetrahydropyrimidines (N-hydroxy cyclic guanidino- sugars): transition-state mimics of enzymatic glycosidic cleavage. J. Org. Chem., 2000, 65(8), 2399-2409.
[http://dx.doi.org/10.1021/jo9915574] [PMID: 10789452]
(b)Jeong, J-H.; Murray, B.W.; Takayama, S.; Wong, C-H. Cyclic Guanidino-sugars with low pKa as transition-state analog inhibitors of glycosidases: neutral instead of charged species are the active forms. J. Am. Chem. Soc., 1996, 118(18), 4227-4234.
[http://dx.doi.org/10.1021/ja951602z]
[63]
Marra, A.; Zelli, R. Synthesis and biological properties of imino-disaccharides and -oligosaccharides. In: Carbohydrate Chemistry; Pilar Rauter, A.; Lindhorst, T.; Queneau, Y., Eds.; Royal Society of Chemistry: Cambridge, 2017; Vol. 43, pp. 1-70.
[http://dx.doi.org/10.1039/9781788010641-00001]
[64]
Goering, B.K.; Li, J.; Ganem, B. Aminocyclopentitols from fulvenes: syntheses of (+)-trehazolin and the pentasubstituted cyclopentane of keruffaride. Tetrahedron Lett., 1995, 36(49), 8905-8908.
[http://dx.doi.org/10.1016/0040-4039(95)01927-A]
[65]
Knapp, S.; Purandare, A.; Rupitz, K.; Withers, S.G.A. (1.Fwdarw.4)-”trehazoloid” glucosidase inhibitor with aglycon selectivity. J. Am. Chem. Soc., 1994, 116(16), 7461-7462.
[http://dx.doi.org/10.1021/ja00095a081]
[66]
Knapp, S.; Choe, Y.H.; Reilly, E. Amidine pseudodisaccharides. Tetrahedron Lett., 1993, 34(28), 4443-4446.
[http://dx.doi.org/10.1016/0040-4039(93)88054-M]
[67]
Blériot, Y.; Dintinger, T.; Guillo, N.; Tellier, C. Synthesis of an amidine pseudo-(1-->6)-dimannoside and evaluation as a glycosidase inhibitor. Tetrahedron Lett., 1995, 36(20), 5175-5178.
[68]
Lehmann, J.; Rob, B. Two cationic analogues of disaccharide heterolysis. Potential epitopes for preparing antibodies with saccharidase activity. Tetrahedron Asymmetry, 1994, 5(11), 2255-2260.
[http://dx.doi.org/10.1016/S0957-4166(00)86302-8]
[69]
Guo, W.; Hiratake, J.; Ogawa, K.; Yamamoto, M.; Ma, S-J.; Sakata, K. β-D-glycosylamidines: potent, selective, and easily accessible 1-glycosidase inhibitors. Bioorg. Med. Chem. Lett., 2001, 11(4), 467-470.
[http://dx.doi.org/10.1016/S0960-894X(00)00706-X] [PMID: 11229749]
[70]
Inoue, K.; Hiratake, J.; Mizutani, M.; Takada, M.; Yamamoto, M.; Sakata, K. β-glycosylamidine as a ligand for affinity chromatography tailored to the glycon substrate specificity of β-glycosidases. Carbohydr. Res., 2003, 338(14), 1477-1490.
[http://dx.doi.org/10.1016/S0008-6215(03)00201-5] [PMID: 12829393]
[71]
Kato, E.; Sasaki, T.; Ueda, M. Affinity purification and characterization of a key enzyme responsible for circadian rhythmic control of nyctinasty in Lespedeza cuneata L. Bioorg. Med. Chem., 2008, 16(8), 4600-4616.
[http://dx.doi.org/10.1016/j.bmc.2008.02.035] [PMID: 18308573]
[72]
Saino, H.; Shimizu, T.; Hiratake, J.; Nakatsu, T.; Kato, H.; Sakata, K.; Mizutani, M. Crystal structures of β-primeverosidase in complex with disaccharide amidine inhibitors. J. Biol. Chem., 2014, 289(24), 16826-16834.
[http://dx.doi.org/10.1074/jbc.M114.553271] [PMID: 24753293]
[73]
Aguilar-Moncayo, M.; García-Moreno, M.I.; Trapero, A.; Egido-Gabás, M.; Llebaria, A.; Fernández, J.M.; Mellet, C.O. Bicyclic (galacto)nojirimycin analogues as glycosidase inhibitors: effect of structural modifications in their pharmacological chaperone potential towards β-glucocerebrosidase. Org. Biomol. Chem., 2011, 9(10), 3698-3713.
[http://dx.doi.org/10.1039/c1ob05234a] [PMID: 21451818]
[74]
Brumshtein, B.; Aguilar-Moncayo, M.; García-Moreno, M.I.; Ortiz Mellet, C.; García Fernández, J.M.; Silman, I.; Shaaltiel, Y.; Aviezer, D.; Sussman, J.L.; Futerman, A.H. 6-Amino-6-deoxy-5,6-di-N-(N′-octyliminomethylidene) nojirimycin: synthesis, biological evaluation, and crystal structure in complex with acid β-glucosidase. ChemBioChem, 2009, 10(9), 1480-1485.
[http://dx.doi.org/10.1002/cbic.200900142] [PMID: 19437524]
[75]
Kooij, R.; Branderhorst, H.M.; Bonte, S.; Wieclawska, S.; Martin, N.I.; Pieters, R.J. Glycosidase inhibition by novel guanidinium and urea iminosugar derivatives. MedChemComm, 2013, 4(2), 387-393.
[http://dx.doi.org/10.1039/C2MD20343J]
[76]
Stevenson, J.D.; Thomas, N.R. Catalytic antibodies and other biomimetic catalysts. Nat. Prod. Rep., 2000, 17(6), 535-577.
[http://dx.doi.org/10.1039/b006389o] [PMID: 11152421]
[77]
Mader, M.M.; Bartlett, P.A. Binding energy and catalysis: The implications for transition-state analogs and catalytic antibodies. Chem. Rev., 1997, 97(5), 1281-1302.
[http://dx.doi.org/10.1021/cr960435y] [PMID: 11851452]
[78]
Yu, J.; Hsieh, L.C.; Kochersperger, L.; Yonkovich, S.; Stephans, J.C.; Gallop, M.A.; Schultz, P.G. Progress toward an antibody glycosidase. Angew. Chem. Int. Ed. Engl., 1994, 33(3), 339-341.
[http://dx.doi.org/10.1002/anie.199403391]
[79]
Suga, H.; Tanimoto, N.; Sinskey, A.J.; Masamune, S. Glycosidase antibodies induced to a half-chair transition-state analog. J. Am. Chem. Soc., 1994, 116(24), 11197-11198.
[http://dx.doi.org/10.1021/ja00103a061]
[80]
Blériot, Y.; Genre-Grandpierre, A.; Imberty, A.; Tellier, C. Structure and conformation of mannoamidines by NMR and molecular modeling: are they good transition state mimics? J. Carbohydr. Chem., 1996, 15(8), 985-1000.
[http://dx.doi.org/10.1080/07328309608005704]
[81]
Golinelli-Pimpaneau, B.; Goncalves, O.; Dintinger, T.; Blanchard, D.; Knossow, M.; Tellier, C. Structural evidence for a programmed general base in the active site of a catalytic antibody. Proc. Natl. Acad. Sci. USA, 2000, 97(18), 9892-9895.
[http://dx.doi.org/10.1073/pnas.97.18.9892] [PMID: 10963661]
[82]
Li, X.; Zangiabadi, M.; Zhao, Y. Molecularly imprinted synthetic glucosidase for the hydrolysis of cellulose in aqueous and nonaqueous solutions. J. Am. Chem. Soc., 2021, 143(13), 5172-5181.
[http://dx.doi.org/10.1021/jacs.1c01352] [PMID: 33759517]
[83]
Danby, P.M.; Withers, S.G. Glycosyl cations versus allylic cations in spontaneous and enzymatic hydrolysis. J. Am. Chem. Soc., 2017, 139(31), 10629-10632.
[http://dx.doi.org/10.1021/jacs.7b05628] [PMID: 28737389]
[84]
Jongkees, S.A.K.; Withers, S.G. Unusual enzymatic glycoside cleavage mechanisms. Acc. Chem. Res., 2014, 47(1), 226-235.
[http://dx.doi.org/10.1021/ar4001313] [PMID: 23957528]
[85]
Namchuk, M.N.; McCarter, J.D.; Becalski, A.; Andrews, T.; Withers, S.G. The role of sugar substituents in glycoside hydrolysis. J. Am. Chem. Soc., 2000, 122(7), 1270-1277.
[http://dx.doi.org/10.1021/ja992044h]
[86]
Pedersen, C.M.; Bols, M. On the nature of the electronic effect of multiple hydroxyl groups in the 6-membered ring - the effects are additive but steric hindrance plays a role too. Org. Biomol. Chem., 2017, 15(5), 1164-1173.
[http://dx.doi.org/10.1039/C6OB02427K] [PMID: 28084490]
[87]
Duo, T.; Robinson, K.; Greig, I.R.; Chen, H-M.; Patrick, B.O.; Withers, S.G. Remarkable reactivity differences between glucosides with identical leaving groups. J. Am. Chem. Soc., 2017, 139(44), 15994-15999.
[http://dx.doi.org/10.1021/jacs.7b09645] [PMID: 29035043]
[88]
Wang, B.; Olsen, J.I.; Laursen, B.W.; Navarro Poulsen, J.C.; Bols, M. Determination of protonation states of iminosugar-enzyme complexes using photoinduced electron transfer. Chem. Sci. (Camb.), 2017, 8(11), 7383-7393.
[http://dx.doi.org/10.1039/C7SC01540B] [PMID: 29163889]
[89]
Pickens, J.B.; Mills, L.G.; Wang, F.; Striegler, S. Evaluating hydrophobic galactonoamidines as transition state analogs for enzymatic β-galactoside hydrolysis. Bioorg. Chem., 2018, 77, 144-151.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.012] [PMID: 29353731]
[90]
Sharma, B.; Pickens, J.B.; Striegler, S.; Barnett, J.D. Biomimetic glycoside hydrolysis by a microgel templated with a competitive glycosidase inhibitor. ACS Catal., 2018, 8(9), 8788-8795.
[http://dx.doi.org/10.1021/acscatal.8b02440]
[91]
Striegler, S.; Sharma, B.; Orizu, I. Microgel-catalyzed hydrolysis of nonactivated disaccharides. ACS Catal., 2020, 10(24), 14451-14456.
[http://dx.doi.org/10.1021/acscatal.0c03401]
[92]
Thomas, K.; Haapalainen, A.M.; Burgos, E.S.; Evans, G.B.; Tyler, P.C.; Gulab, S.; Guan, R.; Schramm, V.L. Femtomolar inhibitors bind to 5′-methylthioadenosine nucleosidases with favorable enthalpy and entropy. Biochemistry, 2012, 51(38), 7541-7550.
[http://dx.doi.org/10.1021/bi3009938] [PMID: 22931458]
[93]
Singh, V.; Evans, G.B.; Lenz, D.H.; Mason, J.M.; Clinch, K.; Mee, S.; Painter, G.F.; Tyler, P.C.; Furneaux, R.H.; Lee, J.E.; Howell, P.L.; Schramm, V.L. Femtomolar transition state analogue inhibitors of 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase from Escherichia coli. J. Biol. Chem., 2005, 280(18), 18265-18273.
[http://dx.doi.org/10.1074/jbc.M414472200] [PMID: 15749708]
[94]
Lee, J.E.; Singh, V.; Evans, G.B.; Tyler, P.C.; Furneaux, R.H.; Cornell, K.A.; Riscoe, M.K.; Schramm, V.L.; Howell, P.L. Structural rationale for the affinity of pico- and femtomolar transition state analogues of Escherichia coli 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase. J. Biol. Chem., 2005, 280(18), 18274-18282.
[http://dx.doi.org/10.1074/jbc.M414471200] [PMID: 15746096]
[95]
Gloster, T.M.; Davies, G.J. Glycosidase inhibition: assessing mimicry of the transition state. Org. Biomol. Chem., 2010, 8(2), 305-320.
[http://dx.doi.org/10.1039/B915870G] [PMID: 20066263]
[96]
Aoyama, T.; Naganawa, H.; Suda, H.; Uotani, K.; Aoyagi, T.; Takeuchi, T. The structure of nagstatin, a new inhibitor of N-acetyl-β-D-glucosaminidase. J. Antibiot. (Tokyo), 1992, 45(9), 1557-1558.
[http://dx.doi.org/10.7164/antibiotics.45.1557] [PMID: 1429245]
[97]
Terinek, M.; Vasella, A. Synthesis of N-acetylglucosamine-derived nagstatin analogues and their evaluation as glycosidase inhibitors. Helv. Chim. Acta, 2005, 88(1), 10-22.
[http://dx.doi.org/10.1002/hlca.200490286]
[98]
Terinek, M.; Vasella, A. Synthesis and evaluation of two mannosamine-derived lactone-type inhibitors of snail β-Mannosidase. Tetrahedron Asymm., 2005, 16(2), 449-469.
[http://dx.doi.org/10.1016/j.tetasy.2004.11.068]
[99]
Males, A.; Speciale, G.; Williams, S.J.; Davies, G.J. Distortion of mannoimidazole supports a B2,5 boat transition state for the family GH125 α-1,6-mannosidase from Clostridium perfringens. Org. Biomol. Chem., 2019, 17(34), 7863-7869.
[http://dx.doi.org/10.1039/C9OB01161G] [PMID: 31407758]
[100]
Pichon, M.M.; Stauffert, F.; Bodlenner, A.; Compain, P. Tight-binding inhibition of jack bean α-mannosidase by glycoimidazole clusters. Org. Biomol. Chem., 2019, 17(23), 5801-5817.
[http://dx.doi.org/10.1039/C9OB00826H] [PMID: 31144700]
[101]
Gloster, T.M.; Vocadlo, D.J. Developing inhibitors of glycan processing enzymes as tools for enabling glycobiology. Nat. Chem. Biol., 2012, 8(8), 683-694.
[http://dx.doi.org/10.1038/nchembio.1029] [PMID: 22810773]
[102]
Heightman, T.D.; Vasella, A.T. Recent insights into inhibition, structure, and mechanism of configuration-retaining glycosidases. Angew. Chem. Int. Ed. Engl., 1999, 38(6), 750-770.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19990315)38:6<750::AID-ANIE750>3.0.CO;2-6] [PMID: 29711789]
[103]
Varrot, A.; Schülein, M.; Pipelier, M.; Vasella, A.; Davies, G.J. Lateral protonation of a glycosidase inhibitor. structure of the Bacillus agaradhaerens Cel5A in complex with a cellobiose-derived imidazole at 0.97 Å resolution. J. Am. Chem. Soc., 1999, 121(11), 2621-2622.
[http://dx.doi.org/10.1021/ja984238n]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy