Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Novel Derivatives of Nicotinic Acid as Promising Anticancer Agents

Author(s): Nisha Jain, Divya Utreja*, Komalpreet Kaur and Palak Jain

Volume 21, Issue 7, 2021

Published on: 16 November, 2020

Page: [847 - 882] Pages: 36

DOI: 10.2174/1389557520666201116144756

Price: $65

Abstract

Background: Cancer has become the second leading cause of death worldwide. Despite of the availability of significant number of anticancer agents, cancer is still incurable especially at the last stages. Remarkable targets for anticancer research and drug discovery are heterocyclic compounds, and among them, superior effect has been shown by the nitrogen containing compounds than non-nitrogen containing compounds. Nicotinic acid, a nitrogen containing moiety and its derivatives have gained an immense importance in the development of anticancer drugs owing to the wide variety of biological properties displayed by them.

Objective: The objective of this review is to provide researchers the information about various synthetic approaches used for the synthesis of anticancer drugs of nicotinic acid from 2001 onwards and to reveal their application and importance in the treatment of this dreadful disease.

Conclusion: As indicated by this review, considerable work has been done in terms of synthesis and investigation of anticancer potential of nicotinamide derivatives. The information provided in this article may be of great value for the researchers seeking to develop efficient anticancer drugs.

Keywords: nicotinic acid, nicotinamide, heterocyclic, anticancer, ester, amide, hydrazide, oxadiazole, thiadiazole.

Graphical Abstract
[1]
Parkin, D.M.; Bray, F.; Ferlay, J.; Pisani, P. Global cancer statistics, 2002. CA Cancer J. Clin., 2005, 55(2), 74-108.
[http://dx.doi.org/10.3322/canjclin.55.2.74] [PMID: 15761078]
[2]
Rew, D.A.; Wilson, G.D. Cell production rates in human tissues and tumours and their significance. Part II: Clinical data. Eur. J. Surg. Oncol., 2000, 26(4), 405-417.
[http://dx.doi.org/10.1053/ejso.1999.0907] [PMID: 10873364]
[3]
Cozzi, P.; Mongelli, N.; Suarato, A. Recent anticancer cytotoxic agents. Curr. Med. Chem. Anticancer Agents, 2004, 4(2), 93-121.
[http://dx.doi.org/10.2174/1568011043482061] [PMID: 15032717]
[4]
Farooqui, M.; Hassali, M.A.; Shatar, A.K.; Shafie, A.A.; Seang, T.B.; Farooqui, M.A. A qualitative exploration of Malaysian cancer patients’ perspectives on cancer and its treatment. BMC Public Health, 2011, 11, 525.
[http://dx.doi.org/10.1186/1471-2458-11-525] [PMID: 21718547]
[5]
Sinha, R.; El-Bayoumy, K. Apoptosis is a critical cellular event in cancer chemoprevention and chemotherapy by selenium compounds. Curr. Cancer Drug Targets, 2004, 4(1), 13-28.
[http://dx.doi.org/10.2174/1568009043481614] [PMID: 14965264]
[6]
Sherer, C.; Snape, T.J. Heterocyclic scaffolds as promising anticancer agents against tumours of the central nervous system: Exploring the scope of indole and carbazole derivatives. Eur. J. Med. Chem., 2015, 97, 552-560.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.007] [PMID: 25466446]
[7]
Isambert, N.; Lavilla, R. Heterocycles as key substrates in multicomponent reactions: The fast lane towards molecular complexity. Chemistry, 2008, 14(28), 8444-8454.
[http://dx.doi.org/10.1002/chem.200800473] [PMID: 18576454]
[8]
Dua, R.; Shrivastava, S.; Sonwane, S.K.; Srivastava, S.K. Pharmacological significance of synthetic heterocycles scaffold: A review. Adv. Biol. Res. (Faisalabad), 2011, 5, 120-144.
[9]
Martins, P.; Jesus, J.; Santos, S.; Raposo, L.R.; Roma-Rodrigues, C.; Baptista, P.V.; Fernandes, A.R. Heterocyclic anticancer compounds: Recent advances and the paradigm shift towards the use of nanomedicine’s tool box. Molecules, 2015, 20(9), 16852-16891.
[http://dx.doi.org/10.3390/molecules200916852] [PMID: 26389876]
[10]
Utreja, D.; Kaur, J.; Kaur, K.; Jain, P. 1,3,5-Triazine: Synthesis and antibacterial activity. Mini Rev. Org. Chem., 2020, 17, 1-51.
[http://dx.doi.org/10.2174/1570193X17666200129094032]
[11]
Dawar, M.; Utreja, D.; Rani, R.; Kaur, K. Synthesis and evaluation of isatin derivatives as antifungal agents. Lett. Org. Chem., 2020, 17, 199-205.
[http://dx.doi.org/10.2174/1570178616666190724120308]
[12]
Jain, P.; Utreja, D.; Sharma, P. An efficacious synthesis of N-1, C-3 substituted indole derivatives and their antimicrobial studies. J. Heterocycl. Chem., 2019, 1-8.
[13]
Utreja, D.; Sharma, S.; Goyal, A.; Kaur, K.; Kaushal, S. Synthesis and biological activity of quaternary quinolinium salts: A review. Curr. Org. Chem., 2019, 23, 2271-2294.
[http://dx.doi.org/10.2174/1385272823666191023122704]
[14]
Jain, N.; Utreja, D.; Dhillon, N.K. A convenient one pot synthesis and antinemic studies of nicotinic acid derivatives. Russ. J. Org. Chem., 2019, 55, 845-851.
[http://dx.doi.org/10.1134/S1070428019060150]
[15]
Kaur, J.; Utreja, D.; Dhillon, N.K.; Sharma, S. Synthesis of indole derivatives and their evaluation against root knot nematode Meloidogyne Incognita. Lett. Org. Chem., 2019, 16, 759-767.
[http://dx.doi.org/10.2174/1570178616666190219131042]
[16]
Kaur, J.; Utreja, D. Ekta; Jain, N.; Sharma, S. Ekta; Jain, N.; Sharma, S. Recent developments in the synthesis and antimicrobial activity of indole and its derivatives. Curr. Org. Synth., 2019, 16(1), 17-37.
[http://dx.doi.org/10.2174/1570179415666181113144939] [PMID: 31965921]
[17]
Anamika; Utreja, D.; Ekta; Jain, N.; Sharma, S. Advances in synthesis and potentially bioactive of coumarin derivatives. Curr. Org. Chem., 2018, 22, 2507-2534.
[18]
Kaur, J.; Utreja, D.; Dhillon, N.K.; Sharma, S. Synthesis of series of triazine derivatives and their evaluation against root knot nematode Meloidogyne incognita. Lett. Org. Chem., 2018, 15, 870-877.
[http://dx.doi.org/10.2174/1570178615666180330155049]
[19]
Sharma, A.; Singh, S.; Utreja, D. Recent advances in synthesis and antifungal activity of 1,3,5-triazines. Curr. Org. Synth., 2016, 13, 484-503.
[http://dx.doi.org/10.2174/1570179412666150905002356]
[20]
Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem., 2014, 57(24), 10257-10274.
[http://dx.doi.org/10.1021/jm501100b] [PMID: 25255204]
[21]
Zahra, H.; Ramazani, A.; Razzaghi-Asl, N. Anti-cancer nitrogen containing heterocyclic compounds. Curr. Org. Chem., 2018, 22, 2256-2279.
[http://dx.doi.org/10.2174/1385272822666181008142138]
[22]
Kaur, G.; Utreja, D.; Dhillon, N.K.; Jain, N. Synthesis and evaluation of pyrazole derivatives as potent antinemic agents. Russ. J. Org. Chem., 2020, 56, 113-118.
[http://dx.doi.org/10.1134/S1070428020010182]
[23]
Wo, Y.J.; Gan, A.S.P.; Lim, X.; Tay, I.S.Y.; Lim, S.; Lim, J.C.T.; Yeong, J.P.S. The roles of CD38 and CD157 in the solid tumor microenvironment and cancer immunotherapy. Cells, 2019, 9(1), 26.
[http://dx.doi.org/10.3390/cells9010026] [PMID: 31861847]
[24]
Konen, J.M.; Fradette, J.J.; Gibbons, D.L. The good, the bad and the unknown of CD38 in the metabolic microenvironment and immune cell functionality of solid tumors. Cells, 2019, 9(1), 52.
[http://dx.doi.org/10.3390/cells9010052] [PMID: 31878283]
[25]
Gasperi, V.; Sibilano, M.; Savini, I.; Catani, M.V. Niacin in the Central System: An update of biological aspects and clinical applications. Int. J. Mol. Sci., 2019, 20(4), 974.
[http://dx.doi.org/10.3390/ijms20040974] [PMID: 30813414]
[26]
Li, J.; Qu, J.; Shi, Y.; Perfetto, M.; Ping, Z.; Christian, L.; Niu, H.; Mei, S.; Zhang, Q.; Yang, X.; Wei, S. Nicotinic acid inhibits glioma invasion by facilitating Snail1 degradation. Sci. Rep., 2017, 7, 43173.
[http://dx.doi.org/10.1038/srep43173] [PMID: 28256591]
[27]
Naglah, A.M.; Shinwari, Z.; Bhat, M.A.; Al-Tahhan, M.; Al-Omar, M.A.; Al-Dhfyan, A. Targeting leukemic side population cells by isatin derivatives of nicotinic acid amide. J. Biol. Regul. Homeost. Agents, 2016, 30(2), 353-363.
[PMID: 27358121]
[28]
Piacente, F.; Caffa, I.; Nencioni, A. Nicotinic acid: A case for a vitamin that moonlights for cancer? Cell Cycle, 2017, 16(18), 1635-1636.
[http://dx.doi.org/10.1080/15384101.2017.1360633] [PMID: 28771080]
[29]
Bodor, E.T.; Offermanns, S. Nicotinic acid: An old drug with a promising future. Br. J. Pharmacol., 2008, 153(Suppl. 1), S68-S75.
[http://dx.doi.org/10.1038/sj.bjp.0707528] [PMID: 18037924]
[30]
Datta, D.; Kumar, S. Equilibrium and kinetic studies of the reactive extraction of nicotinic acid with tri-n-octylamine dissolved in MIBK. Ind. Eng. Chem. Res., 2013, 52, 14680-14686.
[http://dx.doi.org/10.1021/ie401730v]
[31]
Sun, Y.; Zhang, Y.; Li, Y.; Cheng, J.; Chen, S.; Xiao, Y.; Ao, G. Synthesis and biological evaluation of novel hydrogen sulfide releasing nicotinic acid derivatives. Bioorg. Med. Chem., 2016, 24(21), 5368-5373.
[http://dx.doi.org/10.1016/j.bmc.2016.08.060] [PMID: 27618541]
[32]
Wang, Z.; Yang, L.; Cui, S.; Liang, Y.; Zhang, X. Synthesis and anti-hypertensive effects of the twin drug of nicotinic acid and quercetin tetramethyl ether. Molecules, 2014, 19(4), 4791-4801.
[http://dx.doi.org/10.3390/molecules19044791] [PMID: 24743936]
[33]
Boatman, P.D.; Richman, J.G.; Semple, G. Nicotinic acid receptor agonists. J. Med. Chem., 2008, 51(24), 7653-7662.
[http://dx.doi.org/10.1021/jm800896z] [PMID: 18983141]
[34]
Prakash, R.; Gandotra, S.; Singh, L.K.; Das, B.; Lakra, A. Rapid resolution of delusional parasitosis in pellagra with niacin augmentation therapy. Gen. Hosp. Psychiatry, 2008, 30(6), 581-584.
[http://dx.doi.org/10.1016/j.genhosppsych.2008.04.011] [PMID: 19061687]
[35]
Cannon, C.M.; Levy, P.; Baumann, B.M.; Borczuk, P.; Chandra, A.; Cline, D.M.; Diercks, D.B.; Hiestand, B.; Hsu, A.; Jois, P.; Kaminski, B.; Nowak, R.M.; Schrock, J.W.; Varon, J.; Peacock, W.F. Intravenous nicardipine and labetalol use in hypertensive patients with signs or symptoms suggestive of end-organ damage in the emergency department: A subgroup analysis of the CLUE trial. BMJ Open, 2013, 3(3), 1-7.
[http://dx.doi.org/10.1136/bmjopen-2012-002338] [PMID: 23535700]
[36]
Rawat, D.; Gunjan, A.; Gupta, M.; Singh, S.; Pathak, A. Spectrophotometric and validated RP-HPLC method for the estimation of retinod drug tazarotene in gel formulation. Asian J. Pharm. Educ. Res., 2013, 2, 72-89.
[37]
Robert, N.; Bonneau, A.L.; Hoarau, C.; Marsais, F. Unusual sterically controlled regioselective lithiation of 3-bromo-5-(4,4′-dimethyl)oxazolinylpyridine. Straightforward access to highly substituted nicotinic acid derivatives. Org. Lett., 2006, 8(26), 6071-6074.
[http://dx.doi.org/10.1021/ol062556i] [PMID: 17165932]
[38]
Kumar, V.; Sanna, V.K.; Singh, A.T.; Jaggi, M.; Sharma, P.K.; Irchhaiya, R.; Burman, A.C. Synthesis and anti-cancer activity of pyrido [2,3-c] pyridazine derivatives. J. Sci. I. R. Iran., 2009, 20, 325-329.
[39]
Holzhäuser, E.; Albrecht, C.; Zhou, Q.; Buttler, A.; Preusch, M.R.; Blessing, E.; Katus, H.A.; Bea, F. Nicotinic acid has anti-atherogenic and anti-inflammatory properties on advanced atherosclerotic lesions independent of its lipid-modifying capabilities. J. Cardiovasc. Pharmacol., 2011, 57(4), 447-454.
[http://dx.doi.org/10.1097/FJC.0b013e31820dc1db] [PMID: 21242806]
[40]
Aanandhi, M.V.; Mansoori, M.H.; Shanmugapriya, S.; George, S.; Shanmugasundaram, P. Synthesis and in-vitro antioxidant activity of substituted pyridinyl 1,3,4-oxadiazole derivatives. Res. J. Pharm. Biol. Chem. Sci., 2010, 1, 1083-1090.
[41]
Pandey, V.K.; Gupta, V.D.; Upadhyay, M.; Upadhyay, M.; Singh, V.K.; Tandon, M. Synthesis, characterization and biological activities of 1,3,4-substituted 2-azetidinones. Indian J. Chem., 2005, 44B, 158-162.
[http://dx.doi.org/10.1002/chin.200519116]
[42]
Navarrete-Vázquez, G.; Molina-Salinas, G.M.; Duarte-Fajardo, Z.V.; Vargas-Villarreal, J.; Estrada-Soto, S.; González-Salazar, F.; Hernández-Núñez, E.; Said-Fernández, S. Synthesis and antimycobacterial activity of 4-(5-substituted-1,3,4-oxadiazol-2-yl)pyridines. Bioorg. Med. Chem., 2007, 15(16), 5502-5508.
[http://dx.doi.org/10.1016/j.bmc.2007.05.053] [PMID: 17562368]
[43]
Makarov, V.; Riabova, O.B.; Yuschenko, A.; Urlyapova, N.; Daudova, A.; Zipfel, P.F.; Möllmann, U. Synthesis and antileprosy activity of some dialkyldithiocarbamates. J. Antimicrob. Chemother., 2006, 57(6), 1134-1138.
[http://dx.doi.org/10.1093/jac/dkl095] [PMID: 16595643]
[44]
Yang, X.; Mei, S.; Niu, H.; Li, J. Nicotinic acid impairs assembly of leading edge in glioma cells. Oncol. Rep., 2017, 38(2), 829-836.
[http://dx.doi.org/10.3892/or.2017.5757] [PMID: 28656206]
[45]
Li, J.; Li, Y.; Zhang, P.; Niu, H.; Shi, Y. Nicotinic acid modulates intracellular calcium concentration and disassembles the cytoskeleton. Mol. Med. Rep., 2014, 10(6), 2805-2810.
[http://dx.doi.org/10.3892/mmr.2014.2576] [PMID: 25241762]
[46]
Ma, L.; Lee, B.H.; Mao, R.; Cai, A.; Jia, Y.; Clifton, H.; Schaefer, S.; Xu, L.; Zheng, J. Nicotinic acid activates the capsaicin receptor TRPV1: Potential mechanism for cutaneous flushing. Arterioscler. Thromb. Vasc. Biol., 2014, 34(6), 1272-1280.
[http://dx.doi.org/10.1161/ATVBAHA.113.303346] [PMID: 24675661]
[47]
Ma, L.; Lee, B.H.; Clifton, H.; Schaefer, S.; Zheng, J. Nicotinic acid is a common regulator of heat-sensing TRPV1-4 ion channels. Sci. Rep., 2015, 5, 8906.
[http://dx.doi.org/10.1038/srep08906] [PMID: 25752528]
[48]
Kim, S.W.; Lee, J.H.; Moon, J.H.; Nazim, U.M.D.; Lee, Y.J.; Seol, J.W.; Hur, J.; Eo, S.K.; Lee, J.H.; Park, S.Y. Niacin alleviates TRAIL-mediated colon cancer cell death via autophagy flux activation. Oncotarget, 2016, 7(4), 4356-4368.
[http://dx.doi.org/10.18632/oncotarget.5374] [PMID: 26517672]
[49]
Offermanns, S. The nicotinic acid receptor GPR109A (HM74A or PUMA-G) as a new therapeutic target. Trends Pharmacol. Sci., 2006, 27(7), 384-390.
[http://dx.doi.org/10.1016/j.tips.2006.05.008] [PMID: 16766048]
[50]
Kirkland, J.B. Niacin requirements for genomic stability. Mutat. Res., 2012, 733(1-2), 14-20.
[http://dx.doi.org/10.1016/j.mrfmmm.2011.11.008] [PMID: 22138132]
[51]
Ramalakshmi, N.; Vijayakumar, R.; Ilango, K.; Arunkumar, S.; Puratchikody, A. Synthesis and biological evaluation of 4-aryl-3-chloro-1-nicotinamido-2-azetidinones as potential anticonvulsant and antimycobacterial agents. Int. J. Chem. Sci., 2008, 6, 1213-1222.
[52]
Lourenco, M.C.S.; de Souza, M.V.N.; Pinheiro, A.C. de L F.M.; Goncalves, R.S.B.; Nogueira, T.C.M.; Peralta, M.A. Evaluation of anti-tubercular activity of nicotinic and isoniazid analogues. ARKIVOC, 2007, 15, 181-191.
[53]
Rojo, F.; Albanell, J.; Rovira, A.; Corominas, J.M.; Manzarbeitia, F. Targeted therapies in breast cancer. Semin. Diagn. Pathol., 2008, 25(4), 245-261.
[http://dx.doi.org/10.1053/j.semdp.2008.08.001] [PMID: 19013891]
[54]
Gille, A.; Bodor, E.T.; Ahmed, K.; Offermanns, S. Nicotinic acid: Pharmacological effects and mechanisms of action. Annu. Rev. Pharmacol. Toxicol., 2008, 48, 79-106.
[http://dx.doi.org/10.1146/annurev.pharmtox.48.113006.094746] [PMID: 17705685]
[55]
Brown, B.G.; Canner, P.L.; McGovern, M.E.; Guyton, J.R.; Carlson, L.A. Nicotinic acid. Clin. Lipidol., 2009, 298-314.
[56]
Bogan, K.L.; Brenner, C. Nicotinic acid, nicotinamide, and nicotinamide riboside: A molecular evaluation of NAD+ precursor vitamins in human nutrition. Annu. Rev. Nutr., 2008, 28, 115-130.
[http://dx.doi.org/10.1146/annurev.nutr.28.061807.155443] [PMID: 18429699]
[57]
Kirkland, J.B. Niacin status and treatment-related leukemogenesis. Mol. Cancer Ther., 2009, 8(4), 725-732.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0042] [PMID: 19372544]
[58]
Bhansali, S.G.; Brazeau, D.A.; Sonee, M.; Mukherjee, S.K. Nicotinamide prevents apoptosis in human cortical neuronal cells. Toxicol. Mech. Methods, 2006, 16(4), 173-180.
[http://dx.doi.org/10.1080/15376520500194726] [PMID: 20021043]
[59]
Snaidr, V.A.; Damian, D.L.; Halliday, G.M. Nicotinamide for photoprotection and skin cancer chemoprevention: A review of efficacy and safety. Exp. Dermatol., 2019, 28(Suppl. 1), 15-22.
[http://dx.doi.org/10.1111/exd.13819] [PMID: 30698874]
[60]
Fricker, R.A.; Green, E.L.; Jenkins, S.I.; Griffin, S.M. The influence of nicotinamide on health and disease in the central nervous system. Int. J. Tryptophan Res., 2018.111178646918776658
[http://dx.doi.org/10.1177/1178646918776658] [PMID: 29844677]
[61]
Nudelman, A.; Gnizi, E.; Katz, Y.; Azulai, R.; Cohen-Ohana, M.; Zhuk, R.; Sampson, S.R.; Langzam, L.; Fibach, E.; Prus, E.; Pugach, V.; Rephaeli, A. Prodrugs of butyric acid. Novel derivatives possessing increased aqueous solubility and potential for treating cancer and blood diseases. Eur. J. Med. Chem., 2001, 36(1), 63-74.
[http://dx.doi.org/10.1016/S0223-5234(00)01199-5] [PMID: 11231050]
[62]
Lu, Q.; Liu, W.; Ding, J.; Cai, J.; Duan, W. Shikonin derivatives: Synthesis and inhibition of human telomerase. Bioorg. Med. Chem. Lett., 2002, 12(10), 1375-1378.
[http://dx.doi.org/10.1016/S0960-894X(02)00158-0] [PMID: 11992780]
[63]
Liu, Z.Z.; Wang, Y.; Tang, Y.F.; Chen, S.Z.; Chen, X.G.; Li, H.Y. Synthesis and antitumor activity of simplified ecteinascidin-saframycin analogs. Bioorg. Med. Chem. Lett., 2006, 16(5), 1282-1285.
[http://dx.doi.org/10.1016/j.bmcl.2005.11.069] [PMID: 16338237]
[64]
Reddy, K.P.; Bid, H.K.; Nayak, V.L.; Chaudhary, P.; Chaturvedi, J.P.; Arya, K.R.; Konwar, R.; Narender, T. In vitro and in vivo anticancer activity of 2-deacetoxytaxinine J and synthesis of novel taxoids and their in vitro anticancer activity. Eur. J. Med. Chem., 2009, 44(10), 3947-3953.
[http://dx.doi.org/10.1016/j.ejmech.2009.04.022] [PMID: 19446930]
[65]
Wan, J.; Yan, X.; Ma, C.; Bi, S.; Zhu, H.L. Synthesis, structure characterization, and biological evaluation of some new 1,2,3-benzotriazole derivatives. Med. Chem. Res., 2009, 19, 970-983.
[http://dx.doi.org/10.1007/s00044-009-9243-3]
[66]
Zhou, W.; Peng, Y.; Li, S.S. Semi-synthesis and anti-tumor activity of 5,8-O-dimethyl acylshikonin derivatives. Eur. J. Med. Chem., 2010, 45(12), 6005-6011.
[http://dx.doi.org/10.1016/j.ejmech.2010.09.068] [PMID: 20970893]
[67]
Zhou, W.; Zhang, X.; Xiao, L.; Ding, J.; Liu, Q.H.; Li, S.S. Semi-synthesis and antitumor activity of 6-isomers of 5, 8-O-dimethyl acylshikonin derivatives. Eur. J. Med. Chem., 2011, 46(8), 3420-3427.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.006] [PMID: 21620530]
[68]
He, B.; Wang, Y.; Zheng, Y.; Chen, W.; Zhu, Q. Synthesis and cytotoxic evaluation of acylated brefeldin a derivatives as potential anticancer agents. Chem. Biol. Drug Des., 2013, 82(3), 307-316.
[http://dx.doi.org/10.1111/cbdd.12154] [PMID: 23621857]
[69]
Zahran, M.A.H.; Abdin, Y.G.; Osman, A.M.A.; Gamal-Eldeen, A.M.; Talaat, R.M.; Pedersen, E.B. Synthesis and evaluation of thalidomide and phthalimide esters as antitumor agents. Arch. Pharm. (Weinheim), 2014, 347(9), 642-649.
[http://dx.doi.org/10.1002/ardp.201400073] [PMID: 24943104]
[70]
Feng, L.; Cao, Y.K.; Li, Y.; Song, Z.F.; Huai, Q.Y. Synthesis and evaluation of antibacterial and antitumor activities of Apigenin derivatives. Asian J. Chem., 2015, 27, 2830-2832.
[http://dx.doi.org/10.14233/ajchem.2015.18223]
[71]
Wu, Y.; Hu, M.; Yang, L.; Li, X.; Bian, J.; Jiang, F.; Sun, H.; You, Q.; Zhang, X. Novel natural-product-like caged xanthones with improved drug like properties and in vivo antitumor potency. Bioorg. Med. Chem. Lett., 2015, 25(12), 2584-2588.
[http://dx.doi.org/10.1016/j.bmcl.2015.04.031] [PMID: 25958244]
[72]
Febles, M.; Montalvão, S.; Crespín, G.D.; Norte, M.; Padrón, J.M.; Tammela, P.; Fernández, J.J.; Daranas, A.H. Synthesis and biological evaluation of crown ether acyl derivatives. Bioorg. Med. Chem. Lett., 2016, 26(22), 5591-5593.
[http://dx.doi.org/10.1016/j.bmcl.2016.09.066] [PMID: 27765506]
[73]
Lv, P.C.; Elsayed, M.S.A.; Agama, K.; Marchand, C.; Pommier, Y.; Cushman, M. Design, synthesis, and biological evaluation of potential prodrugs related to the experimental anticancer agent indotecan (LMP400). J. Med. Chem., 2016, 59(10), 4890-4899.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00220] [PMID: 27097152]
[74]
Glenn, M.P.; Kahnberg, P.; Boyle, G.M.; Hansford, K.A.; Hans, D.; Martyn, A.C.; Parsons, P.G.; Fairlie, D.P. Antiproliferative and phenotype-transforming antitumor agents derived from cysteine. J. Med. Chem., 2004, 47(12), 2984-2994.
[http://dx.doi.org/10.1021/jm030222i] [PMID: 15163181]
[75]
Islam, I.; Brown, G.; Bryant, J.; Hrvatin, P.; Kochanny, M.J.; Phillips, G.B.; Yuan, S.; Adler, M.; Whitlow, M.; Lentz, D.; Polokoff, M.A.; Wu, J.; Shen, J.; Walters, J.; Ho, E.; Subramanyam, B.; Zhu, D.; Feldman, R.I.; Arnaiz, D.O. Indolinone based phosphoinositide-dependent kinase-1 (PDK1) inhibitors. Part 2: Optimization of BX-517. Bioorg. Med. Chem. Lett., 2007, 17(14), 3819-3825.
[http://dx.doi.org/10.1016/j.bmcl.2007.05.060] [PMID: 17544272]
[76]
Schroeder, G.M.; Chen, X.T.; Williams, D.K.; Nirschl, D.S.; Cai, Z.W.; Wei, D.; Tokarski, J.S.; An, Y.; Sack, J.; Chen, Z.; Huynh, T.; Vaccaro, W.; Poss, M.; Wautlet, B.; Gullo-Brown, J.; Kellar, K.; Manne, V.; Hunt, J.T.; Wong, T.W.; Lombardo, L.J.; Fargnoli, J.; Borzilleri, R.M. Identification of pyrrolo[2,1-f][1,2,4]triazine-based inhibitors of Met kinase. Bioorg. Med. Chem. Lett., 2008, 18(6), 1945-1951.
[http://dx.doi.org/10.1016/j.bmcl.2008.01.121] [PMID: 18289854]
[77]
Suzuki, N.; Suzuki, T.; Ota, Y.; Nakano, T.; Kurihara, M.; Okuda, H.; Yamori, T.; Tsumoto, H.; Nakagawa, H.; Miyata, N. Design, synthesis, and biological activity of boronic acid-based histone deacetylase inhibitors. J. Med. Chem., 2009, 52(9), 2909-2922.
[http://dx.doi.org/10.1021/jm900125m] [PMID: 19419205]
[78]
Yang, X.D.; Zeng, X.H.; Zhao, Y.H.; Wang, X.Q.; Pan, Z.Q.; Li, L.; Zhang, H.B. Silica gel-mediated amide bond formation: An environmentally benign method for liquid-phase synthesis and cytotoxic activities of amides. J. Comb. Chem., 2010, 12(3), 307-310.
[http://dx.doi.org/10.1021/cc900135f] [PMID: 20178331]
[79]
Liu, M.C.; Yang, S.J.; Jin, L.H.; Hu, D.Y.; Xue, W.; Song, B.A.; Yang, S. Synthesis and cytotoxicity of novel ursolic acid derivatives containing an acyl piperazine moiety. Eur. J. Med. Chem., 2012, 58, 128-135.
[http://dx.doi.org/10.1016/j.ejmech.2012.08.048] [PMID: 23124210]
[80]
Yang, X.H.; Xiang, L.; Li, X.; Zhao, T.T.; Zhang, H.; Zhou, W.P.; Wang, X.M.; Gong, H.B.; Zhu, H.L. Synthesis, biological evaluation, and molecular docking studies of 1,3,4-thiadiazol-2-amide derivatives as novel anticancer agents. Bioorg. Med. Chem., 2012, 20(9), 2789-2795.
[http://dx.doi.org/10.1016/j.bmc.2012.03.040] [PMID: 22503364]
[81]
Zhang, H.; Lu, X.; Zhang, L.R.; Liu, J.J.; Yang, X.H.; Wang, X.M.; Zhu, H.L. Design, synthesis and biological evaluation of N-phenylsulfonylnicotinamide derivatives as novel antitumor inhibitors. Bioorg. Med. Chem., 2012, 20(4), 1411-1416.
[http://dx.doi.org/10.1016/j.bmc.2012.01.004] [PMID: 22277588]
[82]
Brożewicz, K.; Sławiński, J. Synthesis and in vitro activity of novel 2-(benzylthio)-4-chloro-5-(1,3,4-oxadiazol-2-yl)benzenesulfonamide derivatives. Monatsh. Chem., 2012, 143(6), 975-984.
[http://dx.doi.org/10.1007/s00706-012-0732-6] [PMID: 26166867]
[83]
Ikeda, R.; Kimura, T.; Tsutsumi, T.; Tamura, S.; Sakai, N.; Konakahara, T. Structure-activity relationship in the antitumor activity of 6-, 8- or 6,8-substituted 3-benzylamino-β-carboline derivatives. Bioorg. Med. Chem. Lett., 2012, 22(10), 3506-3515.
[http://dx.doi.org/10.1016/j.bmcl.2012.03.077] [PMID: 22520257]
[84]
Salahuddin; Hanafi, M.; Hariyanti. Synthesis and anticancer activity test of 2-hydroxy-N-phenylnicotinamide. Indo. J. Chem., 2013, 13, 166-170.
[http://dx.doi.org/10.22146/ijc.21300]
[85]
Cui, H.W.; He, Y.; Wang, J.; Gao, W.; Liu, T.; Qin, M.; Wang, X.; Gao, C.; Wang, Y.; Liu, M.Y.; Yi, Z.; Qiu, W.W. Synthesis of heterocycle-modified betulinic acid derivatives as antitumor agents. Eur. J. Med. Chem., 2015, 95, 240-248.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.048] [PMID: 25817774]
[86]
Yan, Q.; Li, R.; Xin, A.; Han, Y.; Zhang, Y.; Liu, J.; Li, W.; Di, D. Design, synthesis, and anticancer properties of isocorydine derivatives. Bioorg. Med. Chem., 2017, 25(24), 6542-6553.
[http://dx.doi.org/10.1016/j.bmc.2017.10.027] [PMID: 29103873]
[87]
Grande, F.; Aiello, F.; Grazia, O.D.; Brizzi, A.; Garofalo, A.; Neamati, N. Synthesis and antitumor activities of a series of novel quinoxalinhydrazides. Bioorg. Med. Chem., 2007, 15(1), 288-294.
[http://dx.doi.org/10.1016/j.bmc.2006.09.073] [PMID: 17085054]
[88]
Abdel-Aziz, H.A.; Aboul-Fadl, T.; Al-Obaid, A.R.M.; Ghazzali, M.; Al-Dhfyan, A.; Contini, A. Design, synthesis and pharmacophoric model building of novel substituted nicotinic acid hydrazones with potential antiproliferative activity. Arch. Pharm. Res., 2012, 35(9), 1543-1552.
[http://dx.doi.org/10.1007/s12272-012-0904-2] [PMID: 23054710]
[89]
Eldehna, W.M.; Fares, M.; Abdel-Aziz, M.M.; Abdel-Aziz, H.A. Design, synthesis and antitubercular activity of certain nicotinic Acid hydrazides. Molecules, 2015, 20(5), 8800-8815.
[http://dx.doi.org/10.3390/molecules20058800] [PMID: 25988611]
[90]
Wang, S.; Liu, H.Y.; Xu, R.F.; Sun, J. Synthesis, biological evaluation, and molecular docking studies of diacylhydrazine derivatives possessing 1,4-benzodioxan moiety as potential anticancer agents. Russ. J. Gen. Chem., 2017, 87, 2671-2677.
[http://dx.doi.org/10.1134/S1070363217110238]
[91]
Kumar, D.; Patel, G.; Johnson, E.O.; Shah, K. Synthesis and anticancer activities of novel 3,5-disubstituted-1,2,4-oxadiazoles. Bioorg. Med. Chem. Lett., 2009, 19(10), 2739-2741.
[http://dx.doi.org/10.1016/j.bmcl.2009.03.158] [PMID: 19376704]
[92]
Narayana, B.; Ashalatha, B.V.; Raj, K.V.V.; Sarojini, B.K. Synthesis and studies on antimicrobial, antiinflammatory and antiproliferative activities of heterocycles derived from 4-/5-/6-/7-/-nitro/5-fluoro/chloro/bromoindole-2-carbohydrazides. Indian J. Chem., 2009, 48B, 1794-1805.
[93]
Patel, N.B.; Purohit, A.C.; Rajani, D.P.; Moo-Puc, R.; Rivera, G. New 2-benzylsulfanyl-nicotinic acid based 1,3,4-oxadiazoles: Their synthesis and biological evaluation. Eur. J. Med. Chem., 2013, 62, 677-687.
[http://dx.doi.org/10.1016/j.ejmech.2012.12.055] [PMID: 23434641]
[94]
Chidananda, N.; Poojary, B.; Sumangala, V.; Kumari, N.S. Unnikrishnan. Hantzsch and Schiff’s reaction: Synthesis, in vitro cytotoxic and antimicrobial activity of [1,3,4]oxadiazoline and [1,3]thiazole derivatives. Med. Chem. Res., 2014, 23, 3979-3997.
[http://dx.doi.org/10.1007/s00044-014-0975-3]
[95]
Adimule, V.; Medapa, S.; Adarsha, H.J.; Kumar, S.L.; Rao, P.K. Design, synthesis and cytotoxic evaluation of novel 2-(4-N,N-dimethyl) pyridine containing 1, 3, 4-oxadiazole moiety. Asian J. Biomed. Pharm. Sci., 2014, 4, 1-5.
[http://dx.doi.org/10.15272/ajbps.v4i37.521]
[96]
Adimule, V.; Medapa, S.; Kumar, L.S.; Rao, P.K. Novel substituted phenoxy derivatives of 2-chloro-N-{5-[2-(4-methoxy-phenyl)-pyridin-3-yl]-[1,3,4]thiadiazol-2-yl}-acetamides: Synthesis, characterization and in vitro anticancer properties. J. Pharm. Chem. Biol. Sci., 2014, 2, 130-137.
[97]
Salahuddin, A.; Mazumder, M. Shaharyar. Synthesis, antibacterial and anticancer evaluation of 5-substituted (1,3,4-oxadiazol-2-yl) quinoline. Med. Chem. Res., 2014, 24, 2514-2528.
[http://dx.doi.org/10.1007/s00044-014-1308-2]
[98]
Adimule, V.; Medapa, S.; Adarsha, H.J.; Kumar, S.L. Design, synthesis, characterization and cancer cell growth-inhibitory properties of novel derivatives of 2-(4-fluoro-phenyl)-5-(5-aryl substituted-1, 3, 4-oxadiazol-2-yl) pyridine. Br. J. Pharm. Res., 2015, 7, 34-43.
[http://dx.doi.org/10.9734/BJPR/2015/15486]
[99]
Holla, B.S.; Poojary, K.N.; Rao, B.S.; Shivananda, M.K. New bis-aminomercaptotriazoles and bis-triazolothiadiazoles as possible anticancer agents. Eur. J. Med. Chem., 2002, 37(6), 511-517.
[http://dx.doi.org/10.1016/S0223-5234(02)01358-2] [PMID: 12204477]
[100]
Zheng, K.B.; He, J.; Zhang, J. Synthesis and antitumor activity of N1-acetylamino-(5-alkyl/aryl-1,3,4-thiadiazole-2-yl)-5-fluorouracil derivatives. Chin. Chem. Lett., 2008, 19, 1281-1284.
[http://dx.doi.org/10.1016/j.cclet.2008.09.021]
[101]
Al-Soud, Y.A.; Al-Masoudi, N.A.; Loddo, R.; La Colla, P. In-vitro anti-HIV and antitumor activity of new 3,6-disubstituted [1,2,4]triazolo[3,4-b][1,3,4]thiadiazoles and thiadiazine analogues. Arch. Pharm. (Weinheim), 2008, 341(6), 365-369.
[http://dx.doi.org/10.1002/ardp.200700272] [PMID: 18493972]
[102]
Ramaprasad, G.C.; Kalluraya, B.; Kumar, B.S.; Mallya, S. Microwave assisted synthesis of triazolothiadiazole analogues as anticancer and antibacterial agents. Der Pharma Chem., 2012, 4, 1026-1032.
[103]
Adimule, V.; Medapa, S.; Kumar, S.L.; Rao, P.K. Design, synthesis, characterization and anticancer properties of novel 2-chloro-N-(aryl substituted) acetamide derivatives of 5-[2-(4-methoxyphenyl) pyridin-3-yl]-1,3,4-oxadiazole-2-thiol. Int. J. Drug Dev. Res., 2014, 6, 188-195.
[104]
Yin, H.; Ma, C.; Wang, Y.; Zhang, R. Synthesis of [dibenzyl(hetroaromaticcarboxylato))tin (IV)]oxides and crystal structure of [dibenzyl(2-furanylcarboxylato)]tin (IV) oxide. Indian J. Chem., 2003, 42b, 889-894.
[105]
González, M.A.; Correa-Royero, J.; Mesa, A.; Betancur-Galvis, L. Synthesis and biological evaluation of pyridinebetaine A and B. Nat. Prod. Res., 2009, 23(16), 1485-1491.
[http://dx.doi.org/10.1080/14786410802573800] [PMID: 19844823]
[106]
Hong, H.; Huang, L.J.; Teng, D.W. A spirocyclic oxindole analogue: Synthesis and antitumor activities. Chin. Chem. Lett., 2011, 22, 1009-1012.
[http://dx.doi.org/10.1016/j.cclet.2011.01.042]
[107]
Verginadis, I.I.; Karkabounas, S.; Simos, Y.; Kontargiris, E.; Hadjikakou, S.K.; Batistatou, A.; Evangelou, A.; Charalabopoulos, K. Anticancer and cytotoxic effects of a triorganotin compound with 2-mercapto-nicotinic acid in malignant cell lines and tumor bearing Wistar rats. Eur. J. Pharm. Sci., 2011, 42(3), 253-261.
[http://dx.doi.org/10.1016/j.ejps.2010.11.015] [PMID: 21130873]
[108]
Zhang, Y.; Ma, H.; Wu, Y.; Wu, Z.; Yao, Z.; Zhang, W.; Zhuang, C.; Miao, Z. Novel non-trimethoxylphenyl piperlongumine derivatives selectively kill cancer cells. Bioorg. Med. Chem. Lett., 2017, 27(11), 2308-2312.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.035] [PMID: 28434764]
[109]
Huang, G.; Zhao, H.R.; Meng, Q.Q.; Zhang, Q.J.; Dong, J.Y.; Zhu, B.Q.; Li, S.S. Synthesis and biological evaluation of sulfur-containing shikonin oxime derivatives as potential antineoplastic agents. Eur. J. Med. Chem., 2018, 143, 166-181.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.031] [PMID: 29174813]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy