Beyond DNA-targeting in Cancer Chemotherapy. Emerging Frontiers - A Review

Author(s): Simon N. Mbugua, Lydia W. Njenga, Ruth A. Odhiambo, Shem O. Wandiga, Martin O. Onani*

Journal Name: Current Topics in Medicinal Chemistry

Volume 21 , Issue 1 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Modern anti-cancer drugs target DNA specifically for rapid division of malignant cells. One downside of this approach is that they also target other rapidly dividing healthy cells, such as those involved in hair growth leading to serious toxic side effects and hair loss. Therefore, it would be better to develop novel agents that address cellular signaling mechanisms unique to cancerous cells, and new research is now focussing on such approaches. Although the classical chemotherapy area involving DNA as the set target continues to produce important findings, nevertheless, a distinctly discernible emerging trend is the divergence from the cisplatin operation model that uses the metal as the primary active center of the drug. Many successful anti-cancer drugs present are associated with elevated toxicity levels. Cancers also develop immunity against most therapies and the area of cancer research can, therefore, be seen as an area with a high unaddressed need. Hence, ongoing work into cancer pathogenesis is important to create accurate preclinical tests that can contribute to the development of innovative drugs to manage and treat cancer.

Some of the emergent frontiers utilizing different approaches include nanoparticles delivery, use of quantum dots, metal complexes, tumor ablation, magnetic hypothermia and hyperthermia by use of Superparamagnetic Iron oxide Nanostructures, pathomics and radiomics, laser surgery and exosomes.

This review summarizes these new approaches in good detail, giving critical views with necessary comparisons. It also delves into what they carry for the future, including their advantages and disadvantages.

Keywords: Cancer, Immunotherapy, Liposomes, Gene therapy, Exosomes, Tumour ablation.

[1]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer, 2019, 144(8), 1941-1953.
[http://dx.doi.org/10.1002/ijc.31937] [PMID: 30350310]
[2]
Riley, R.S.; June, C.H.; Langer, R.; Mitchell, M.J. Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discov., 2019, 18(3), 175-196.
[http://dx.doi.org/10.1038/s41573-018-0006-z] [PMID: 30622344]
[3]
Sanmamed, M.F.; Chen, L. A paradigm shift in cancer immunotherapy: from enhancement to normalization. Cell, 2018, 175(2), 313-326.
[http://dx.doi.org/10.1016/j.cell.2018.09.035] [PMID: 30290139]
[4]
Gurunathan, S.; Kang, M.H.; Qasim, M.; Kim, J.H. Nanoparticle-mediated combination therapy: two-in-one approach for cancer. Int. J. Mol. Sci., 2018, 19(10)E3264
[http://dx.doi.org/10.3390/ijms19103264] [PMID: 30347840]
[5]
Ribas, A.; Wolchok, J.D. Cancer immunotherapy using checkpoint blockade. Science, 2018, 359(6382), 1350-1355.
[http://dx.doi.org/10.1126/science.aar4060] [PMID: 29567705]
[6]
McGivern, N.; El-Helali, A.; Mullan, P.; McNeish, I.A.; Paul Harkin, D.; Kennedy, R.D.; McCabe, N. Activation of MAPK signalling results in resistance to saracatinib (AZD0530) in ovarian cancer. Oncotarget, 2017, 9(4), 4722-4736.
[http://dx.doi.org/10.18632/oncotarget.23524] [PMID: 29435137]
[7]
Laengle, J.; Kabiljo, J.; Hunter, L.; Homola, J.; Prodinger, S.; Egger, G.; Bergmann, M. Histone deacetylase inhibitors valproic acid and vorinostat enhance trastuzumab-mediated antibody-dependent cell-mediated phagocytosis. J. Immunother. Cancer, 2020, 8(1)e000195
[http://dx.doi.org/10.1136/jitc-2019-000195] [PMID: 31940587]
[8]
Feng, W.W.; Bang, S.; Kurokawa, M. CD36: a key mediator of resistance to HER2 inhibitors in breast cancer. Mol. Cell. Oncol., 2020, 7(2)1715766
[http://dx.doi.org/10.1080/23723556.2020.1715766] [PMID: 32158927]
[9]
Trujillo, J.A.; Sweis, R.F.; Bao, R.; Luke, J.J.T. Cell-inflamed versus non-t cell-inflamed tumors: A conceptual framework for cancer immunotherapy drug development and combination therapy selection. Cancer Immunol. Res., 2018, 6(9), 990-1000.
[http://dx.doi.org/10.1158/2326-6066.CIR-18-0277] [PMID: 30181337]
[10]
Sahin, U.; Türeci, Ö. Personalized vaccines for cancer immunotherapy. Science, 2018, 359(6382), 1355-1360.
[http://dx.doi.org/10.1126/science.aar7112] [PMID: 29567706]
[11]
Tanyi, J.L.; Bobisse, S.; Ophir, E.; Tuyaerts, S.; Roberti, A.; Genolet, R.; Baumgartner, P.; Stevenson, B.J.; Iseli, C.; Dangaj, D.; Czerniecki, B.; Semilietof, A.; Racle, J.; Michel, A.; Xenarios, I.; Chiang, C.; Monos, D.S.; Torigian, D.A.; Nisenbaum, H.L.; Michielin, O.; June, C.H.; Levine, B.L.; Powell, D.J., Jr; Gfeller, D.; Mick, R.; Dafni, U.; Zoete, V.; Harari, A.; Coukos, G.; Kandalaft, L.E. Personalized cancer vaccine effectively mobilizes antitumor T cell immunity in ovarian cancer. Sci. Transl. Med., 2018, 10(436)eaao5931
[http://dx.doi.org/10.1126/scitranslmed.aao5931] [PMID: 29643231]
[12]
Monti, S.; Brancato, V.; Di Costanzo, G.; Basso, L.; Puglia, M.; Ragozzino, A.; Salvatore, M.; Cavaliere, C. Multiparametric mri for prostate cancer detection: new insights into the combined use of a radiomic approach with advanced acquisition protocol. Cancers (Basel), 2020, 12(2)E390
[http://dx.doi.org/10.3390/cancers12020390] [PMID: 32046196]
[13]
Dercle, L.; Lu, L.; Schwartz, L.H.; Qian, M.; Tejpar, S.; Eggleton, P.; Zhao, B.; Piessevaux, H. Radiomics response signature for identification of metastatic colorectal cancer sensitive to therapies targeting egfr pathway. J. Natl. Cancer Inst., 2020, 112(9), 902-912.
[http://dx.doi.org/10.1093/jnci/djaa017] [PMID: 32016387]
[14]
Zhang, Q.; Peng, Y.; Liu, W.; Bai, J.; Zheng, J.; Yang, X.; Zhou, L. Radiomics based on multimodal mri for the differential diagnosis of benign and malignant breast lesions. J. Magn. Reson. Imaging, 2020, 52(2), 596-607.
[http://dx.doi.org/10.1002/jmri.27098] [PMID: 32061014]
[15]
Moler, F.W.; Silverstein, F.S.; Holubkov, R.; Slomine, B.S.; Christensen, J.R.; Nadkarni, V.M.; Meert, K.L.; Browning, B.; Pemberton, V.L.; Page, K.; Gildea, M.R.; Scholefield, B.R.; Shankaran, S.; Hutchison, J.S.; Berger, J.T.; Ofori-Amanfo, G.; Newth, C.J.; Topjian, A.; Bennett, K.S.; Koch, J.D.; Pham, N.; Chanani, N.K.; Pineda, J.A.; Harrison, R.; Dalton, H.J.; Alten, J.; Schleien, C.L.; Goodman, D.M.; Zimmerman, J.J.; Bhalala, U.S.; Schwarz, A.J.; Porter, M.B.; Shah, S.; Fink, E.L.; McQuillen, P.; Wu, T.; Skellett, S.; Thomas, N.J.; Nowak, J.E.; Baines, P.B.; Pappachan, J.; Mathur, M.; Lloyd, E.; van der Jagt, E.W.; Dobyns, E.L.; Meyer, M.T.; Sanders, R.C., Jr; Clark, A.E.; Dean, J.M. THAPCA trial investigators. therapeutic hypothermia after in-hospital cardiac arrest in children. N. Engl. J. Med., 2017, 376(4), 318-329.
[http://dx.doi.org/10.1056/NEJMoa1610493] [PMID: 28118559]
[16]
Prior, F.; Almeida, J.; Kathiravelu, P.; Kurc, T.; Smith, K.; Fitzgerald, T.J.; Saltz, J. Open access image repositories: high-quality data to enable machine learning research. Clin. Radiol., 2020, 75(1), 7-12.
[http://dx.doi.org/10.1016/j.crad.2019.04.002] [PMID: 31040006]
[17]
Albuquerque, K.; Tumati, V.; Lea, J.; Ahn, C.; Richardson, D.; Miller, D.; Timmerman, R. A phase ii trial of stereotactic ablative radiation therapy as a boost for locally advanced cervical cancer. Int. J. Radiat. Oncol. Biol. Phys., 2020, 106(3), 464-471.
[http://dx.doi.org/10.1016/j.ijrobp.2019.10.042] [PMID: 31697990]
[18]
Kontaxis, C.; Bol, G.H.; Stemkens, B.; Glitzner, M.; Prins, F.M.; Kerkmeijer, L.G.W.; Lagendijk, J.J.W.; Raaymakers, B.W. Towards fast online intrafraction replanning for free-breathing stereotactic body radiation therapy with the MR-linac. Phys. Med. Biol., 2017, 62(18), 7233-7248.
[http://dx.doi.org/10.1088/1361-6560/aa82ae] [PMID: 28749375]
[19]
Au, K.H.; Ngan, R.K.C.; Ng, A.W.Y.; Poon, D.M.C.; Ng, W.T.; Yuen, K.T.; Lee, V.H.F.; Tung, S.Y.; Chan, A.T.C.; Sze, H.C.K.; Cheng, A.C.K.; Lee, A.W.M.; Kwong, D.L.W.; Tam, A.H.P. Treatment outcomes of nasopharyngeal carcinoma in modern era after intensity modulated radiotherapy (IMRT) in Hong Kong: A report of 3328 patients (HKNPCSG 1301 study). Oral Oncol., 2018, 77, 16-21.
[http://dx.doi.org/10.1016/j.oraloncology.2017.12.004] [PMID: 29362121]
[20]
Nguyen, T.K.; Senan, S.; Bradley, J.D.; Franks, K.; Giuliani, M.; Guckenberger, M.; Landis, M.; Loo, B.W., Jr; Louie, A.V.; Onishi, H.; Schmidt, H.; Timmerman, R.; Videtic, G.M.M.; Palma, D.A. Optimal imaging surveillance after stereotactic ablative radiation therapy for early-stage non-small cell lung cancer: Findings of an International Delphi Consensus Study. Pract. Radiat. Oncol., 2018, 8(2), e71-e78.
[http://dx.doi.org/10.1016/j.prro.2017.10.008] [PMID: 29291965]
[21]
El-Razek, S.E.A. Transition metal complexes of a multidentate Schiff base ligand containing guanidine moiety: Synthesis, characterization, anti-cancer effect, and anti-microbial activity. J. Mol. Struct., 2020, 1203127381
[http://dx.doi.org/10.1016/j.molstruc.2019.127381]
[22]
Mi, P.; Cabral, H.; Kataoka, K. Ligand-installed nanocarriers toward precision therapy. Adv. Mater., 2020, 32(13)e1902604
[http://dx.doi.org/10.1002/adma.201902604] [PMID: 31353770]
[23]
Fang, T.; Lv, H.; Lv, G.; Li, T.; Wang, C.; Han, Q.; Yu, L.; Su, B.; Guo, L.; Huang, S.; Cao, D.; Tang, L.; Tang, S.; Wu, M.; Yang, W.; Wang, H. Tumor-derived exosomal miR-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer. Nat. Commun., 2018, 9(1), 191.
[http://dx.doi.org/10.1038/s41467-017-02583-0] [PMID: 29335551]
[24]
Zang, J.; Lu, D.; Xu, A. The interaction of circRNAs and RNA binding proteins: An important part of circRNA maintenance and function. J. Neurosci. Res., 2020, 98(1), 87-97.
[http://dx.doi.org/10.1002/jnr.24356] [PMID: 30575990]
[25]
Pitarresi, J.R.; Rustgi, A.K. Mechanisms underlying metastatic pancreatic cancer. Adv. Exp. Med. Biol., 2019, 1164, 3-10.
[http://dx.doi.org/10.1007/978-3-030-22254-3_1] [PMID: 31576536]
[26]
Huang, T.; Deng, C.X. Current progresses of exosomes as cancer diagnostic and prognostic biomarkers. Int. J. Biol. Sci., 2019, 15(1), 1-11.
[http://dx.doi.org/10.7150/ijbs.27796] [PMID: 30662342]
[27]
Scavo, M.P.; Depalo, N.; Tutino, V.; De Nunzio, V.; Ingrosso, C.; Rizzi, F.; Notarnicola, M.; Curri, M.L.; Giannelli, G. Exosomes for diagnosis and therapy in gastrointestinal cancers. Int. J. Mol. Sci., 2020, 21(1)E367
[http://dx.doi.org/10.3390/ijms21010367] [PMID: 31935918]
[28]
Xie, Y.; Dang, W.; Zhang, S.; Yue, W.; Yang, L.; Zhai, X.; Yan, Q.; Lu, J. The role of exosomal noncoding RNAs in cancer. Mol. Cancer, 2019, 18(1), 37.
[http://dx.doi.org/10.1186/s12943-019-0984-4] [PMID: 30849983]
[29]
Zeng, Z.; Li, Y.; Pan, Y.; Lan, X.; Song, F.; Sun, J.; Zhou, K.; Liu, X.; Ren, X.; Wang, F.; Hu, J.; Zhu, X.; Yang, W.; Liao, W.; Li, G.; Ding, Y.; Liang, L. Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nat. Commun., 2018, 9(1), 5395.
[http://dx.doi.org/10.1038/s41467-018-07810-w] [PMID: 30568162]
[30]
Whiteside, T.L. Exosome and mesenchymal stem cell cross-talk in the tumor microenvironment. Semin. Immunol., 2018, 35, 69-79.
[http://dx.doi.org/10.1016/j.smim.2017.12.003] [PMID: 29289420]
[31]
Groza, M.; Zimta, A.A.; Irimie, A.; Achimas-Cadariu, P.; Cenariu, D.; Stanta, G.; Berindan-Neagoe, I. Recent advancements in the study of breast cancer exosomes as mediators of intratumoral communication. J. Cell. Physiol., 2020, 235(2), 691-705.
[http://dx.doi.org/10.1002/jcp.29096] [PMID: 31328284]
[32]
Chicón-Bosch, M.; Tirado, O.M. Exosomes in bone sarcomas: Key players in metastasis. Cells, 2020, 9(1)E241
[http://dx.doi.org/10.3390/cells9010241] [PMID: 31963599]
[33]
Jiang, S.; Hu, C.; Liu, P.; Lu, M. Tumor-derived exosomes in cancer metastasis risk diagnosis and metastasis therapy. Clin. Transl. Oncol., 2019, 21(2), 152-159.
[http://dx.doi.org/10.1007/s12094-018-1918-0] [PMID: 30051211]
[34]
Do, H.T.T.; Lee, C.H.; Cho, J. Chemokines and their receptors: multifaceted roles in cancer progression and potential value as cancer prognostic markers. Cancers (Basel), 2020, 12(2)E287
[http://dx.doi.org/10.3390/cancers12020287] [PMID: 31991604]
[35]
Lu, D.Y.; Wu, F.G.; Zhen, Z.M.; Lu, T.R.; Wu, H.Y.; Che, J.Y.; Xu, B. Different spontaneous pulmonary metastasis inhibitions against lewis lung carcinoma in mice by bisdioxopiperazine compounds of different treatment schedules. Sci. Pharm., 2010, 78(1), 13-20.
[http://dx.doi.org/10.3797/scipharm.0910-16] [PMID: 21179367]
[36]
Kruger, S.; Ilmer, M.; Kobold, S.; Cadilha, B.L.; Endres, S.; Ormanns, S.; Schuebbe, G.; Renz, B.W.; D’Haese, J.G.; Schloesser, H.; Heinemann, V.; Subklewe, M.; Boeck, S.; Werner, J.; von Bergwelt-Baildon, M. Advances in cancer immunotherapy 2019 - latest trends. J. Exp. Clin. Cancer Res., 2019, 38(1), 268.
[http://dx.doi.org/10.1186/s13046-019-1266-0] [PMID: 31217020]
[37]
Souza-Fonseca-Guimaraes, F.; Cursons, J.; Huntington, N.D. The emergence of natural killer cells as a major target in cancer immunotherapy. Trends Immunol., 2019, 40(2), 142-158.
[http://dx.doi.org/10.1016/j.it.2018.12.003] [PMID: 30639050]
[38]
Vander Zanden, C.M.; Chi, E.Y. Passive immunotherapies targeting amyloid beta and tau oligomers in alzheimer’s disease. J. Pharm. Sci., 2020, 109(1), 68-73.
[http://dx.doi.org/10.1016/j.xphs.2019.10.024] [PMID: 31647950]
[39]
Marra, A.; Viale, G.; Curigliano, G. Recent advances in triple negative breast cancer: the immunotherapy era. BMC Med., 2019, 17(1), 90.
[http://dx.doi.org/10.1186/s12916-019-1326-5] [PMID: 31068190]
[40]
Sambi, M.; Bagheri, L.; Szewczuk, M.R. Current challenges in cancer immunotherapy: multimodal approaches to improve efficacy and patient response rates. J. Oncol., 2019, 20194508794
[http://dx.doi.org/10.1155/2019/4508794] [PMID: 30941175]
[41]
Rashidijahanabad, Z.; Huang, X. Recent advances in tumor associated carbohydrate antigen based chimeric antigen receptor T cells and bispecific antibodies for anti-cancer immunotherapy. Semin. Immunol., 2020, 47101390
[http://dx.doi.org/10.1016/j.smim.2020.101390] [PMID: 31982247]
[42]
Sicklick, J.K.; Kato, S.; Okamura, R.; Schwaederle, M.; Hahn, M.E.; Williams, C.B.; De, P.; Krie, A.; Piccioni, D.E.; Miller, V.A.; Ross, J.S.; Benson, A.; Webster, J.; Stephens, P.J.; Lee, J.J.; Fanta, P.T.; Lippman, S.M.; Leyland-Jones, B.; Kurzrock, R. Molecular profiling of cancer patients enables personalized combination therapy: the I-PREDICT study. Nat. Med., 2019, 25(5), 744-750.
[http://dx.doi.org/10.1038/s41591-019-0407-5] [PMID: 31011206]
[43]
Camidge, D.R.; Doebele, R.C.; Kerr, K.M. Comparing and contrasting predictive biomarkers for immunotherapy and targeted therapy of NSCLC. Nat. Rev. Clin. Oncol., 2019, 16(6), 341-355.
[http://dx.doi.org/10.1038/s41571-019-0173-9] [PMID: 30718843]
[44]
Havel, J.J.; Chowell, D.; Chan, T.A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat. Rev. Cancer, 2019, 19(3), 133-150.
[http://dx.doi.org/10.1038/s41568-019-0116-x] [PMID: 30755690]
[45]
Otoshi, T.; Nagano, T.; Tachihara, M.; Nishimura, Y. Possible biomarkers for cancer immunotherapy. Cancers (Basel), 2019, 11(7)E935
[http://dx.doi.org/10.3390/cancers11070935] [PMID: 31277279]
[46]
Khailany, R.A.; Safdar, M.; Ozaslan, M. Genomic characterization of a novel SARS-CoV-2. Gene Rep., 2020, 19100682
[http://dx.doi.org/10.1016/j.genrep.2020.100682] [PMID: 32300673]
[47]
Golchin, A.; Farahany, T. Z. Biological products: cellular therapy and fda approved products. Stem Cell Rev Rep, 2019, 15(2), 166-175.
[http://dx.doi.org/10.1007/s12015-018-9866-1] [PMID: 30623359]
[48]
Zaidi, N.; Jaffee, E.M. Immunotherapy transforms cancer treatment. J. Clin. Invest., 2019, 129(1), 46-47.
[http://dx.doi.org/10.1172/JCI126046] [PMID: 30507614]
[49]
Saito, H.; Kitagawa, K.; Yoneda, T.; Fukui, Y.; Fujsawa, M.; Bautista, D.; Shirakawa, T. Combination of p53-DC vaccine and rAd-p53 gene therapy induced CTLs cytotoxic against p53-deleted human prostate cancer cells in vitro. Cancer Gene Ther., 2017, 24(7), 289-296.
[http://dx.doi.org/10.1038/cgt.2017.21] [PMID: 28621316]
[50]
Wallis, C.J.D.; Butaney, M.; Satkunasivam, R.; Freedland, S.J.; Patel, S.P.; Hamid, O.; Pal, S.K.; Klaassen, Z. Association of patient sex with efficacy of immune checkpoint inhibitors and overall survival in advanced cancers: a systematic review and meta-analysis. JAMA Oncol., 2019, 5(4), 529-536.
[http://dx.doi.org/10.1001/jamaoncol.2018.5904] [PMID: 30605213]
[51]
Hellmann, M.D. Genomic features of response to combination immunotherapy in patients with advanced non-small-cell lung cancer. Cancer Cell, 2018, 35(5), 843-852.
[http://dx.doi.org/10.1016/j.ccell.2018.03.018]
[52]
Martin, J.D.; Cabral, H.; Stylianopoulos, T.; Jain, R.K. Improving cancer immunotherapy using nanomedicines: progress, opportunities and challenges. Nat. Rev. Clin. Oncol., 2020, 17(4), 251-266.
[http://dx.doi.org/10.1038/s41571-019-0308-z] [PMID: 32034288]
[53]
Malekzadeh, P.; Yossef, R.; Cafri, G.; Paria, B.C.; Lowery, F.J.; Jafferji, M.; Good, M.L.; Sachs, A.; Copeland, A.R.; Kim, S.P.; Kivitz, S.; Parkhurst, M.R.; Robbins, P.F.; Ray, S.; Xi, L.; Raffeld, M.; Yu, Z.; Restifo, N.P.; Somerville, R.P.T.; Rosenberg, S.A.; Deniger, D.C. Antigen experienced t cells from peripheral blood recognize p53 neoantigens. Clin. Cancer Res., 2020, 26(6), 1267-1276.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-1874] [PMID: 31996390]
[54]
Schep, S.J.; Schutgens, R.E.G.; Fischer, K.; Boes, M.L. Review of immune tolerance induction in hemophilia A. Blood Rev., 2018, 32(4), 326-338.
[http://dx.doi.org/10.1016/j.blre.2018.02.003] [PMID: 29482894]
[55]
Binnewies, M.; Roberts, E.W.; Kersten, K.; Chan, V.; Fearon, D.F.; Merad, M.; Coussens, L.M.; Gabrilovich, D.I.; Ostrand-Rosenberg, S.; Hedrick, C.C.; Vonderheide, R.H.; Pittet, M.J.; Jain, R.K.; Zou, W.; Howcroft, T.K.; Woodhouse, E.C.; Weinberg, R.A.; Krummel, M.F. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med., 2018, 24(5), 541-550.
[http://dx.doi.org/10.1038/s41591-018-0014-x] [PMID: 29686425]
[56]
Ren, D.; Hua, Y.; Yu, B.; Ye, X.; He, Z.; Li, C.; Wang, J.; Mo, Y.; Wei, X.; Chen, Y.; Zhou, Y.; Liao, Q.; Wang, H.; Xiang, B.; Zhou, M.; Li, X.; Li, G.; Li, Y.; Zeng, Z.; Xiong, W. Predictive biomarkers and mechanisms underlying resistance to PD1/PD-L1 blockade cancer immunotherapy. Mol. Cancer, 2020, 19(1), 19.
[http://dx.doi.org/10.1186/s12943-020-1144-6] [PMID: 32000802]
[57]
Jiang, P.; Gu, S.; Pan, D.; Fu, J.; Sahu, A.; Hu, X.; Li, Z.; Traugh, N.; Bu, X.; Li, B.; Liu, J.; Freeman, G.J.; Brown, M.A.; Wucherpfennig, K.W.; Liu, X.S. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med., 2018, 24(10), 1550-1558.
[http://dx.doi.org/10.1038/s41591-018-0136-1] [PMID: 30127393]
[58]
Roma-Rodrigues, C.; Mendes, R.; Baptista, P.V.; Fernandes, A.R. Targeting tumor microenvironment for cancer therapy. Int. J. Mol. Sci., 2019, 20(4)E840
[http://dx.doi.org/10.3390/ijms20040840] [PMID: 30781344]
[59]
Sanchez-Correa, B.; Lopez-Sejas, N.; Duran, E.; Labella, F.; Alonso, C.; Solana, R.; Tarazona, R. Modulation of NK cells with checkpoint inhibitors in the context of cancer immunotherapy. Cancer Immunol. Immunother., 2019, 68(5), 861-870.
[http://dx.doi.org/10.1007/s00262-019-02336-6] [PMID: 30953117]
[60]
Taylor, E.M.; Koss, B.; Davis, L.E.; Tackett, A.J. Histone modifications as biomarkers for immunotherapy. Methods Mol. Biol., 2020, 2055, 213-228.
[http://dx.doi.org/10.1007/978-1-4939-9773-2_10] [PMID: 31502154]
[61]
Wang, Y.; Bao, Y.; Zhang, S.; Wang, Z. Splicing dysregulation in cancer: from mechanistic understanding to a new class of therapeutic targets. Sci. China Life Sci., 2020, 63(4), 469-484.
[http://dx.doi.org/10.1007/s11427-019-1605-0] [PMID: 32086672]
[62]
Liu, J.; Zheng, X.; Tong, Q.; Li, W.; Wang, B.; Sutter, K.; Trilling, M.; Lu, M.; Dittmer, U.; Yang, D. Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS-CoV, MERS-CoV, and 2019-nCoV. J. Med. Virol., 2020, 92(5), 491-494.
[http://dx.doi.org/10.1002/jmv.25709] [PMID: 32056249]
[63]
Corrales, L.; Matson, V.; Flood, B.; Spranger, S.; Gajewski, T.F. Innate immune signaling and regulation in cancer immunotherapy. Cell Res., 2017, 27(1), 96-108.
[http://dx.doi.org/10.1038/cr.2016.149] [PMID: 27981969]
[64]
Martin, J.D. Reengineering the tumor microenvironment to alleviate hypoxia and overcome cancer heterogeneity. Cold Spring Harb. Perspect. Med., 2016, 6(12)
[65]
Samanta, D.; Semenza, G.L. Metabolic adaptation of cancer and immune cells mediated by hypoxia-inducible factors. Biochim. Biophys. Acta Rev. Cancer, 2018, 1870(1), 15-22.
[http://dx.doi.org/10.1016/j.bbcan.2018.07.002] [PMID: 30006019]
[66]
Fleming, V.; Hu, X.; Weber, R.; Nagibin, V.; Groth, C.; Altevogt, P.; Utikal, J.; Umansky, V. Targeting myeloid-derived suppressor cells to bypass tumor-induced immunosuppression. Front. Immunol., 2018, 9, 398.
[http://dx.doi.org/10.3389/fimmu.2018.00398] [PMID: 29552012]
[67]
Xie, W.; Xu, J.; Hu, S.; Li, S.; Wang, W.; Cameron Yin, C.; Toruner, G.; Tang, Z.; Jeffrey Medeiros, L.; Tang, G. iAMP21 in acute myeloid leukemia is associated with complex karyotype, TP53 mutation and dismal outcome. Mod. Pathol., 2020, 33(7), 1389-1397.
[http://dx.doi.org/10.1038/s41379-020-0494-3] [PMID: 32034282]
[68]
Durgeau, A.; Virk, Y.; Corgnac, S.; Mami-Chouaib, F. Recent advances in targeting cd8 t-cell immunity for more effective cancer immunotherapy. Front. Immunol., 2018, 9, 14.
[http://dx.doi.org/10.3389/fimmu.2018.00014] [PMID: 29403496]
[69]
Wagner, S.; Mullins, C.S.; Linnebacher, M. Colorectal cancer vaccines: Tumor-associated antigens vs neoantigens. World J. Gastroenterol., 2018, 24(48), 5418-5432.
[http://dx.doi.org/10.3748/wjg.v24.i48.5418] [PMID: 30622371]
[70]
Conte, M.; De Palma, R.; Altucci, L. HDAC inhibitors as epigenetic regulators for cancer immunotherapy. Int. J. Biochem. Cell Biol., 2018, 98, 65-74.
[http://dx.doi.org/10.1016/j.biocel.2018.03.004] [PMID: 29535070]
[71]
Sang, W.; Zhang, Z.; Dai, Y.; Chen, X. Recent advances in nanomaterial-based synergistic combination cancer immunotherapy. Chem. Soc. Rev., 2019, 48(14), 3771-3810.
[http://dx.doi.org/10.1039/C8CS00896E] [PMID: 31165801]
[72]
Bolm, L.; Käsmann, L.; Paysen, A.; Karapetis, C.; Rades, D.; Wellner, U.F.; Keck, T.; Watson, D.I.; Hummel, R.; Hussey, D.J. Multimodal anti-tumor approaches combined with immunotherapy to overcome tumor resistance in esophageal and gastric cancer. Anticancer Res., 2018, 38(6), 3231-3242.
[http://dx.doi.org/10.21873/anticanres.12588] [PMID: 29848670]
[73]
Schaaf, M.B.; Garg, A.D.; Agostinis, P. Defining the role of the tumor vasculature in antitumor immunity and immunotherapy. Cell Death Dis., 2018, 9(2), 115.
[http://dx.doi.org/10.1038/s41419-017-0061-0] [PMID: 29371595]
[74]
Orkin, S.H.; Bauer, D.E. Emerging genetic therapy for sickle cell disease. Annu. Rev. Med., 2019, 70, 257-271.
[http://dx.doi.org/10.1146/annurev-med-041817-125507] [PMID: 30355263]
[75]
Ferrua, F.; Aiuti, A. Twenty-five years of gene therapy for ada-scid: from bubble babies to an approved Drug. Hum. Gene Ther., 2017, 28(11), 972-981.
[http://dx.doi.org/10.1089/hum.2017.175] [PMID: 28847159]
[76]
Hallek, M. Chronic lymphocytic leukemia: 2020 update on diagnosis, risk stratification and treatment. Am. J. Hematol., 2019, 94(11), 1266-1287.
[http://dx.doi.org/10.1002/ajh.25595] [PMID: 31364186]
[77]
Aubrey, B.J.; Kelly, G.L.; Janic, A.; Herold, M.J.; Strasser, A. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ., 2018, 25(1), 104-113.
[http://dx.doi.org/10.1038/cdd.2017.169] [PMID: 29149101]
[78]
Lewis, A.C.; Wallington-Beddoe, C.T.; Powell, J.A.; Pitson, S.M. Targeting sphingolipid metabolism as an approach for combination therapies in haematological malignancies. Cell Death Discov., 2018, 4, 4.
[http://dx.doi.org/10.1038/s41420-018-0075-0] [PMID: 30062053]
[79]
Lee, S.H.; Singh, I.; Tisdale, S.; Abdel-Wahab, O.; Leslie, C.S.; Mayr, C. Widespread intronic polyadenylation inactivates tumour suppressor genes in leukaemia. Nature, 2018, 561(7721), 127-131.
[http://dx.doi.org/10.1038/s41586-018-0465-8] [PMID: 30150773]
[80]
Pucci, C.; Martinelli, C.; Ciofani, G. Innovative approaches for cancer treatment: current perspectives and new challenges. Ecancermedicalscience, 2019, 13, 961.
[http://dx.doi.org/10.3332/ecancer.2019.961] [PMID: 31537986]
[81]
Rokudai, S. High-throughput rna interference screen targeting synthetic-lethal gain-of-function of oncogenic mutant tp53 in triple-negative breast cancer. Methods Mol. Biol., 2020, 2108, 297-303.
[http://dx.doi.org/10.1007/978-1-0716-0247-8_25] [PMID: 31939190]
[82]
Rosik, J.; Szostak, B.; Machaj, F.; Pawlik, A. Potential targets of gene therapy in the treatment of heart failure. Expert Opin. Ther. Targets, 2018, 22(9), 811-816.
[http://dx.doi.org/10.1080/14728222.2018.1514012] [PMID: 30124081]
[83]
Ohmori, T. Advances in gene therapy for hemophilia: basis, current status, and future perspectives. Int. J. Hematol., 2020, 111(1), 31-41.
[http://dx.doi.org/10.1007/s12185-018-2513-4] [PMID: 30083852]
[84]
Tzioufas, A.G.; Goules, A.V. Limited efficacy of targeted treatments in Sjögren’s syndrome: why? Clin. Exp. Rheumatol., 2018, 112(3), 27-28.
[85]
Humbert, O.; Chan, F.; Rajawat, Y.S.; Torgerson, T.R.; Burtner, C.R.; Hubbard, N.W.; Humphrys, D.; Norgaard, Z.K.; O’Donnell, P.; Adair, J.E.; Trobridge, G.D.; Scharenberg, A.M.; Felsburg, P.J.; Rawlings, D.J.; Kiem, H.P. Rapid immune reconstitution of SCID-X1 canines after G-CSF/AMD3100 mobilization and in vivo gene therapy. Blood Adv., 2018, 2(9), 987-999.
[http://dx.doi.org/10.1182/bloodadvances.2018016451] [PMID: 29720491]
[86]
Lukashev, A.N.; Zamyatnin, A.A., Jr Viral vectors for gene therapy: current state and clinical perspectives. Biochemistry (Mosc.), 2016, 81(7), 700-708.
[http://dx.doi.org/10.1134/S0006297916070063] [PMID: 27449616]
[87]
Mukalel, A.J.; Riley, R.S.; Zhang, R.; Mitchell, M.J. Nanoparticles for nucleic acid delivery: Applications in cancer immunotherapy. Cancer Lett., 2019, 458, 102-112.
[http://dx.doi.org/10.1016/j.canlet.2019.04.040] [PMID: 31100411]
[88]
Auloge, P.; Cazzato, R.L.; Koch, G.; Caudrelier, J.; De Marini, P.; Garnon, J.; Gangi, A. Percutaneous tumor ablation. Presse Med., 2019, 48(10), 1146-1155.
[http://dx.doi.org/10.1016/j.lpm.2019.10.011] [PMID: 31676219]
[89]
Kaija, H.; Pakanen, L.; Porvari, K. RNU6B, a frequent reference in miRNA expression studies, differentiates between deaths caused by hypothermia and chronic cardiac ischemia. Int. J. Legal Med., 2020, 134(1), 159-162.
[http://dx.doi.org/10.1007/s00414-019-02041-0] [PMID: 30904931]
[90]
Prasad, B.; Kim, S.; Cho, W.; Kim, S.; Kim, J.K. Effect of tumor properties on energy absorption, temperature mapping, and thermal dose in 13.56-MHz radiofrequency hyperthermia. J. Therm. Biol., 2018, 74, 281-289.
[http://dx.doi.org/10.1016/j.jtherbio.2018.04.007] [PMID: 29801639]
[91]
Mitxelena-Iribarren, O.; Campisi, J.; Martínez de Apellániz, I.; Lizarbe-Sancha, S.; Arana, S.; Zhukova, V.; Mujika, M.; Zhukov, A. Glass-coated ferromagnetic microwire-induced magnetic hyperthermia for in vitro cancer cell treatment. Mater. Sci. Eng. C, 2020, 106110261
[http://dx.doi.org/10.1016/j.msec.2019.110261] [PMID: 31753330]
[92]
Chen, J.; Ning, C.; Zhou, Z.; Yu, P.; Zhu, Y.; Tan, G.; Mao, C. Nanomaterials as photothermal therapeutic agents. Prog. Mater. Sci., 2019, 99, 1-26.
[http://dx.doi.org/10.1016/j.pmatsci.2018.07.005] [PMID: 30568319]
[93]
Testoni, S.G.G.; Healey, A.J.; Dietrich, C.F.; Arcidiacono, P.G. Systematic review of endoscopy ultrasound-guided thermal ablation treatment for pancreatic cancer. Endosc. Ultrasound, 2020, 9(2), 83-100.
[http://dx.doi.org/10.4103/eus.eus_74_19] [PMID: 32295966]
[94]
Izzo, F.; Granata, V.; Grassi, R.; Fusco, R.; Palaia, R.; Delrio, P.; Carrafiello, G.; Azoulay, D.; Petrillo, A.; Curley, S.A. Radiofrequency ablation and microwave ablation in liver tumors: an update. Oncologist, 2019, 24(10), e990-e1005.
[http://dx.doi.org/10.1634/theoncologist.2018-0337] [PMID: 31217342]
[95]
Hsieh, Y.C.; Limquiaco, J.L.; Lin, C.C.; Chen, W.T.; Lin, S.M. Radiofrequency ablation following artificial ascites and pleural effusion creation may improve outcomes for hepatocellular carcinoma in high-risk locations. Abdom. Radiol. (N.Y.), 2019, 44(3), 1141-1151.
[http://dx.doi.org/10.1007/s00261-018-1831-6] [PMID: 30460530]
[96]
Sun, Y.D.; Zhang, H.; Liu, J.Z.; Xu, H.R.; Wu, H.Y.; Zhai, H.Z.; Lu, C.Y.; Zhao, X.; Chen, Y.Q.; Zhou, L.L.; Han, J.J. Efficacy of radiofrequency ablation and microwave ablation in the treatment of thoracic cancer: A systematic review and meta-analysis. Thorac. Cancer, 2019, 10(3), 543-550.
[http://dx.doi.org/10.1111/1759-7714.12973] [PMID: 30677240]
[97]
Boone, C.E.; Wojtasiewicz, T.; Moukheiber, E.; Butala, A.; Jordao, L.; Mills, K.A.; Sair, H.; Anderson, W.S. MR-guided functional neurosurgery: laser ablation and deep brain stimulation. Top. Magn. Reson. Imaging, 2018, 27(3), 171-177.
[http://dx.doi.org/10.1097/RMR.0000000000000152] [PMID: 29870469]
[98]
Meijerink, M.R.; Puijk, R.S.; van Tilborg, A.A.J.M.; Henningsen, K.H.; Fernandez, L.G.; Neyt, M.; Heymans, J.; Frankema, J.S.; de Jong, K.P.; Richel, D.J.; Prevoo, W.; Vlayen, J. Radiofrequency and microwave ablation compared to systemic chemotherapy and to partial hepatectomy in the treatment of colorectal liver metastases: a systematic review and meta-analysis. Cardiovasc. Intervent. Radiol., 2018, 41(8), 1189-1204.
[http://dx.doi.org/10.1007/s00270-018-1959-3] [PMID: 29666906]
[99]
Fincke, J.R.; Wynn, C.M.; Haupt, R.; Zhang, X.; Rivera, D.; Anthony, B. Characterization of laser ultrasound source signals in biological tissues for imaging applications. J. Biomed. Opt., 2018, 24(2), 1-11.
[http://dx.doi.org/10.1117/1.JBO.24.2.021206] [PMID: 30550046]
[100]
Seago, M.; Shumaker, P.R.; Spring, L.K.; Alam, M.; Al-Niaimi, F.; Rox Anderson, R.; Artzi, O.; Bayat, A.; Cassuto, D.; Chan, H.H.; Dierickx, C.; Donelan, M.; Gauglitz, G.G.; Leo Goo, B.; Goodman, G.J.; Gurtner, G.; Haedersdal, M.; Krakowski, A.C.; Manuskiatti, W.; Norbury, W.B.; Ogawa, R.; Ozog, D.M.; Paasch, U.; Victor Ross, E.; Tretti Clementoni, M.; Waibel, J. Laser treatment of traumatic scars and contractures: 2020 international consensus recommendations. Lasers Surg. Med., 2020, 52(2), 96-116.
[http://dx.doi.org/10.1002/lsm.23201] [PMID: 31820478]
[101]
Hong, C.S.; Cord, B.J.; Kundishora, A.J.; Elsamadicy, A.A.; Beckta, J.M.; Huttner, A.; Chiang, V.L.; Matouk, C.C. MRI-guided laser interstitial thermal therapy for radiation necrosis in previously irradiated brain arteriovenous malformations. Pract. Radiat. Oncol., 2020, 10(4), e298-e303.
[http://dx.doi.org/10.1016/j.prro.2020.02.003] [PMID: 32068154]
[102]
Strieth, S.; Hagemann, J.; Hess, M. Angiolytic laser applications for the larynx: Phonosurgical concepts for transoral laser microsurgery. HNO, 2020, 68(1), 59-68.
[http://dx.doi.org/10.1007/s00106-019-00801-3] [PMID: 31950226]
[103]
Phadnis, A.; Kumar, S.; Srivastava, A. Numerical investigation of thermal response of laser-irradiated biological tissue phantoms embedded with gold nanoshells. J. Therm. Biol., 2016, 61, 16-28.
[http://dx.doi.org/10.1016/j.jtherbio.2016.08.002] [PMID: 27712656]
[104]
Suter, V.G.A.; Altermatt, H.J.; Bornstein, M.M. A randomized controlled trial comparing surgical excisional biopsies using CO2 laser, Er:YAG laser and scalpel. Int. J. Oral Maxillofac. Surg., 2020, 49(1), 99-106.
[http://dx.doi.org/10.1016/j.ijom.2019.05.012] [PMID: 31230766]
[105]
Wierzbinski, K.R.; Szymanski, T.; Rozwadowska, N.; Rybka, J.D.; Zimna, A.; Zalewski, T.; Nowicka-Bauer, K.; Malcher, A.; Nowaczyk, M.; Krupinski, M.; Fiedorowicz, M.; Bogorodzki, P.; Grieb, P.; Giersig, M.; Kurpisz, M.K. Potential use of superparamagnetic iron oxide nanoparticles for in vitro and in vivo bioimaging of human myoblasts. Sci. Rep., 2018, 8(1), 3682.
[http://dx.doi.org/10.1038/s41598-018-22018-0] [PMID: 29487326]
[106]
El-Hammadi, M.M.; Arias, J.L. An update on liposomes in drug delivery: a patent review (2014-2018). Expert Opin. Ther. Pat., 2019, 29(11), 891-907.
[http://dx.doi.org/10.1080/13543776.2019.1679767] [PMID: 31603360]
[107]
Kauscher, U.; Holme, M.N.; Björnmalm, M.; Stevens, M.M. Physical stimuli-responsive vesicles in drug delivery: Beyond liposomes and polymersomes. Adv. Drug Deliv. Rev., 2019, 138, 259-275.
[http://dx.doi.org/10.1016/j.addr.2018.10.012] [PMID: 30947810]
[108]
Kang, J.H.; Ko, Y.T. Enhanced subcellular trafficking of resveratrol using mitochondriotropic liposomes in cancer cells. Pharmaceutics, 2019, 11(8)E423
[http://dx.doi.org/10.3390/pharmaceutics11080423] [PMID: 31434345]
[109]
Iinuma, H.; Maruyama, K.; Okinaga, K.; Sasaki, K.; Sekine, T.; Ishida, O.; Ogiwara, N.; Johkura, K.; Yonemura, Y. Intracellular targeting therapy of cisplatin-encapsulated transferrin-polyethylene glycol liposome on peritoneal dissemination of gastric cancer. Int. J. Cancer, 2002, 99(1), 130-137.
[http://dx.doi.org/10.1002/ijc.10242] [PMID: 11948504]
[110]
Yoon, H.J.; Lee, H.S.; Lim, J.Y.; Park, J.H. Liposomal indocyanine green for enhanced photothermal therapy. ACS Appl. Mater. Interfaces, 2017, 9(7), 5683-5691.
[http://dx.doi.org/10.1021/acsami.6b16801] [PMID: 28152314]
[111]
Belfiore, L.; Saunders, D.N.; Ranson, M.; Thurecht, K.J.; Storm, G.; Vine, K.L. Towards clinical translation of ligand-functionalized liposomes in targeted cancer therapy: Challenges and opportunities. J. Control. Release, 2018, 277, 1-13.
[http://dx.doi.org/10.1016/j.jconrel.2018.02.040] [PMID: 29501721]
[112]
Hamano, N.; Böttger, R.; Lee, S.E.; Yang, Y.; Kulkarni, J.A.; Ip, S.; Cullis, P.R.; Li, S.D. Robust microfluidic technology and new lipid composition for fabrication of curcumin-loaded liposomes: effect on the anticancer activity and safety of cisplatin. Mol. Pharm., 2019, 16(9), 3957-3967.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00583] [PMID: 31381352]
[113]
Du, Y.; Liang, X.; Li, Y.; Sun, T.; Jin, Z.; Xue, H.; Tian, J. Nuclear and fluorescent labeled pd-1-liposome-dox-64cu/irdye800cw allows improved breast tumor targeted imaging and therapy. Mol. Pharm., 2017, 14(11), 3978-3986.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00649] [PMID: 29016143]
[114]
Xia, R.; Zheng, X.; Hu, X.; Liu, S.; Xie, Z. Photothermal-controlled generation of alkyl radical from organic nanoparticles for tumor treatment. ACS Appl. Mater. Interfaces, 2019, 11(6), 5782-5790.
[http://dx.doi.org/10.1021/acsami.8b18953] [PMID: 30663874]
[115]
Wu, F.; Chen, L.; Yue, L.; Wang, K.; Cheng, K.; Chen, J.; Luo, X.; Zhang, T. Small-molecule porphyrin-based organic nanoparticles with remarkable photothermal conversion efficiency for in vivo photoacoustic imaging and photothermal therapy. ACS Appl. Mater. Interfaces, 2019, 11(24), 21408-21416.
[http://dx.doi.org/10.1021/acsami.9b06866] [PMID: 31120723]
[116]
Ahmed, K.S.; Hussein, S.A.; Ali, A.H.; Korma, S.A.; Lipeng, Q.; Jinghua, C. Liposome: composition, characterisation, preparation, and recent innovation in clinical applications. J. Drug Target., 2019, 27(7), 742-761.
[http://dx.doi.org/10.1080/1061186X.2018.1527337] [PMID: 30239255]
[117]
Lam, F.C.; Morton, S.W.; Wyckoff, J.; Vu Han, T.L.; Hwang, M.K.; Maffa, A.; Balkanska-Sinclair, E.; Yaffe, M.B.; Floyd, S.R.; Hammond, P.T. Enhanced efficacy of combined temozolomide and bromodomain inhibitor therapy for gliomas using targeted nanoparticles. Nat. Commun., 2018, 9(1), 1991.
[http://dx.doi.org/10.1038/s41467-018-04315-4] [PMID: 29777137]
[118]
Pucci, C.; Martinelli, C.; Ciofani, G. What does the future hold for chemotherapy with the use of lipid-based nanocarriers? Future Oncol., 2020, 16(5), 81-84.
[http://dx.doi.org/10.2217/fon-2019-0767] [PMID: 31872773]
[119]
Krauss, A.C.; Gao, X.; Li, L.; Manning, M.L.; Patel, P.; Fu, W.; Janoria, K.G.; Gieser, G.; Bateman, D.A.; Przepiorka, D.; Shen, Y.L.; Shord, S.S.; Sheth, C.M.; Banerjee, A.; Liu, J.; Goldberg, K.B.; Farrell, A.T.; Blumenthal, G.M.; Pazdur, R. FDA approval summary: (daunorubicin and cytarabine) liposome for injection for the treatment of adults with high-risk acute myeloid leukemia. Clin. Cancer Res., 2019, 25(9), 2685-2690.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-2990] [PMID: 30541745]
[120]
Atef, M.; Rezaei, M.; Behrooz, R. Preparation and characterization agar-based nanocomposite film reinforced by nanocrystalline cellulose. Int. J. Biol. Macromol., 2014, 70, 537-544.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.07.013] [PMID: 25036597]
[121]
Akhoond Zardini, A.; Mohebbi, M.; Farhoosh, R.; Bolurian, S. Production and characterization of nanostructured lipid carriers and solid lipid nanoparticles containing lycopene for food fortification. J. Food Sci. Technol., 2018, 55(1), 287-298.
[http://dx.doi.org/10.1007/s13197-017-2937-5] [PMID: 29358821]
[122]
Ghasemiyeh, P.; Mohammadi-Samani, S. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. Res. Pharm. Sci., 2018, 13(4), 288-303.
[http://dx.doi.org/10.4103/1735-5362.235156] [PMID: 30065762]
[123]
Mishra, V.; Bansal, K.K.; Verma, A.; Yadav, N.; Thakur, S.; Sudhakar, K.; Rosenholm, J.M. Solid lipid nanoparticles: emerging colloidal nano drug delivery systems. Pharmaceutics, 2018, 10(4)E191
[http://dx.doi.org/10.3390/pharmaceutics10040191] [PMID: 30340327]
[124]
Erel-Akbaba, G.; Carvalho, L.A.; Tian, T.; Zinter, M.; Akbaba, H.; Obeid, P.J.; Chiocca, E.A.; Weissleder, R.; Kantarci, A.G.; Tannous, B.A. Radiation-induced targeted nanoparticle-based gene delivery for brain tumor therapy. ACS Nano, 2019, 13(4), 4028-4040.
[http://dx.doi.org/10.1021/acsnano.8b08177] [PMID: 30916923]
[125]
García-Pinel, B.; Porras-Alcalá, C.; Ortega-Rodríguez, A.; Sarabia, F.; Prados, J.; Melguizo, C.; López-Romero, J.M. Lipid-based nanoparticles: application and recent advances in cancer treatment. Nanomaterials (Basel), 2019, 9(4)E638
[http://dx.doi.org/10.3390/nano9040638] [PMID: 31010180]
[126]
Singh, I.; Swami, R.; Pooja, D.; Jeengar, M.K.; Khan, W.; Sistla, R. Lactoferrin bioconjugated solid lipid nanoparticles: a new drug delivery system for potential brain targeting. J. Drug Target., 2016, 24(3), 212-223.
[http://dx.doi.org/10.3109/1061186X.2015.1068320] [PMID: 26219519]
[127]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[128]
Ma, X.; Xiong, Y.; Lee, L.T.O. Application of nanoparticles for targeting g protein-coupled receptors. Int. J. Mol. Sci., 2018, 19(7)E2006
[http://dx.doi.org/10.3390/ijms19072006] [PMID: 29996469]
[129]
Jin, H.; Qian, Y.; Dai, Y.; Qiao, S.; Huang, C.; Lu, L.; Luo, Q.; Chen, J.; Zhang, Z. Magnetic enrichment of dendritic cell vaccine in lymph node with fluorescent-magnetic nanoparticles enhanced cancer immunotherapy. Theranostics, 2016, 6(11), 2000-2014.
[http://dx.doi.org/10.7150/thno.15102] [PMID: 27698936]
[130]
El-Boubbou, K. Magnetic iron oxide nanoparticles as drug carriers: preparation, conjugation and delivery. Nanomedicine (Lond.), 2018, 13(8), 929-952.
[http://dx.doi.org/10.2217/nnm-2017-0320] [PMID: 29546817]
[131]
Senapati, S.; Mahanta, A.K.; Kumar, S.; Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther., 2018, 3, 7.
[http://dx.doi.org/10.1038/s41392-017-0004-3] [PMID: 29560283]
[132]
Akter, M.; Sikder, M.T.; Rahman, M.M.; Ullah, A.K.M.A.; Hossain, K.F.B.; Banik, S.; Hosokawa, T.; Saito, T.; Kurasaki, M. A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. J. Adv. Res., 2017, 9, 1-16.
[http://dx.doi.org/10.1016/j.jare.2017.10.008] [PMID: 30046482]
[133]
Elzoghby, A.O.; Hemasa, A.L.; Freag, M.S. Hybrid protein-inorganic nanoparticles: From tumor-targeted drug delivery to cancer imaging. J. Control. Release, 2016, 243, 303-322.
[http://dx.doi.org/10.1016/j.jconrel.2016.10.023] [PMID: 27794493]
[134]
Jain, K.K. An overview of drug delivery systems. Methods Mol. Biol., 2020, 2059, 1-54.
[http://dx.doi.org/10.1007/978-1-4939-9798-5_1] [PMID: 31435914]
[135]
Sousa, F.; Cruz, A.; Fonte, P.; Pinto, I.M.; Neves-Petersen, M.T.; Sarmento, B. A new paradigm for antiangiogenic therapy through controlled release of bevacizumab from PLGA nanoparticles. Sci. Rep., 2017, 7(1), 3736.
[http://dx.doi.org/10.1038/s41598-017-03959-4] [PMID: 28623267]
[136]
Rizvi, S.A.A.; Saleh, A.M. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm. J., 2018, 26(1), 64-70.
[http://dx.doi.org/10.1016/j.jsps.2017.10.012] [PMID: 29379334]
[137]
Chen, S.; Huang, H.; Zhang, L.; Chen, Y.; Liu, X. Alternate release of different target species based on the same gold nanorods and monitored by cell imaging. Colloids Surf. B Biointerfaces, 2016, 145, 671-678.
[http://dx.doi.org/10.1016/j.colsurfb.2016.05.087] [PMID: 27289308]
[138]
Qian, K.; Chen, H.; Qu, C.; Qi, J.; Du, B.; Ko, T.; Xiang, Z.; Kandawa-Schulz, M.; Wang, Y.; Cheng, Z. Mitochondria-targeted delocalized lipophilic cation complexed with human serum albumin for tumor cell imaging and treatment. Nanomedicine (Lond.), 2020, 23102087
[http://dx.doi.org/10.1016/j.nano.2019.102087] [PMID: 31454551]
[139]
Alavi, M.; Hamidi, M. Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles. Drug Metab. Pers. Ther., 2019, 34(1)
[http://dx.doi.org/10.1515/dmpt-2018-0032] [PMID: 30707682]
[140]
Kankala, R.K.; Tsai, P.Y.; Kuthati, Y.; Wei, P.R.; Liu, C.L.; Lee, C.H. Overcoming multidrug resistance through co-delivery of ROS-generating nano-machinery in cancer therapeutics. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(7), 1507-1517.
[http://dx.doi.org/10.1039/C6TB03146C] [PMID: 32264641]
[141]
Yan, W.; Leung, S.S.; To, K.K. Updates on the use of liposomes for active tumor targeting in cancer therapy. Nanomedicine (Lond.), 2020, 15(3), 303-318.
[http://dx.doi.org/10.2217/nnm-2019-0308] [PMID: 31802702]
[142]
Kim, J.S.; Shin, D.H.; Kim, J.S. Dual-targeting immunoliposomes using angiopep-2 and CD133 antibody for glioblastoma stem cells. J. Control. Release, 2018, 269, 245-257.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.026] [PMID: 29162480]
[143]
Giorgakis, E.; Ramesh, B.; Kamali-Dashtarzheneh, A.; Fusai, G.K.; Imber, C.; Tsironis, D.; Loizidou, M. Demonstration of calreticulin expression in hamster pancreatic adenocarcinoma with the use of fluorescent gold quantum dots. Anticancer Res., 2016, 36(3), 861-867.
[PMID: 26976972]
[144]
Rosenblum, D.; Joshi, N.; Tao, W.; Karp, J.M.; Peer, D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun., 2018, 9(1), 1410.
[http://dx.doi.org/10.1038/s41467-018-03705-y] [PMID: 29650952]
[145]
Panda, P.K.; Saraf, S.; Tiwari, A.; Verma, A.; Raikwar, S.; Jain, A.; Jain, S.K. Novel strategies for targeting prostate cancer. Curr. Drug Deliv., 2019, 16(8), 712-727.
[http://dx.doi.org/10.2174/1567201816666190821143805] [PMID: 31433757]
[146]
Kaur, H.; Bruno, J.G.; Kumar, A.; Sharma, T.K. Aptamers in the therapeutics and diagnostics pipelines. Theranostics, 2018, 8(15), 4016-4032.
[http://dx.doi.org/10.7150/thno.25958] [PMID: 30128033]
[147]
Siminzar, P.; Omidi, Y.; Golchin, A.; Aghanejad, A.; Barar, J. Targeted delivery of doxorubicin by magnetic mesoporous silica nanoparticles armed with mucin-1 aptamer. J. Drug Target., 2020, 28(1), 92-101.
[http://dx.doi.org/10.1080/1061186X.2019.1616745] [PMID: 31062625]
[148]
Xue, Q.; Zhang, Y.; Xu, S.; Li, H.; Wang, L.; Li, R.; Zhang, Y.; Yue, Q.; Gu, X.; Zhang, S.; Liu, J.; Wang, H. Magnetic nanoparticles-cooperated fluorescence sensor for sensitive and accurate detection of DNA methyltransferase activity coupled with exonuclease III-assisted target recycling. Analyst (Lond.), 2015, 140(22), 7637-7644.
[http://dx.doi.org/10.1039/C5AN01546D] [PMID: 26421322]
[149]
Maiti, S.; Paira, P. Biotin conjugated organic molecules and proteins for cancer therapy: A review. Eur. J. Med. Chem., 2018, 145, 206-223.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.001] [PMID: 29324341]
[150]
Huang, X.; Wu, W.; Yang, W.; Qing, X.; Shao, Z. Surface engineering of nanoparticles with ligands for targeted delivery to osteosarcoma. Colloids Surf. B Biointerfaces, 2020, 190110891
[http://dx.doi.org/10.1016/j.colsurfb.2020.110891] [PMID: 32114271]
[151]
Kim, K.T.; Lee, J.Y.; Kim, D.D.; Yoon, I.S.; Cho, H.J. Recent progress in the development of poly(lactic-co-glycolic acid)-based nanostructures for cancer imaging and therapy. Pharmaceutics, 2019, 11(6)E280
[http://dx.doi.org/10.3390/pharmaceutics11060280] [PMID: 31197096]
[152]
Li, S.; Zhao, H.; Fan, Y.; Zhao, G.; Wang, R.; Wen, F.; Wang, J.; Wang, X.; Wang, Y.; Gao, Y. Design, synthesis, and in vitro antitumor activity of a transferrin receptor-targeted peptide-doxorubicin conjugate. Chem. Biol. Drug Des., 2020, 95(1), 58-65.
[http://dx.doi.org/10.1111/cbdd.13613] [PMID: 31452330]
[153]
Jena, L.; McErlean, E.; McCarthy, H. Delivery across the blood-brain barrier: nanomedicine for glioblastoma multiforme. Drug Deliv. Transl. Res., 2020, 10(2), 304-318.
[http://dx.doi.org/10.1007/s13346-019-00679-2] [PMID: 31728942]
[154]
Mahmoud, B.S.; AlAmri, A.H.; McConville, C. Polymeric nanoparticles for the treatment of malignant gliomas. Cancers (Basel), 2020, 12(1)E175
[http://dx.doi.org/10.3390/cancers12010175] [PMID: 31936740]
[155]
Dilnawaz, F.; Acharya, S.; Sahoo, S.K. Recent trends of nanomedicinal approaches in clinics. Int. J. Pharm., 2018, 538(1-2), 263-278.
[http://dx.doi.org/10.1016/j.ijpharm.2018.01.016] [PMID: 29339248]
[156]
Bayda, S.; Hadla, M.; Palazzolo, S.; Riello, P.; Corona, G.; Toffoli, G.; Rizzolio, F. Inorganic nanoparticles for cancer therapy: a transition from lab to clinic. Curr. Med. Chem., 2018, 25(34), 4269-4303.
[http://dx.doi.org/10.2174/0929867325666171229141156] [PMID: 29284391]
[157]
Mintz, K.J.; Zhou, Y.; Leblanc, R.M. Recent development of carbon quantum dots regarding their optical properties, photoluminescence mechanism, and core structure. Nanoscale, 2019, 11(11), 4634-4652.
[http://dx.doi.org/10.1039/C8NR10059D] [PMID: 30834912]
[158]
Li, S. Delivery of quantum dot-sirna nanoplexes in sk-n-sh cells for bace1 gene silencing and intracellular imaging. Mol. Ther. Nucleic Acids, 2012, 1e20
[159]
Babu, L.T.; Paira, P. Current application of quantum dots (QD) in cancer therapy: A review. Mini Rev. Med. Chem., 2017, 17(14), 1406-1415.
[http://dx.doi.org/10.2174/1389557517666170315125504] [PMID: 28302038]
[160]
Kumar, A.; Das, N.; Satija, N.K.; Mandrah, K.; Roy, S.K.; Rayavarapu, R.G. A novel approach towards synthesis and characterization of non-cytotoxic gold nanoparticles using taurine as capping agent. Nanomaterials (Basel), 2019, 10(1)E45
[http://dx.doi.org/10.3390/nano10010045] [PMID: 31878144]
[161]
Zhang, W.; Zhang, S.; Gao, P.; Lan, B.; Li, L.; Zhang, X.; Li, L.; Lu, H. The feasibility of NaGdF4 nanoparticles as an x-ray fluorescence computed tomography imaging probe for the liver and lungs. Med. Phys., 2020, 47(2), 662-671.
[http://dx.doi.org/10.1002/mp.13930] [PMID: 31742714]
[162]
Shi, J.; Granger, B.; Xu, K.; Yang, Y. Quantitative X-ray fluorescence imaging of gold nanoparticles using joint L1 and total variation regularized reconstruction. Quant. Imaging Med. Surg., 2020, 10(1), 184-196.
[http://dx.doi.org/10.21037/qims.2019.10.15] [PMID: 31956541]
[163]
Pedrosa, P.; Corvo, M.L.; Ferreira-Silva, M.; Martins, P.; Carvalheiro, M.C.; Costa, P.M.; Martins, C.; Martins, L.M.D.R.S.; Baptista, P.V.; Fernandes, A.R. Targeting cancer resistance via multifunctional gold nanoparticles. Int. J. Mol. Sci., 2019, 20(21)E5510
[http://dx.doi.org/10.3390/ijms20215510] [PMID: 31694227]
[164]
Zhao, X.F.; Wang, W.Y.; Li, X.D.; Li, S.P.; Song, F.G. Core-shell structure of Fe3O4@MTX-LDH/Au NPs for cancer therapy. Mater. Sci. Eng. C, 2018, 89, 422-428.
[http://dx.doi.org/10.1016/j.msec.2018.04.024] [PMID: 29752115]
[165]
Nguyen, M.P.; Thuy, V.T.T.; Kim, D. Integration of iron oxide nanoparticles and polyaspartamide biopolymer for MRI image contrast enhancement and an efficient drug-delivery system in cancer therapy. Nanotechnology, 2020, 31(33)335712
[http://dx.doi.org/10.1088/1361-6528/ab8f49] [PMID: 32357358]
[166]
Wu, K.; Su, D.; Liu, J.; Saha, R.; Wang, J.P. Magnetic nanoparticles in nanomedicine: a review of recent advances. Nanotechnology, 2019, 30(50)502003
[http://dx.doi.org/10.1088/1361-6528/ab4241] [PMID: 31491782]
[167]
Grauer, O.; Jaber, M.; Hess, K.; Weckesser, M.; Schwindt, W.; Maring, S.; Wölfer, J.; Stummer, W. Combined intracavitary thermotherapy with iron oxide nanoparticles and radiotherapy as local treatment modality in recurrent glioblastoma patients. J. Neurooncol., 2019, 141(1), 83-94.
[http://dx.doi.org/10.1007/s11060-018-03005-x] [PMID: 30506500]
[168]
Xiao, Y.; Du, J. Superparamagnetic nanoparticles for biomedical applications. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(3), 354-367.
[http://dx.doi.org/10.1039/C9TB01955C] [PMID: 31868197]
[169]
Stiles, Z.E.; Murphy, A.J.; Anghelescu, D.L.; Brown, C.L.; Davidoff, A.M.; Dickson, P.V.; Glazer, E.S.; Bishop, M.W.; Furman, W.L.; Pappo, A.S.; Lucas, J.T., Jr; Deneve, J.L. Desmoplastic small round cell tumor: long-term complications after cytoreduction and hyperthermic intraperitoneal chemotherapy. Ann. Surg. Oncol., 2020, 27(1), 171-178.
[http://dx.doi.org/10.1245/s10434-019-07339-2] [PMID: 30963398]
[170]
Leonel, A.G.; Mansur, H.S.; Mansur, A.A.P.; Caires, A.; Carvalho, S.M.; Krambrock, K.; Outon, L.E.F.; Ardisson, J.D. Synthesis and characterization of iron oxide nanoparticles/carboxymethyl cellulose core-shell nanohybrids for killing cancer cells in vitro. Int. J. Biol. Macromol., 2019, 132, 677-691.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.04.006] [PMID: 30951776]
[171]
Shaghaghi, B.; Khoee, S.; Bonakdar, S. Preparation of multifunctional Janus nanoparticles on the basis of SPIONs as targeted drug delivery system. Int. J. Pharm., 2019, 559, 1-12.
[http://dx.doi.org/10.1016/j.ijpharm.2019.01.020] [PMID: 30664992]
[172]
Hu, Y.; Mignani, S.; Majoral, J.P.; Shen, M.; Shi, X. Construction of iron oxide nanoparticle-based hybrid platforms for tumor imaging and therapy. Chem. Soc. Rev., 2018, 47(5), 1874-1900.
[http://dx.doi.org/10.1039/C7CS00657H] [PMID: 29376542]
[173]
Bhattarai, P.; Hameed, S.; Dai, Z. Recent advances in anti-angiogenic nanomedicines for cancer therapy. Nanoscale, 2018, 10(12), 5393-5423.
[http://dx.doi.org/10.1039/C7NR09612G] [PMID: 29528075]
[174]
Ding, R.M.; He, H.; Li, J. Research progress of polyamidoamine dendrimer in targeting drug delivery system. Yao Xue Xue Bao, 2011, 46(5), 493-501.
[PMID: 21800534]
[175]
Bebelman, M.P.; Smit, M.J.; Pegtel, D.M.; Baglio, S.R. Biogenesis and function of extracellular vesicles in cancer. Pharmacol. Ther., 2018, 188, 1-11.
[http://dx.doi.org/10.1016/j.pharmthera.2018.02.013] [PMID: 29476772]
[176]
Zhao, H.; Achreja, A.; Iessi, E.; Logozzi, M.; Mizzoni, D.; Di Raimo, R.; Nagrath, D.; Fais, S. The key role of extracellular vesicles in the metastatic process. Biochim. Biophys. Acta Rev. Cancer, 2018, 1869(1), 64-77.
[http://dx.doi.org/10.1016/j.bbcan.2017.11.005] [PMID: 29175553]
[177]
Jabalee, J.; Towle, R.; Garnis, C. The role of extracellular vesicles in cancer: cargo, function, and therapeutic implications. Cells, 2018, 7(8)E93
[http://dx.doi.org/10.3390/cells7080093] [PMID: 30071693]
[178]
Cohen, P.A.; Jhingran, A.; Oaknin, A.; Denny, L. Cervical cancer. Lancet, 2019, 393(10167), 169-182.
[http://dx.doi.org/10.1016/S0140-6736(18)32470-X] [PMID: 30638582]
[179]
Carrera, I.; Martínez, O.; Cacabelos, R. Neuroprotection with natural antioxidants and nutraceuticals in the context of brain cell degeneration: the epigenetic connection. Curr. Top. Med. Chem., 2019, 19(32), 2999-3011.
[http://dx.doi.org/10.2174/1568026619666191202155738] [PMID: 31789133]
[180]
Kastan, M.B. Our cells get stressed too! Implications for human disease. Blood Cells Mol. Dis., 2007, 39(2), 148-150.
[http://dx.doi.org/10.1016/j.bcmd.2007.04.002] [PMID: 17537652]
[181]
Shastri, M.D.; Shukla, S.D.; Chong, W.C.; Dua, K.; Peterson, G.M.; Patel, R.P.; Hansbro, P.M.; Eri, R.; O’Toole, R.F. Role of oxidative stress in the pathology and management of human tuberculosis. Oxid. Med. Cell. Longev., 2018, 20187695364
[http://dx.doi.org/10.1155/2018/7695364] [PMID: 30405878]
[182]
Bhatti, J.S.; Bhatti, G.K.; Reddy, P.H. Mitochondrial dysfunction and oxidative stress in metabolic disorders - A step towards mitochondria based therapeutic strategies. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(5), 1066-1077.
[http://dx.doi.org/10.1016/j.bbadis.2016.11.010] [PMID: 27836629]
[183]
Islam, M.T. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol. Res., 2017, 39(1), 73-82.
[http://dx.doi.org/10.1080/01616412.2016.1251711] [PMID: 27809706]
[184]
Altemimi, A. Phytochemicals: extraction, isolation, and identification of bioactive compounds from plant extracts.Palnts(Basel); , 2017, 6, . (4)
[185]
Wasser, S.P. Medicinal mushrooms in human clinical studies. part i. anticancer, oncoimmunological, and immunomodulatory activities: a review. Int. J. Med. Mushrooms, 2017, 19(4), 279-317.
[http://dx.doi.org/10.1615/IntJMedMushrooms.v19.i4.10] [PMID: 28605319]
[186]
Baenas, N.; Belović, M.; Ilic, N.; Moreno, D.A.; García-Viguera, C. Industrial use of pepper (Capsicum annum L.) derived products: Technological benefits and biological advantages. Food Chem., 2019, 274, 872-885.
[http://dx.doi.org/10.1016/j.foodchem.2018.09.047] [PMID: 30373022]
[187]
Ijaz, S.; Akhtar, N.; Khan, M.S.; Hameed, A.; Irfan, M.; Arshad, M.A.; Ali, S.; Asrar, M. Plant derived anticancer agents: A green approach towards skin cancers. Biomed. Pharmacother., 2018, 103, 1643-1651.
[http://dx.doi.org/10.1016/j.biopha.2018.04.113] [PMID: 29864953]
[188]
Bahall, M. Prevalence, patterns, and perceived value of complementary and alternative medicine among cancer patients: a cross-sectional, descriptive study. BMC Complement. Altern. Med., 2017, 17(1), 345.
[http://dx.doi.org/10.1186/s12906-017-1853-6] [PMID: 28666435]
[189]
Pan, P.; Skaer, C.; Yu, J.; Zhao, H.; Ren, H.; Oshima, K.; Wang, L.S. Berries and other natural products in the pancreatic cancer chemoprevention in human clinical trials. J. Berry Res., 2017, 7(3), 147-161.
[http://dx.doi.org/10.3233/JBR-170159] [PMID: 29367867]
[190]
Rezaeiamiri, E.; Bahramsoltani, R.; Rahimi, R. Plant-derived natural agents as dietary supplements for the regulation of glycosylated hemoglobin: A review of clinical trials. Clin. Nutr., 2020, 39(2), 331-342.
[http://dx.doi.org/10.1016/j.clnu.2019.02.006] [PMID: 30797623]
[191]
Tang, J.; Shalabi, A.; Hubbard-Lucey, V.M. Comprehensive analysis of the clinical immuno-oncology landscape. Ann. Oncol., 2018, 29(1), 84-91.
[http://dx.doi.org/10.1093/annonc/mdx755] [PMID: 29228097]
[192]
Cecchini, M.; Rubin, E.H.; Blumenthal, G.M.; Ayalew, K.; Burris, H.A.; Russell-Einhorn, M.; Dillon, H.; Lyerly, H.K.; Reaman, G.H.; Boerner, S.; LoRusso, P.M. Challenges with novel clinical trial designs: master protocols. Clin. Cancer Res., 2019, 25(7), 2049-2057.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-3544] [PMID: 30696689]
[193]
Liu, J. An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell, 2018, 173(2), 400-416.
[194]
Singh, M.; Prasad, C.P.; Singh, T.D.; Kumar, L. Cancer research in India: Challenges & opportunities. Indian J. Med. Res., 2018, 148(4), 362-365.
[http://dx.doi.org/10.4103/ijmr.IJMR_1711_18] [PMID: 30665997]
[195]
McClure, J.J.; Li, X.; Chou, C.J. Advances and challenges of hdac inhibitors in cancer therapeutics. Adv. Cancer Res., 2018, 138, 183-211.
[http://dx.doi.org/10.1016/bs.acr.2018.02.006] [PMID: 29551127]
[196]
Wang, Y.; Deng, W.; Li, N.; Neri, S.; Sharma, A.; Jiang, W.; Lin, S.H. Combining immunotherapy and radiotherapy for cancer treatment: current challenges and future directions. Front. Pharmacol., 2018, 9, 185.
[http://dx.doi.org/10.3389/fphar.2018.00185] [PMID: 29556198]
[197]
Goldberg, S.N.; Girnan, G.D.; Lukyanov, A.N.; Ahmed, M.; Monsky, W.L.; Gazelle, G.S.; Huertas, J.C.; Stuart, K.E.; Jacobs, T.; Torchillin, V.P.; Halpern, E.F.; Kruskal, J.B. Percutaneous tumor ablation: increased necrosis with combined radio-frequency ablation and intravenous liposomal doxorubicin in a rat breast tumor model. Radiology, 2002, 222(3), 797-804.
[http://dx.doi.org/10.1148/radiol.2223010861] [PMID: 11867804]
[198]
Ito, A.; Matsuoka, F.; Honda, H.; Kobayashi, T. Heat shock protein 70 gene therapy combined with hyperthermia using magnetic nanoparticles. Cancer Gene Ther., 2003, 10(12), 918-925.
[http://dx.doi.org/10.1038/sj.cgt.7700648] [PMID: 14712318]
[199]
Torphy, R.J.; Schulick, R.D.; Zhu, Y. Newly emerging immune checkpoints: promises for future cancer therapy. Int. J. Mol. Sci., 2017, 18(12)E2642
[http://dx.doi.org/10.3390/ijms18122642] [PMID: 29211042]
[200]
Wei, S.C. Distinct cellular mechanisms underlie anti-ctla-4 and anti-pd-1 checkpoint blockade. Cell, 2017, 170(6), 1120-1133.
[http://dx.doi.org/10.1016/j.cell.2017.07.024]
[201]
Saeed, M.; Ren, W.; Wu, A. Therapeutic applications of iron oxide based nanoparticles in cancer: basic concepts and recent advances. Biomater. Sci., 2018, 6(4), 708-725.
[http://dx.doi.org/10.1039/C7BM00999B] [PMID: 29363682]
[202]
Rejhová, A.; Opattová, A.; Čumová, A.; Slíva, D.; Vodička, P. Natural compounds and combination therapy in colorectal cancer treatment. Eur. J. Med. Chem., 2018, 144, 582-594.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.039] [PMID: 29289883]
[203]
Sun, D.; Zhuang, X.; Xiang, X.; Liu, Y.; Zhang, S.; Liu, C.; Barnes, S.; Grizzle, W.; Miller, D.; Zhang, H.G. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol. Ther., 2010, 18(9), 1606-1614.
[http://dx.doi.org/10.1038/mt.2010.105] [PMID: 20571541]
[204]
Zhang, Z.; Dombroski, J.A.; King, M.R. Engineering of exosomes to target cancer metastasis. Cell. Mol. Bioeng., 2019, 13(1), 1-16.
[http://dx.doi.org/10.1007/s12195-019-00607-x] [PMID: 32030104]
[205]
Chalakur-Ramireddy, N.K.R.; Pakala, S.B. Combined drug therapeutic strategies for the effective treatment of triple negative breast cancer. Biosci. Rep., 2018, 38(1)BSR20171357
[http://dx.doi.org/10.1042/BSR20171357] [PMID: 29298879]
[206]
Lee, G.; Park, H.; Bak, S.H.; Lee, H.Y. Radiomics in lung cancer from basic to advanced: current status and future directions. Korean J. Radiol., 2020, 21(2), 159-171.
[http://dx.doi.org/10.3348/kjr.2019.0630] [PMID: 31997591]
[207]
Nadeem, M.W.; Ghamdi, M.A.A.; Hussain, M.; Khan, M.A.; Khan, K.M.; Almotiri, S.H.; Butt, S.A. Brain tumor analysis empowered with deep learning: a review, taxonomy, and future challenges. Brain Sci., 2020, 10(2)E118
[http://dx.doi.org/10.3390/brainsci10020118] [PMID: 32098333]
[208]
Huang, H.Y.; Lin, Y.C.; Li, J.; Huang, K.Y.; Shrestha, S.; Hong, H.C.; Tang, Y.; Chen, Y.G.; Jin, C.N.; Yu, Y.; Xu, J.T.; Li, Y.M.; Cai, X.X.; Zhou, Z.Y.; Chen, X.H.; Pei, Y.Y.; Hu, L.; Su, J.J.; Cui, S.D.; Wang, F.; Xie, Y.Y.; Ding, S.Y.; Luo, M.F.; Chou, C.H.; Chang, N.W.; Chen, K.W.; Cheng, Y.H.; Wan, X.H.; Hsu, W.L.; Lee, T.Y.; Wei, F.X.; Huang, H.D. miRTarBase 2020: updates to the experimentally validated microRNA-target interaction database. Nucleic Acids Res., 2020, 48(D1), D148-D154.
[PMID: 31647101]
[209]
He, M.; Wang, Y.; Chen, X.; Zhao, Y.; Lou, K.; Wang, Y.; Huang, L.; Hou, X.; Xu, J.; Cai, X.; Cheng, Y.; Lan, M.; Yang, Y.; Gao, F. Spatiotemporally controllable diphtheria toxin expression using a light-switchable transgene system combining multifunctional nanoparticle delivery system for targeted melanoma therapy. J. Control. Release, 2020, 319, 1-14.
[http://dx.doi.org/10.1016/j.jconrel.2019.12.015] [PMID: 31838205]
[210]
Zins, K.; Abraham, D. Cancer immunotherapy: targeting tumor-associated macrophages by gene silencing. Methods Mol. Biol., 2020, 2115, 289-325.
[http://dx.doi.org/10.1007/978-1-0716-0290-4_17] [PMID: 32006408]
[211]
Nagaraju, G.P.; Srivani, G.; Dariya, B.; Chalikonda, G.; Farran, B.; Behera, S.K.; Alam, A.; Kamal, M.A. Nanoparticles guided drug delivery and imaging in gastric cancer. Semin. Cancer Biol., 2020. In Press
[http://dx.doi.org/10.1016/j.semcancer.2020.01.006] [PMID: 31954835]
[212]
Anghileri, L.J.; Crone-Escanye, M.C.; Martin, J.A.; Robert, J. Modification of the ionic environment in the tumor cell by hyperthermia. Neoplasma, 1988, 35(5), 489-494.
[PMID: 3216927]
[213]
Amini, S.M.; Kharrazi, S.; Rezayat, S.M.; Gilani, K. Radiofrequency electric field hyperthermia with gold nanostructures: role of particle shape and surface chemistry. Artif. Cells Nanomed. Biotechnol., 2018, 46(7), 1452-1462.
[http://dx.doi.org/10.1080/21691401.2017.1373656] [PMID: 28891351]
[214]
Nicolás, I.; Saco, A.; Barnadas, E.; Marimon, L.; Rakislova, N.; Fusté, P.; Rovirosa, A.; Gaba, L.; Buñesch, L.; Gil-Ibañez, B.; Pahisa, J.; Díaz-Feijoo, B.; Torne, A.; Ordi, J.; Del Pino, M. Prognostic implications of genotyping and p16 immunostaining in HPV-positive tumors of the uterine cervix. Mod. Pathol., 2020, 33(1), 128-137.
[http://dx.doi.org/10.1038/s41379-019-0360-3] [PMID: 31492932]
[215]
Tran, W.T.; Jerzak, K.; Lu, F.I.; Klein, J.; Tabbarah, S.; Lagree, A.; Wu, T.; Rosado-Mendez, I.; Law, E.; Saednia, K.; Sadeghi-Naini, A. Personalized breast cancer treatments using artificial intelligence in radiomics and pathomics. J. Med. Imaging Radiat. Sci., 2019, 50(4)(Suppl. 2), S32-S41.
[http://dx.doi.org/10.1016/j.jmir.2019.07.010] [PMID: 31447230]
[216]
Khorrami, M.; Bera, K.; Leo, P.; Vaidya, P.; Patil, P.; Thawani, R.; Velu, P.; Rajiah, P.; Alilou, M.; Choi, H.; Feldman, M.D.; Gilkeson, R.C.; Linden, P.; Fu, P.; Pass, H.; Velcheti, V.; Madabhushi, A. Stable and discriminating radiomic predictor of recurrence in early stage non-small cell lung cancer: Multi-site study. Lung Cancer, 2020, 142, 90-97.
[http://dx.doi.org/10.1016/j.lungcan.2020.02.018] [PMID: 32120229]
[217]
Corredor, G.; Wang, X.; Zhou, Y.; Lu, C.; Fu, P.; Syrigos, K.; Rimm, D.L.; Yang, M.; Romero, E.; Schalper, K.A.; Velcheti, V.; Madabhushi, A. Spatial architecture and arrangement of tumor-infiltrating lymphocytes for predicting likelihood of recurrence in early-stage non-small cell lung cancer. Clin. Cancer Res., 2019, 25(5), 1526-1534.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-2013] [PMID: 30201760]
[218]
Vaidya, P.; Bera, K.; Gupta, A.; Wang, X.; Corredor, G.; Fu, P.; Beig, N.; Prasanna, P.; Patil, P.; Velu, P.; Rajiah, P.; Gilkeson, R.; Feldman, M.; Choi, H.; Velcheti, V.; Madabhushi, A. CT derived radiomic score for predicting the added benefit of adjuvant chemotherapy following surgery in Stage I, II resectable Non-Small Cell Lung Cancer: a retrospective multi-cohort study for outcome prediction. Lancet Digit Health, 2020, 2(3), e116-e128.
[http://dx.doi.org/10.1016/S2589-7500(20)30002-9] [PMID: 32123864]
[219]
Bandari, S.K.; Purushothaman, A.; Ramani, V.C.; Brinkley, G.J.; Chandrashekar, D.S.; Varambally, S.; Mobley, J.A.; Zhang, Y.; Brown, E.E.; Vlodavsky, I.; Sanderson, R.D. Chemotherapy induces secretion of exosomes loaded with heparanase that degrades extracellular matrix and impacts tumor and host cell behavior. Matrix Biol., 2018, 65, 104-118.
[http://dx.doi.org/10.1016/j.matbio.2017.09.001] [PMID: 28888912]
[220]
Luthra, S.; Rominski, A.; Sander, P. The role of antibiotic-target-modifying and antibiotic-modifying enzymes in mycobacterium abscessus drug resistance. Front. Microbiol., 2018, 9, 2179.
[http://dx.doi.org/10.3389/fmicb.2018.02179] [PMID: 30258428]
[221]
Macks, C.; Gwak, S.J.; Lynn, M.; Lee, J.S. Rolipram-loaded polymeric micelle nanoparticle reduces secondary injury after rat compression spinal cord injury. J. Neurotrauma, 2018, 35(3), 582-592.
[http://dx.doi.org/10.1089/neu.2017.5092] [PMID: 29065765]
[222]
Park, J.K.; Coffey, N.J.; Bodine, S.P.; Zawatsky, C.N.; Jay, L.; Gahl, W.A.; Kunos, G.; Gochuico, B.R.; Malicdan, M.C.V.; Cinar, R. Bleomycin induces drug efflux in lungs. a pitfall for pharmacological studies of pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol., 2020, 62(2), 178-190.
[http://dx.doi.org/10.1165/rcmb.2018-0147OC] [PMID: 31419911]
[223]
Chen, D.S.; Mellman, I. Elements of cancer immunity and the cancer-immune set point. Nature, 2017, 541(7637), 321-330.
[http://dx.doi.org/10.1038/nature21349] [PMID: 28102259]
[224]
Petrylak, D.P.; de Wit, R.; Chi, K.N.; Drakaki, A.; Sternberg, C.N.; Nishiyama, H.; Castellano, D.; Hussain, S.A.; Fléchon, A.; Bamias, A.; Yu, E.Y.; van der Heijden, M.S.; Matsubara, N.; Alekseev, B.; Necchi, A.; Géczi, L.; Ou, Y.C.; Coskun, H.S.; Su, W.P.; Bedke, J.; Gakis, G.; Percent, I.J.; Lee, J.L.; Tucci, M.; Semenov, A.; Laestadius, F.; Peer, A.; Tortora, G.; Safina, S.; Garcia Del Muro, X.; Rodriguez-Vida, A.; Cicin, I.; Harputluoglu, H.; Tagawa, S.T.; Vaishampayan, U.; Aragon-Ching, J.B.; Hamid, O.; Liepa, A.M.; Wijayawardana, S.; Russo, F.; Walgren, R.A.; Zimmermann, A.H.; Hozak, R.R.; Bell-McGuinn, K.M.; Powles, T. RANGE study investigators. Ramucirumab plus docetaxel versus placebo plus docetaxel in patients with locally advanced or metastatic urothelial carcinoma after platinum-based therapy (RANGE): overall survival and updated results of a randomised, double-blind, phase 3 trial. Lancet Oncol., 2020, 21(1), 105-120.
[http://dx.doi.org/10.1016/S1470-2045(19)30668-0] [PMID: 31753727]
[225]
Han, M.; Hu, J.; Lu, P.; Cao, H.; Yu, C.; Li, X.; Qian, X.; Yang, X.; Yang, Y.; Han, N.; Dou, D.; Zhang, F.; Ye, M.; Yang, C.; Gu, Y.; Dong, H. Exosome-transmitted miR-567 reverses trastuzumab resistance by inhibiting ATG5 in breast cancer. Cell Death Dis., 2020, 11(1), 43.
[http://dx.doi.org/10.1038/s41419-020-2250-5] [PMID: 31969559]
[226]
Galon, J.; Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov., 2019, 18(3), 197-218.
[http://dx.doi.org/10.1038/s41573-018-0007-y] [PMID: 30610226]


open access plus

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 1
Year: 2021
Published on: 19 August, 2020
Page: [28 - 47]
Pages: 20
DOI: 10.2174/1568026620666200819160213

Article Metrics

PDF: 46
HTML: 2