Generic placeholder image

Current Vascular Pharmacology

Editor-in-Chief

ISSN (Print): 1570-1611
ISSN (Online): 1875-6212

Mini-Review Article

Current Insights on the Role of Irisin in Endothelial Dysfunction

Author(s): Eder Luna-Ceron, Adrian M. González-Gil and Leticia Elizondo-Montemayor*

Volume 20, Issue 3, 2022

Published on: 06 July, 2022

Page: [205 - 220] Pages: 16

DOI: 10.2174/1570161120666220510120220

Price: $65

Abstract

Endothelial dysfunction is a crucial physiopathological mechanism for cardiovascular diseases that results from the harmful impact of metabolic disorders. Irisin, a recently discovered adipomyokine, has been shown to exert beneficial metabolic effects by increasing energy consumption, improving insulin sensitivity, and reducing the proinflammatory milieu. Multiple preclinical models have assessed irisin's possible role in the development of endothelial dysfunction, displaying that treatment with exogenous irisin can decrease the production of oxidative stress mediators by up-regulating Akt/mTOR/Nrf2 pathway, promote endothelial-dependent vasodilatation through the activation of AMPK-PI3K-AkteNOS pathway, and increase the endothelial cell viability by activation of ERK proliferation pathway and downregulation of Bad/Bax/Caspase 3 pro-apoptotic pathway. However, there is scarce evidence of these mechanisms in clinical studies, and available results are controversial. Some have shown negative correlations of irisin levels with the burden of coronary atherosclerosis and leukocyte adhesion molecules' expression. Others have demonstrated associations between irisin levels and increased atherosclerosis risk and higher carotid intima-media thickness. Since the role of irisin in endothelial damage remains unclear, in this review, we compare, contrast, and integrate the current knowledge from preclinical and clinical studies to elucidate the potential preventive role and the underlying mechanisms and pathways of irisin in endothelial dysfunction. This review also comprises original figures to illustrate these mechanisms.

Keywords: Irisin, endothelial dysfunction, myokine, adipokine, inflammation, oxidative stress.

Graphical Abstract
[1]
Benjamin EJ, Virani SS, Callaway CW, et al. Heart disease and stroke statistics-2018 update: A report from the american heart association. Circulation 2018; 137(12): e67-e492.
[http://dx.doi.org/10.1161/CIR.0000000000000558] [PMID: 29386200]
[2]
Roth GA, Johnson C, Abajobir A, et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol 2017; 70(1): 1-25.
[http://dx.doi.org/10.1016/j.jacc.2017.04.052] [PMID: 28527533]
[3]
Poredos P, Poredos AV, Gregoric I. Endothelial dysfunction and its clinical implications. Angiology 2021; 72(7): 604-15.
[http://dx.doi.org/10.1177/0003319720987752] [PMID: 33504167]
[4]
Moran AE, Forouzanfar MH, Roth GA, et al. Temporal trends in ischemic heart disease mortality in 21 world regions, 1980 to 2010: The Global Burden of Disease 2010 study. Circulation 2014; 129(14): 1483-92.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.004042] [PMID: 24573352]
[5]
Stary HC. Evolution and progression of atherosclerotic lesions in coronary arteries of children and young adults. Arteriosclerosis 1989; 9(1)(Suppl.): I19-32.
[PMID: 2912430]
[6]
McGill HC Jr, McMahan CA, Zieske AW, et al. Associations of coronary heart disease risk factors with the intermediate lesion of athero-sclerosis in youth. Arterioscler Thromb Vasc Biol 2000; 20(8): 1998-2004.
[http://dx.doi.org/10.1161/01.ATV.20.8.1998] [PMID: 10938023]
[7]
Lee JH, Jun H-S. Role of myokines in regulating skeletal muscle mass and function. Front Physiol 2019; 10: 42.
[http://dx.doi.org/10.3389/fphys.2019.00042] [PMID: 30761018]
[8]
Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol 2011; 11(2): 85-97.
[http://dx.doi.org/10.1038/nri2921] [PMID: 21252989]
[9]
Carson BP. The potential role of contraction-induced myokines in the regulation of metabolic function for the prevention and treatment of type 2 diabetes. Front Endocrinol (Lausanne) 2017; 8: 97.
[http://dx.doi.org/10.3389/fendo.2017.00097] [PMID: 28512448]
[10]
Di Raimondo D, Miceli G, Musiari G, Tuttolomondo A, Pinto A. New insights about the putative role of myokines in the context of cardiac rehabilitation and secondary cardiovascular prevention. Ann Transl Med 2017; 5(15): 300.
[http://dx.doi.org/10.21037/atm.2017.07.30] [PMID: 28856140]
[11]
Boström P, Wu J, Jedrychowski MP, et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermo-genesis. Nature 2012; 481(7382): 463-8.
[http://dx.doi.org/10.1038/nature10777] [PMID: 22237023]
[12]
Boström PA, Fernández-Real JM, Mantzoros C. Irisin in humans: Recent advances and questions for future research. Metabolism 2014; 63(2): 178-80.
[http://dx.doi.org/10.1016/j.metabol.2013.11.009] [PMID: 24342075]
[13]
Shimba Y, Togawa H, Senoo N, et al. Skeletal muscle-specific pgc-1α overexpression suppresses atherosclerosis in apolipoprotein e-knockout mice. Sci Rep 2019; 9(1): 4077.
[http://dx.doi.org/10.1038/s41598-019-40643-1] [PMID: 30858489]
[14]
Liu TY, Shi CX, Gao R, et al. Irisin inhibits hepatic gluconeogenesis and increases glycogen synthesis via the PI3K/Akt pathway in type 2 diabetic mice and hepatocytes. Clin Sci (Lond) 2015; 129(10): 839-50.
[http://dx.doi.org/10.1042/CS20150009] [PMID: 26201094]
[15]
Xiong X-Q, Chen D, Sun HJ, et al. FNDC5 overexpression and irisin ameliorate glucose/lipid metabolic derangements and enhance lipoly-sis in obesity. Biochim Biophys Acta 2015; 1852(9): 1867-75.
[http://dx.doi.org/10.1016/j.bbadis.2015.06.017] [PMID: 26111885]
[16]
Vaughan RA, Gannon NP, Barberena MA, et al. Characterization of the metabolic effects of irisin on skeletal muscle in vitro. Diabetes Obes Metab 2014; 16(8): 711-8.
[http://dx.doi.org/10.1111/dom.12268] [PMID: 24476050]
[17]
Rodríguez A, Becerril S, Méndez-Giménez L, et al. Leptin administration activates irisin-induced myogenesis via nitric oxide-dependent mechanisms, but reduces its effect on subcutaneous fat browning in mice. Int J Obes 2015; 39(3): 397-407.
[http://dx.doi.org/10.1038/ijo.2014.166] [PMID: 25199621]
[18]
Rodríguez A, Becerril S, Ezquerro S, Méndez-Giménez L, Frühbeck G. Crosstalk between adipokines and myokines in fat browning. Acta Physiol (Oxf) 2017; 219(2): 362-81.
[http://dx.doi.org/10.1111/apha.12686] [PMID: 27040995]
[19]
Matsuo Y, Gleitsmann K, Mangner N, et al. Fibronectin type III domain containing 5 expression in skeletal muscle in chronic heart failure-relevance of inflammatory cytokines. J Cachexia Sarcopenia Muscle 2015; 6(1): 62-72.
[http://dx.doi.org/10.1002/jcsm.12006] [PMID: 26136413]
[20]
Askari H, Rajani SF, Poorebrahim M, Haghi-Aminjan H, Raeis-Abdollahi E, Abdollahi M. A glance at the therapeutic potential of irisin against diseases involving inflammation, oxidative stress, and apoptosis: An introductory review. Pharmacol Res 2018; 129: 44-55.
[http://dx.doi.org/10.1016/j.phrs.2018.01.012] [PMID: 29414191]
[21]
Huh JH, Ahn SV, Choi JH, Koh SB, Chung CH. High serum irisin level as an independent predictor of diabetes mellitus: A longitudinal population-based study. Medicine (Baltimore) 2016; 95(23): e3742.
[http://dx.doi.org/10.1097/MD.0000000000003742] [PMID: 27281072]
[22]
Park KH, Zaichenko L, Brinkoetter M, et al. Circulating irisin in relation to insulin resistance and the metabolic syndrome. J Clin Endocrinol Metab 2013; 98(12): 4899-907.
[http://dx.doi.org/10.1210/jc.2013-2373] [PMID: 24057291]
[23]
Elizondo-Montemayor L, Mendoza-Lara G, Gutierrez-DelBosque G, Peschard-Franco M, Nieblas B, Garcia-Rivas G. Relationship of circu-lating irisin with body composition, physical activity, and cardiovascular and metabolic disorders in the pediatric population. Int J Mol Sci 2018; 19(12): E3727.
[http://dx.doi.org/10.3390/ijms19123727] [PMID: 30477139]
[24]
Palacios-González B, Vadillo-Ortega F, Polo-Oteyza E, et al. Irisin levels before and after physical activity among school-age children with different BMI: A direct relation with leptin. Obesity (Silver Spring) 2015; 23(4): 729-32.
[http://dx.doi.org/10.1002/oby.21029] [PMID: 25820255]
[25]
Moreno-Navarrete JM, Ortega F, Serrano M, et al. Irisin is expressed and produced by human muscle and adipose tissue in association with obesity and insulin resistance. J Clin Endocrinol Metab 2013; 98(4): E769-78.
[http://dx.doi.org/10.1210/jc.2012-2749] [PMID: 23436919]
[26]
Panagiotou G, Mu L, Na B, Mukamal KJ, Mantzoros CS. Circulating irisin, omentin-1, and lipoprotein subparticles in adults at higher car-diovascular risk. Metabolism 2014; 63(10): 1265-71.
[http://dx.doi.org/10.1016/j.metabol.2014.06.001] [PMID: 25060690]
[27]
Song W, Zhang J, Guo J, et al. Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles. Toxicol Lett 2010; 199(3): 389-97.
[http://dx.doi.org/10.1016/j.toxlet.2010.10.003] [PMID: 20934491]
[28]
Sesti G, Andreozzi F, Fiorentino TV, et al. High circulating irisin levels are associated with insulin resistance and vascular atherosclerosis in a cohort of nondiabetic adult subjects. Acta Diabetol 2014; 51(5): 705-13.
[http://dx.doi.org/10.1007/s00592-014-0576-0] [PMID: 24619655]
[29]
Wu F, Song H, Zhang Y, et al. Irisin induces angiogenesis in human umbilical vein endothelial cells in vitro and in zebrafish embryos in vivo via activation of the erk signaling pathway. PLoS One 2015; 10(8): e0134662.
[http://dx.doi.org/10.1371/journal.pone.0134662] [PMID: 26241478]
[30]
Deng W. Association of serum irisin concentrations with presence and severity of coronary artery disease. Med Sci Monit 2016; 22: 4193-7.
[http://dx.doi.org/10.12659/MSM.897376] [PMID: 27815563]
[31]
Icli A, Cure E, Cumhur Cure M, et al. Novel myokine: Irisin may be an independent predictor for subclinic atherosclerosis in Behçet’s disease. J Investig Med 2016; 64(4): 875-81.
[http://dx.doi.org/10.1136/jim-2015-000044] [PMID: 26941246]
[32]
Yan X, Anzai A, Katsumata Y, et al. Temporal dynamics of cardiac immune cell accumulation following acute myocardial infarction. J Mol Cell Cardiol 2013; 62: 24-35.
[http://dx.doi.org/10.1016/j.yjmcc.2013.04.023] [PMID: 23644221]
[33]
Huerta-Delgado AS, Roffe-Vazquez DN, Gonzalez-Gil AM, et al. Serum irisin levels, endothelial dysfunction, and inflammation in pediat-ric patients with type 2 diabetes mellitus and metabolic syndrome. J Diabetes Res 2020; 2020: 1949415.
[http://dx.doi.org/10.1155/2020/1949415] [PMID: 32964051]
[34]
Song H, Wu F, Zhang Y, et al. Irisin promotes human umbilical vein endothelial cell proliferation through the ERK signaling pathway and partly suppresses high glucose-induced apoptosis. PLoS One 2014; 9(10): e110273.
[http://dx.doi.org/10.1371/journal.pone.0110273] [PMID: 25338001]
[35]
Xie C, Zhang Y, Tran TD, et al. Irisin controls growth, intracellular ca2+ signals, and mitochondrial thermogenesis in cardiomyoblasts. PLoS One 2015; 10(8): e0136816.
[http://dx.doi.org/10.1371/journal.pone.0136816] [PMID: 26305684]
[36]
Zhu G, Wang J, Song M, et al. Irisin increased the number and improved the function of endothelial progenitor cells in diabetes mellitus mice. J Cardiovasc Pharmacol 2016; 68(1): 67-73.
[http://dx.doi.org/10.1097/FJC.0000000000000386] [PMID: 27002278]
[37]
Zhang Y, Song H, Zhang Y, et al. Irisin inhibits atherosclerosis by promoting endothelial proliferation through microRNA126-5p. J Am Heart Assoc 2016; 5(9): e004031.
[http://dx.doi.org/10.1161/JAHA.116.004031] [PMID: 27671318]
[38]
Zhang Y, Mu Q, Zhou Z, et al. Protective effect of irisin on atherosclerosis via suppressing oxidized low density lipoprotein induced vas-cular inflammation and endothelial dysfunction. PLoS One 2016; 11(6): e0158038.
[http://dx.doi.org/10.1371/journal.pone.0158038] [PMID: 27355581]
[39]
Deng X, Huang W, Peng J, et al. Irisin alleviates advanced glycation end products-induced inflammation and endothelial dysfunction via inhibiting ros-nlrp3 inflammasome signaling. Inflammation 2018; 41(1): 260-75.
[http://dx.doi.org/10.1007/s10753-017-0685-3] [PMID: 29098483]
[40]
Ma C, Ding H, Deng Y, Liu H, Xiong X, Yang Y. Irisin: A new code uncover the relationship of skeletal muscle and cardiovascular health during exercise. Front Physiol 2021; 12: 620608.
[http://dx.doi.org/10.3389/fphys.2021.620608] [PMID: 33597894]
[41]
Byun K, Lee S. The potential role of irisin in vascular function and atherosclerosis: A review. Int J Mol Sci 2020; 21(19): 7184.
[http://dx.doi.org/10.3390/ijms21197184] [PMID: 33003348]
[42]
Galley HF, Webster NR. Physiology of the endothelium. Br J Anaesth 2004; 93(1): 105-13.
[http://dx.doi.org/10.1093/bja/aeh163] [PMID: 15121728]
[43]
Triggle CR, Samuel SM, Ravishankar S, Marei I, Arunachalam G, Ding H. The endothelium: Influencing vascular smooth muscle in many ways. Can J Physiol Pharmacol 2012; 90(6): 713-38.
[http://dx.doi.org/10.1139/y2012-073] [PMID: 22625870]
[44]
Medina-Leyte DJ, Zepeda-García O, Domínguez-Pérez M, González-Garrido A, Villarreal-Molina T, Jacobo-Albavera L. Endothelial dys-function, inflammation and coronary artery disease: Potential biomarkers and promising therapeutical approaches. Int J Mol Sci 2021; 22(8): 3850.
[http://dx.doi.org/10.3390/ijms22083850] [PMID: 33917744]
[45]
Holvoet P. Endothelial dysfunction, oxidation of low-density lipoprotein, and cardiovascular disease. Ther Apher 1999; 3(4): 287-93.
[http://dx.doi.org/10.1046/j.1526-0968.1999.00169.x] [PMID: 10608719]
[46]
Taddei S, Virdis A, Ghiadoni L, Sudano I, Salvetti A. Endothelial dysfunction in hypertension. J Cardiovasc Pharmacol 2001; 38(Suppl. 2): S11-4.
[http://dx.doi.org/10.1097/00005344-200111002-00004] [PMID: 11811368]
[47]
Gomolak JR, Didion SP. Angiotensin II-induced endothelial dysfunction is temporally linked with increases in interleukin-6 and vascular macrophage accumulation. Front Physiol 2014; 5: 396-6.
[http://dx.doi.org/10.3389/fphys.2014.00396] [PMID: 25400581]
[48]
Seals DR, Jablonski KL, Donato AJ. Aging and vascular endothelial function in humans. Clin Sci 2011; 120(9): 357-75.
[http://dx.doi.org/10.1042/CS20100476]
[49]
Oguntibeju OO. Type 2 diabetes mellitus, oxidative stress and inflammation: Examining the links. Int J Physiol Pathophysiol Pharmacol 2019; 11(3): 45-63.
[PMID: 31333808]
[50]
Ho FM, Liu SH, Liau CS, Huang PJ, Shiah SG, Lin-Shiau SY. Nitric oxide prevents apoptosis of human endothelial cells from high glucose exposure during early stage. J Cell Biochem 1999; 75(2): 258-63.
[http://dx.doi.org/10.1002/(SICI)1097-4644(19991101)75:2<258:AID-JCB8>3.0.CO;2-3] [PMID: 10502298]
[51]
Catrysse L, van Loo G. Inflammation and the Metabolic Syndrome: The tissue-specific functions of NF-κB. Trends Cell Biol 2017; 27(6): 417-29.
[http://dx.doi.org/10.1016/j.tcb.2017.01.006] [PMID: 28237661]
[52]
Cardillo C, Campia U, Iantorno M, Panza JA. Enhanced vascular activity of endogenous endothelin-1 in obese hypertensive patients. Hypertension 2004; 43(1): 36-40.
[http://dx.doi.org/10.1161/01.HYP.0000103868.45064.81] [PMID: 14656951]
[53]
Su JB. Vascular endothelial dysfunction and pharmacological treatment. World J Cardiol 2015; 7(11): 719-41.
[http://dx.doi.org/10.4330/wjc.v7.i11.719] [PMID: 26635921]
[54]
García-Ruiz I, Solís-Muñoz P, Fernández-Moreira D, Grau M, Muñoz-Yagüe T, Solís-Herruzo JA. NADPH oxidase is implicated in the pathogenesis of oxidative phosphorylation dysfunction in mice fed a high-fat diet. Sci Rep 2016; 6(1): 23664-4.
[http://dx.doi.org/10.1038/srep23664] [PMID: 27173483]
[55]
Ding H, Aljofan M, Triggle CR. Oxidative stress and increased eNOS and NADPH oxidase expression in mouse microvessel endothelial cells. J Cell Physiol 2007; 212(3): 682-9.
[http://dx.doi.org/10.1002/jcp.21063] [PMID: 17443690]
[56]
Patel RP, Levonen A, Crawford JH, Darley-Usmar VM. Mechanisms of the pro- and anti-oxidant actions of nitric oxide in atherosclerosis. Cardiovasc Res 2000; 47(3): 465-74.
[http://dx.doi.org/10.1016/S0008-6363(00)00086-9] [PMID: 10963720]
[57]
Graier WF, Posch K, Fleischhacker E, Wascher TC, Kostner GM. Increased superoxide anion formation in endothelial cells during hyper-glycemia: An adaptive response or initial step of vascular dysfunction? Diabetes Res Clin Pract 1999; 45(2-3): 153-60.
[http://dx.doi.org/10.1016/S0168-8227(99)00045-5] [PMID: 10588368]
[58]
Lobato NS, Filgueira FP, Akamine EH, Tostes RC, Carvalho MHC, Fortes ZB. Mechanisms of endothelial dysfunction in obesity-associated hypertension. Rev Bras Pesqui Med Biol 2012; 45(5): 392-400.
[59]
Łuczak A, Madej M, Kasprzyk A, Doroszko A. Role of the eNOS uncoupling and the nitric oxide metabolic pathway in the pathogenesis of autoimmune rheumatic diseases. Oxid Med Cell Longev 2020; 2020: 1417981.
[http://dx.doi.org/10.1155/2020/1417981] [PMID: 32351667]
[60]
Yang YM, Huang A, Kaley G, Sun D. eNOS uncoupling and endothelial dysfunction in aged vessels. Am J Physiol Heart Circ Physiol 2009; 297(5): H1829-36.
[http://dx.doi.org/10.1152/ajpheart.00230.2009] [PMID: 19767531]
[61]
Laursen JB, Somers M, Kurz S, et al. Endothelial regulation of vasomotion in apoE-deficient mice: Implications for interactions between peroxynitrite and tetrahydrobiopterin. Circulation 2001; 103(9): 1282-8.
[http://dx.doi.org/10.1161/01.CIR.103.9.1282] [PMID: 11238274]
[62]
Alp NJ, McAteer MA, Khoo J, Choudhury RP, Channon KM. Increased endothelial tetrahydrobiopterin synthesis by targeted transgenic GTP-cyclohydrolase I overexpression reduces endothelial dysfunction and atherosclerosis in ApoE-knockout mice. Arterioscler Thromb Vasc Biol 2004; 24(3): 445-50.
[http://dx.doi.org/10.1161/01.ATV.0000115637.48689.77] [PMID: 14707037]
[63]
Verma S, Wang CH, Li SH, et al. A self-fulfilling prophecy: C-reactive protein attenuates nitric oxide production and inhibits angiogenesis. Circulation 2002; 106(8): 913-9.
[http://dx.doi.org/10.1161/01.CIR.0000029802.88087.5E] [PMID: 12186793]
[64]
Förstermann U, Sessa WC. Nitric oxide synthases: Regulation and function. Eur Heart J 2012; 33(7): 829-837, 837a-837d.
[http://dx.doi.org/10.1093/eurheartj/ehr304] [PMID: 21890489]
[65]
Liao JK. Linking endothelial dysfunction with endothelial cell activation. J Clin Invest 2013; 123(2): 540-1.
[http://dx.doi.org/10.1172/JCI66843] [PMID: 23485580]
[66]
Sangkuhl K, Shuldiner AR, Klein TE, Altman RB. Platelet aggregation pathway. Pharmacogenet Genomics 2011; 21(8): 516-21.
[http://dx.doi.org/10.1097/FPC.0b013e3283406323] [PMID: 20938371]
[67]
Barp CG, Bonaventura D, Assreuy JNO. ROS, RAS, and PVAT: More Than a Soup of Letters. Front Physiol 2021; 12(108): 640021.
[http://dx.doi.org/10.3389/fphys.2021.640021] [PMID: 33643076]
[68]
Gao YJ, Lu C, Su LY, Sharma AM, Lee RM. Modulation of vascular function by perivascular adipose tissue: The role of endothelium and hydrogen peroxide. Br J Pharmacol 2007; 151(3): 323-31.
[http://dx.doi.org/10.1038/sj.bjp.0707228] [PMID: 17384669]
[69]
Xiao X, Dong Y, Zhong J, et al. Adiponectin protects endothelial cells from the damages induced by the intermittent high level of glucose. Endocrine 2011; 40(3): 386-93.
[http://dx.doi.org/10.1007/s12020-011-9531-9] [PMID: 21948177]
[70]
Adela R, Nethi SK, Bagul PK, et al. Hyperglycaemia enhances nitric oxide production in diabetes: A study from South Indian patients. PLoS One 2015; 10(4): e0125270.
[http://dx.doi.org/10.1371/journal.pone.0125270] [PMID: 25894234]
[71]
Agnoletti L, Curello S, Bachetti T, et al. Serum from patients with severe heart failure downregulates eNOS and is proapoptotic: Role of tumor necrosis factor-alpha. Circulation 1999; 100(19): 1983-91.
[http://dx.doi.org/10.1161/01.CIR.100.19.1983] [PMID: 10556225]
[72]
Chen S, Tang Y, Qian Y, et al. Allicin prevents H₂O₂-induced apoptosis of HUVECs by inhibiting an oxidative stress pathway. BMC Complement Altern Med 2014; 14(1): 321.
[http://dx.doi.org/10.1186/1472-6882-14-321] [PMID: 25174844]
[73]
Shukla K, Sonowal H, Saxena A, Ramana KV. Didymin prevents hyperglycemia-induced human umbilical endothelial cells dysfunction and death. Biochem Pharmacol 2018; 152: 1-10.
[http://dx.doi.org/10.1016/j.bcp.2018.03.012] [PMID: 29548811]
[74]
Kapiotis S, Holzer G, Schaller G, et al. A proinflammatory state is detectable in obese children and is accompanied by functional and mor-phological vascular changes. Arterioscler Thromb Vasc Biol 2006; 26(11): 2541-6.
[http://dx.doi.org/10.1161/01.ATV.0000245795.08139.70] [PMID: 16973973]
[75]
Ustyol A, Aycan Ustyol E, Gurdol F, Kokali F, Bekpınar S. P-selectin, endocan, and some adhesion molecules in obese children and ado-lescents with non-alcoholic fatty liver disease. Scand J Clin Lab Invest 2017; 77(3): 205-9.
[http://dx.doi.org/10.1080/00365513.2017.1292363] [PMID: 28318371]
[76]
Kali A, Shetty KSR. Endocan: A novel circulating proteoglycan. Indian J Pharmacol 2014; 46(6): 579-83.
[http://dx.doi.org/10.4103/0253-7613.144891] [PMID: 25538326]
[77]
Balta S, Balta I, Mikhailidis DP. Endocan: A new marker of endothelial function. Curr Opin Cardiol 2021; 36(4): 462-8.
[http://dx.doi.org/10.1097/HCO.0000000000000867] [PMID: 33929364]
[78]
Balta S, Mikhailidis DP, Demirkol S, Ozturk C, Celik T, Iyisoy A. Endocan: A novel inflammatory indicator in cardiovascular disease? Atherosclerosis 2015; 243(1): 339-43.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.09.030] [PMID: 26448266]
[79]
Canpolat U, Kocyigit D, Yildirim A. Role of endothelial dysfunction and endocan in atherosclerosis: Point of origin or end point? Angiology 2020; 71(5): 477.
[http://dx.doi.org/10.1177/0003319716654627] [PMID: 27307222]
[80]
Fernández-Hernando C, Suárez Y. MicroRNAs in endothelial cell homeostasis and vascular disease. Curr Opin Hematol 2018; 25(3): 227-36.
[http://dx.doi.org/10.1097/MOH.0000000000000424] [PMID: 29547400]
[81]
Harris TA, Yamakuchi M, Ferlito M, Mendell JT, Lowenstein CJ. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci USA 2008; 105(5): 1516-21.
[http://dx.doi.org/10.1073/pnas.0707493105] [PMID: 18227515]
[82]
Fourdinier O, Glorieux G, Brigant B, et al. Syndecan-1 and free indoxyl sulfate levels are associated with miR-126 in chronic kidney dis-ease. Int J Mol Sci 2021; 22(19): 10549.
[http://dx.doi.org/10.3390/ijms221910549] [PMID: 34638892]
[83]
Sun HX, Zeng DY, Li RT, et al. Essential role of microRNA-155 in regulating endothelium-dependent vasorelaxation by targeting endothe-lial nitric oxide synthase. Hypertension 2012; 60(6): 1407-14.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.112.197301] [PMID: 23108656]
[84]
Qin B, Xiao B, Liang D, Xia J, Li Y, Yang H. MicroRNAs expression in ox-LDL treated HUVECs: MiR-365 modulates apoptosis and Bcl-2 expression. Biochem Biophys Res Commun 2011; 410(1): 127-33.
[http://dx.doi.org/10.1016/j.bbrc.2011.05.118] [PMID: 21640710]
[85]
Peng Q, Wang X, Wu K, Liu K, Wang S, Chen X. Irisin attenuates H2O2-induced apoptosis in cardiomyocytes via microRNA-19b/AKT/mTOR signaling pathway. Int J Clin Exp Pathol 2017; 10(7): 7707-17.
[PMID: 31966617]
[86]
Wu H, Guo P, Jin Z, et al. Serum levels of irisin predict short-term outcomes in ischemic stroke. Cytokine 2019; 122: 154303.
[http://dx.doi.org/10.1016/j.cyto.2018.02.017] [PMID: 29472066]
[87]
De Meneck F, Victorino de Souza L, Oliveira V, do Franco MC. High irisin levels in overweight/obese children and its positive correlation with metabolic profile, blood pressure, and endothelial progenitor cells. Nutr Metab Cardiovasc Dis 2018; 28(7): 756-64.
[http://dx.doi.org/10.1016/j.numecd.2018.04.009] [PMID: 29858156]
[88]
Huang J, Wang S, Xu F, et al. Exercise training with dietary restriction enhances circulating irisin level associated with increasing endotheli-al progenitor cell number in obese adults: An intervention study. PeerJ 2017; 5: e3669.
[http://dx.doi.org/10.7717/peerj.3669] [PMID: 28828264]
[89]
Xiang L, Xiang G, Yue L, Zhang J, Zhao L. Circulating irisin levels are positively associated with endothelium-dependent vasodilation in newly diagnosed type 2 diabetic patients without clinical angiopathy. Atherosclerosis 2014; 235(2): 328-33.
[http://dx.doi.org/10.1016/j.atherosclerosis.2014.04.036] [PMID: 24911636]
[90]
Hisamatsu T, Miura K, Arima H, et al. Relationship of serum irisin levels to prevalence and progression of coronary artery calcification: A prospective, population-based study. Int J Cardiol 2018; 267: 177-82.
[http://dx.doi.org/10.1016/j.ijcard.2018.05.075] [PMID: 29859711]
[91]
Yin C, Hu W, Wang M, Lv W, Jia T, Xiao Y. Irisin as a mediator between obesity and vascular inflammation in Chinese children and ado-lescents. Nutr Metab Cardiovasc Dis 2020; 30(2): 320-9.
[http://dx.doi.org/10.1016/j.numecd.2019.09.025] [PMID: 31740239]
[92]
Yoder MC. Human endothelial progenitor cells. Cold Spring Harb Perspect Med 2012; 2(7): a006692-2.
[http://dx.doi.org/10.1101/cshperspect.a006692] [PMID: 22762017]
[93]
Li Z, Wang G, Zhu YJ, et al. The relationship between circulating irisin levels and tissues AGE accumulation in type 2 diabetes patients. Biosci Rep 2017; 37(3): BSR20170213.
[http://dx.doi.org/10.1042/BSR20170213] [PMID: 28408433]
[94]
Guo W, Zhang B, Wang X. Lower irisin levels in coronary artery disease: A meta-analysis. Minerva Endocrinol 2020; 45(1): 61-9.
[http://dx.doi.org/10.23736/S0391-1977.17.02663-3] [PMID: 29160049]
[95]
Rana KS, Pararasa C, Afzal I, et al. Plasma irisin is elevated in type 2 diabetes and is associated with increased E-selectin levels. Cardiovasc Diabetol 2017; 16(1): 147.
[http://dx.doi.org/10.1186/s12933-017-0627-2] [PMID: 29121940]
[96]
Lopez-Legarrea P, de la Iglesia R, Crujeiras AB, et al. Higher baseline irisin concentrations are associated with greater reductions in glyce-mia and insulinemia after weight loss in obese subjects. Nutr Diabetes 2014; 4(2): e110-0.
[http://dx.doi.org/10.1038/nutd.2014.7] [PMID: 24567125]
[97]
Mazur-Bialy AI, Pocheć E, Zarawski M. Anti-inflammatory properties of irisin, mediator of physical activity, are connected with tlr4/myd88 signaling pathway activation. Int J Mol Sci 2017; 18(4): 701.
[http://dx.doi.org/10.3390/ijms18040701] [PMID: 28346354]
[98]
Zheng G, Li H, Zhang T, et al. Irisin protects macrophages from oxidized low density lipoprotein-induced apoptosis by inhibiting the en-doplasmic reticulum stress pathway. Saudi J Biol Sci 2018; 25(5): 849-57.
[http://dx.doi.org/10.1016/j.sjbs.2017.08.018] [PMID: 30108431]
[99]
Jiang M, Wan F, Wang F, Wu Q. Irisin relaxes mouse mesenteric arteries through endothelium-dependent and endothelium-independent mechanisms. Biochem Biophys Res Commun 2015; 468(4): 832-6.
[http://dx.doi.org/10.1016/j.bbrc.2015.11.040] [PMID: 26582714]
[100]
Lu J, Xiang G, Liu M, Mei W, Xiang L, Dong J. Irisin protects against endothelial injury and ameliorates atherosclerosis in apolipoprotein E-Null diabetic mice. Atherosclerosis 2015; 243(2): 438-48.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.10.020] [PMID: 26520898]
[101]
Han F, Zhang S, Hou N, Wang D, Sun X. Irisin improves endothelial function in obese mice through the AMPK-eNOS pathway. Am J Physiol Heart Circ Physiol 2015; 309(9): H1501-8.
[http://dx.doi.org/10.1152/ajpheart.00443.2015] [PMID: 26371167]
[102]
Fu J, Han Y, Wang J, et al. Irisin lowers blood pressure by improvement of endothelial dysfunction via AMPK-AKT-eNOS-No pathway in the spontaneously hypertensive rat. J Am Heart Assoc 2016; 5(11): e003433.
[http://dx.doi.org/10.1161/JAHA.116.003433] [PMID: 27912206]
[103]
Ye L, Xu M, Hu M, et al. TRPV4 is involved in irisin-induced endothelium-dependent vasodilation. Biochem Biophys Res Commun 2018; 495(1): 41-5.
[http://dx.doi.org/10.1016/j.bbrc.2017.10.160] [PMID: 29097199]
[104]
Liao Q, Qu S, Tang LX, et al. Irisin exerts a therapeutic effect against myocardial infarction via promoting angiogenesis. Acta Pharmacol Sin 2019; 40(10): 1314-21.
[http://dx.doi.org/10.1038/s41401-019-0230-z] [PMID: 31061533]
[105]
Zhu D, Wang H, Zhang J, et al. Irisin improves endothelial function in type 2 diabetes through reducing oxidative/nitrative stresses. J Mol Cell Cardiol 2015; 87: 138-47.
[http://dx.doi.org/10.1016/j.yjmcc.2015.07.015] [PMID: 26225842]
[106]
Zhang M, Xu Y, Jiang L. Irisin attenuates oxidized low-density lipoprotein impaired angiogenesis through AKT/mTOR/S6K1/Nrf2 path-way. J Cell Physiol 2019; 234(10): 18951-62.
[http://dx.doi.org/10.1002/jcp.28535] [PMID: 30942905]
[107]
Hou N, Du G, Han F, Zhang J, Jiao X, Sun X. Irisin regulates heme oxygenase-1/adiponectin axis in perivascular adipose tissue and im-proves endothelial dysfunction in diet-induced obese mice. Cell Physiol Biochem 2017; 42(2): 603-14.
[http://dx.doi.org/10.1159/000477864] [PMID: 28595178]
[108]
Hou N, Liu Y, Han F, et al. Irisin improves perivascular adipose tissue dysfunction via regulation of the heme oxygenase-1/adiponectin axis in diet-induced obese mice. J Mol Cell Cardiol 2016; 99: 188-96.
[http://dx.doi.org/10.1016/j.yjmcc.2016.09.005] [PMID: 27638193]
[109]
Bi J, Zhang J, Ren Y, et al. Exercise hormone irisin mitigates endothelial barrier dysfunction and microvascular leakage-related diseases. JCI Insight 2020; 5(13): 136277.
[http://dx.doi.org/10.1172/jci.insight.136277] [PMID: 32516137]
[110]
Zhang W, Chang L, Zhang C, et al. Central and peripheral irisin differentially regulate blood pressure. Cardiovasc Drugs Ther 2015; 29(2): 121-7.
[http://dx.doi.org/10.1007/s10557-015-6580-y] [PMID: 25820670]
[111]
Ho M-Y, Wang C-Y. Role of irisin in myocardial infarction, heart failure and cardiac hypertrophy. Cells 2021; 10(8): 2103.
[http://dx.doi.org/10.3390/cells10082103] [PMID: 34440871]
[112]
Rodríguez P, Higueras MA, González-Rajal A, et al. The non-canonical notch ligand dlk1 exhibits a novel vascular role as a strong inhibitor of angiogenesis. Cardiovasc Res 2012; 93(2): 232-41.
[http://dx.doi.org/10.1093/cvr/cvr296] [PMID: 22068159]
[113]
He F, Ru X, Wen T. NRF2, a transcription factor for stress response and beyond. Int J Mol Sci 2020; 21(13): 4777.
[http://dx.doi.org/10.3390/ijms21134777] [PMID: 32640524]
[114]
Idriss NK, Blann AD, Lip GYH. Hemoxygenase-1 in cardiovascular disease. J Am Coll Cardiol 2008; 52(12): 971-8.
[http://dx.doi.org/10.1016/j.jacc.2008.06.019] [PMID: 18786476]
[115]
Mazur-Bialy A, Bilski J, Pochec E, Brzozowski T. New insight into the direct anti-inflammatory activity of a myokine irisin against proin-flammatory activation of adipocytes. Implication for exercise in obesity. J Physiol Pharmacol 2017; 68: 243-51.
[PMID: 28614774]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy