Immunoliposomes: Synthesis, Structure, and their Potential as Drug Delivery Carriers

Author(s): Divya Sandeep, Nour M. AlSawaftah, Ghaleb A. Husseini*

Journal Name: Current Cancer Therapy Reviews

Volume 16 , Issue 4 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Immunoliposomes have emerged as attractive drug targeting vehicles for cancer treatment. This review presents the recent advances in the design of immunoliposomes encapsulating a variety of chemotherapeutic agents. We provided an overview of different routes that can be used to conjugate antibodies to the surfaces of liposomes, as well as several examples of stimuliresponsive immunoliposome systems and their therapeutic potential for cancer treatment.

Keywords: Cancer, targeted drug delivery, antibodies, antibody fragments, immunoliposomes, receptor upregulation.

[1]
Torchilin VP. Drug targeting. Eur J Pharm Sci 2000; 11(Suppl. 2): S81-91.
[http://dx.doi.org/10.1016/S0928-0987(00)00166-4] [PMID: 11033430]
[2]
Tekade R K. Basic fundamentals of drug delivery In: Academic Press: USA 2019.
[3]
Scott RC, Crabbe D, Krynska B, Ansari R, Kiani MF. Aiming for the heart: targeted delivery of drugs to diseased cardiac tissue. Expert Opin Drug Deliv 2008; 5(4): 459-70.
[http://dx.doi.org/10.1517/17425247.5.4.459] [PMID: 18426386]
[4]
Trafton A. Targeting tumors using tiny gold particles | MIT News MIT News Office In: 2009. Available from: http://news.mit.edu/2009/gold-cancer-0504(Accessed on: 08-Oct-2019)
[5]
Milla P, Dosio F, Cattel L. PEGylation of proteins and liposomes: a powerful and flexible strategy to improve the drug delivery. Curr Drug Metab 2012; 13(1): 105-19.
[http://dx.doi.org/10.2174/138920012798356934] [PMID: 21892917]
[6]
Petre CE, Dittmer DP. Liposomal daunorubicin as treatment for Kaposi’s sarcoma. Int J Nanomedicine 2007; 2(3): 277-88.
[PMID: 18019828]
[7]
Sagnella S, Drummond C. Drug Delivery: A Nanomedicine Approach. Aust Biochem 2012; 43(3): 5-20.
[8]
van Vlerken LE, Vyas TK, Amiji MM. Poly(ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery. Pharm Res 2007; 24(8): 1405-14.
[http://dx.doi.org/10.1007/s11095-007-9284-6] [PMID: 17393074]
[9]
van Osdol W, Fujimori K, Weinstein JN. An analysis of monoclonal antibody distribution in microscopic tumor nodules: consequences of a “binding site barrier”. Cancer Res 1991; 51(18): 4776-84.
[PMID: 1893370]
[10]
Fujimori K, Covell DG, Fletcher JE, Weinstein JN. A modeling analysis of monoclonal antibody percolation through tumors: a binding-site barrier. J Nucl Med 1990; 31(7): 1191-8.
[PMID: 2362198]
[11]
Yuan F, Dellian M, Fukumura D, et al. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res 1995; 55(17): 3752-6.
[PMID: 7641188]
[12]
Cho K, Wang X, Nie S, Chen ZG, Shin DM. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 2008; 14(5): 1310-6.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1441] [PMID: 18316549]
[13]
Sudimack J, Lee RJ. Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 2000; 41(2): 147-62.
[http://dx.doi.org/10.1016/S0169-409X(99)00062-9] [PMID: 10699311]
[14]
Luria-Pérez R, Helguera G, Rodríguez JA. Antibody-mediated targeting of the transferrin receptor in cancer cells. Bol Méd Hosp Infant México 2016; 73(6): 372-9.
[http://dx.doi.org/10.1016/j.bmhimx.2016.11.004] [PMID: 29421281]
[15]
Barginear MF, John V, Budman DR. Trastuzumab-DM1: a clinical update of the novel antibody-drug conjugate for HER2-overexpressing breast cancer. Mol Med 2013; 18: 1473-9.
[http://dx.doi.org/10.2119/molmed.2012.00302] [PMID: 23196784]
[16]
Memorial Sloan Kettering Cancer Center. Targeted silica nanoparticles for real-time image-guided intraoperative mapping of nodal metastases. Available from: https://clinicaltrials.gov/ct2/show/NCT02106598(Accessed on: 21-Jan-2020)
[17]
Rosina C, Bottoni F, Staurenghi G. Clinical experience with pegaptanib sodium. Clin Ophthalmol 2008; 2(3): 485-8.
[http://dx.doi.org/10.2147/opth.s3399] [PMID: 19668746]
[18]
Ledermann JA, Canevari S, Thigpen T. Targeting the folate receptor: Diagnostic and therapeutic approaches to personalize cancer treatments In: Annals of Oncology. Oxford University Press In: 2015; 26: pp. (10)2034-43.
[http://dx.doi.org/10.1093/annonc/mdv250]
[19]
Johnston MJW, Semple SC, Klimuk SK, Ansell S, Maurer N, Cullis PR. Characterization of the drug retention and pharmacokinetic properties of liposomal nanoparticles containing dihydrosphingomyelin. Biochim Biophys Acta 2007; 1768(5): 1121-7.
[http://dx.doi.org/10.1016/j.bbamem.2007.01.019] [PMID: 17321495]
[20]
James ND, Coker RJ, Tomlinson D, et al. Liposomal doxorubicin (Doxil): an effective new treatment for Kaposi’s sarcoma in AIDS. Clin Oncol (R Coll Radiol) 1994; 6(5): 294-6.
[http://dx.doi.org/10.1016/S0936-6555(05)80269-9] [PMID: 7530036]
[21]
Muggia FM, Hainsworth JD, Jeffers S, et al. Phase II study of liposomal doxorubicin in refractory ovarian cancer: antitumor activity and toxicity modification by liposomal encapsulation. J Clin Oncol 1997; 15(3): 987-93.
[http://dx.doi.org/10.1200/JCO.1997.15.3.987] [PMID: 9060537]
[22]
Bladé J, Sonneveld P, San Miguel JF, et al. Efficacy and safety of pegylated liposomal Doxorubicin in combination with bortezomib for multiple myeloma: effects of adverse prognostic factors on outcome. Clin Lymphoma Myeloma Leuk 2011; 11(1): 44-9.
[http://dx.doi.org/10.3816/CLML.2011.n.005] [PMID: 21454189]
[23]
Barenholz Y. Doxil®--the first FDA-approved nano-drug: lessons learned. J Control Release 2012; 160(2): 117-34.
[http://dx.doi.org/10.1016/j.jconrel.2012.03.020] [PMID: 22484195]
[24]
Hann IM, Prentice HG. Lipid-based amphotericin B: a review of the last 10 years of use. Int J Antimicrob Agents 2001; 17(3): 161-9.
[http://dx.doi.org/10.1016/S0924-8579(00)00341-1] [PMID: 11282260]
[25]
Davidson RN, Di Martino L, Gradoni L, et al. Liposomal amphotericin B (AmBisome) in Mediterranean visceral leishmaniasis: a multi-centre trial. Q J Med 1994; 87(2): 75-81.
[PMID: 8153291]
[26]
Merino M, Zalba S, Garrido MJ. Immunoliposomes in clinical oncology: State of the art and future perspectives. J Control Release 2018; 275: 162-76.
[http://dx.doi.org/10.1016/j.jconrel.2018.02.015] [PMID: 29448116]
[27]
Allen TM. Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2002; 2(10): 750-63.
[http://dx.doi.org/10.1038/nrc903] [PMID: 12360278]
[28]
Coico R, Sunshine G, Benjamini E. Immunology : a short course. Wiley-Liss 2003.
[29]
Richards DA, Maruani A, Chudasama V. Antibody fragments as nanoparticle targeting ligands: a step in the right direction. Chem Sci (Camb) 2017; 8(1): 63-77.
[http://dx.doi.org/10.1039/C6SC02403C] [PMID: 28451149]
[30]
Weisser NE, Hall JC. Applications of single-chain variable fragment antibodies in therapeutics and diagnostics. Biotechnol Adv 2009; 27(4): 502-20.
[http://dx.doi.org/10.1016/j.biotechadv.2009.04.004] [PMID: 19374944]
[31]
Cevc G, Allen T M, Neidleman S L. Phospholipids handbook In: CRC Press: USA 2018.
[http://dx.doi.org/10.1201/9780203743577]
[32]
Hazra MS, Ray S. Surface Modification of Liposomal Vaccines by Peptide Conjugation. J Pharm Sci Technol 2011; 1(1): 41-7.
[33]
Hermanson G T. Bioconjugate techniques. In: Thermoscientific: USA 2018.
[34]
Tardi P, Bally MB, Harasym TO. Clearance properties of liposomes involving conjugated proteins for targeting. Adv Drug Deliv Rev 1998; 32(1-2): 99-118.
[http://dx.doi.org/10.1016/S0169-409X(97)00134-8] [PMID: 10837638]
[35]
Harding JA, Engbers CM, Newman MS, Goldstein NI, Zalipsky S. Immunogenicity and pharmacokinetic attributes of poly(ethylene glycol)-grafted immunoliposomes. Biochim Biophys Acta 1997; 1327(2): 181-92.
[http://dx.doi.org/10.1016/S0005-2736(97)00056-4] [PMID: 9271260]
[36]
Ghosh SS, Kao PM, Kwoh DY. Synthesis of 5′-oligonucleotide hydrazide derivatives and their use in preparation of enzyme-nucleic acid hybridization probes. Anal Biochem 1989; 178(1): 43-51.
[http://dx.doi.org/10.1016/0003-2697(89)90354-0] [PMID: 2729579]
[37]
Simard P, Leroux J-C. pH-sensitive immunoliposomes specific to the CD33 cell surface antigen of leukemic cells. Int J Pharm 2009; 381(2): 86-96.
[http://dx.doi.org/10.1016/j.ijpharm.2009.05.013] [PMID: 19446624]
[38]
Sen Gupta AS, von Recum H A. Bioconjugation strategies: Lipids, liposomes, polymersomes, and microbubbles. In: Wiley: USA 2014.
[39]
Hansen CB, Kao GY, Moase EH, Zalipsky S, Allen TM. Attachment of antibodies to sterically stabilized liposomes: evaluation, comparison and optimization of coupling procedures. Biochim Biophys Acta 1995; 1239(2): 133-44.
[http://dx.doi.org/10.1016/0005-2736(95)00138-S] [PMID: 7488618]
[40]
Chua MM, Fan ST, Karush F. Attachment of immunoglobulin to liposomal membrane via protein carbohydrate. Biochim Biophys Acta 1984; 800(3): 291-300.
[http://dx.doi.org/10.1016/0304-4165(84)90408-2] [PMID: 6432057]
[41]
Sofou S, Sgouros G. Antibody-targeted liposomes in cancer therapy and imaging. Expert Opin Drug Deliv 2008; 5(2): 189-204.
[http://dx.doi.org/10.1517/17425247.5.2.189] [PMID: 18248318]
[42]
Sapra P, Tyagi P, Allen TM. Ligand-targeted liposomes for cancer treatment. Curr Drug Deliv 2005; 2(4): 369-81.
[http://dx.doi.org/10.2174/156720105774370159] [PMID: 16305440]
[43]
Puertas S, Moros M, Fernández-Pacheco R, Ibarra MR, Grazú V, de la Fuente JM. Designing novel nano-immunoassays: antibody orientation versus sensitivity. J Phys D Appl Phys 2010; 43(47)474012
[http://dx.doi.org/10.1088/0022-3727/43/47/474012]
[44]
Allen TM, Brandeis E, Hansen CB, Kao GY, Zalipsky S. A new strategy for attachment of antibodies to sterically stabilized liposomes resulting in efficient targeting to cancer cells. Biochim Biophys Acta 1995; 1237(2): 99-108.
[http://dx.doi.org/10.1016/0005-2736(95)00085-H] [PMID: 7632714]
[45]
Hermanson GT. Bioconjugate techniques. Academic Press: USA 2008.
[46]
Pincus SE, Lukacher N, Mohamed N, et al. Evaluation of antigen-based heteropolymer for treatment of systemic lupus erythematosus in a nonhuman primate model. Clin Immunol 2002; 105(2): 141-54.
[http://dx.doi.org/10.1006/clim.2002.5274] [PMID: 12482388]
[47]
Aslam M, Dent A. Bioconjugation : protein coupling techniques for the biomedical sciences. Macmillan Reference: USA 1998.
[48]
Wong SS. Chemistry of protein conjugation and cross-linking. CRC Press: USA 1991.
[49]
Liu H, Chumsae C, Gaza-Bulseco G, Hurkmans K, Radziejewski CH. Ranking the susceptibility of disulfide bonds in human IgG1 antibodies by reduction, differential alkylation, and LC-MS analysis. Anal Chem 2010; 82(12): 5219-26.
[http://dx.doi.org/10.1021/ac100575n] [PMID: 20491447]
[50]
McAuley A, Jacob J, Kolvenbach CG, et al. Contributions of a disulfide bond to the structure, stability, and dimerization of human IgG1 antibody CH3 domain. Protein Sci 2008; 17(1): 95-106.
[http://dx.doi.org/10.1110/ps.073134408] [PMID: 18156469]
[51]
Singh R, Kats L, Blättler WA, Lambert JM. Formation of N-substituted 2-iminothiolanes when amino groups in proteins and peptides are modified by 2-iminothiolane. Anal Biochem 1996; 236(1): 114-25.
[http://dx.doi.org/10.1006/abio.1996.0139] [PMID: 8619475]
[52]
Traut RR, Bollen A, Sun TT, Hershey JW, Sundberg J, Pierce LR. Methyl 4-mercaptobutyrimidate as a cleavable cross-linking reagent and its application to the Escherichia coli 30S ribosome. Biochemistry 1973; 12(17): 3266-73.
[http://dx.doi.org/10.1021/bi00741a019] [PMID: 4581787]
[53]
Carlsson J, Drevin H, Axén R. Protein thiolation and reversible protein-protein conjugation. N-Succinimidyl 3-(2-pyridyldithio) propionate, a new heterobifunctional reagent. Biochem J 1978; 173(3): 723-37.
[http://dx.doi.org/10.1042/bj1730723] [PMID: 708370]
[54]
Manjappa AS, Chaudhari KR, Venkataraju MP, et al. Antibody derivatization and conjugation strategies: application in preparation of stealth immunoliposome to target chemotherapeutics to tumor. J Control Release 2011; 150(1): 2-22.
[http://dx.doi.org/10.1016/j.jconrel.2010.11.002] [PMID: 21095210]
[55]
Chekhonin VP, Gurina OI, Lokhonina AV, et al. PEG-treated immunoliposomes specific for the Schwann cells of neural tissue. Dokl Biochem Biophys 2007; 417: 343-5.
[http://dx.doi.org/10.1134/S1607672907060154] [PMID: 18274456]
[56]
Hashimoto K, Loader JE, Kinsky SC. Iodoacetylated and biotinylated liposomes: effect of spacer length on sulfhydryl ligand binding and avidin precipitability. Biochim Biophys Acta 1986; 856(3): 556-65.
[http://dx.doi.org/10.1016/0005-2736(86)90147-1] [PMID: 3964696]
[57]
Mercadal M, Domingo JC, Petriz J, Garcia J, de Madariaga MA. Preparation of immunoliposomes bearing poly(ethylene glycol)-coupled monoclonal antibody linked via a cleavable disulfide bond for ex vivo applications. Biochim Biophys Acta 2000; 1509(1-2): 299-310.
[http://dx.doi.org/10.1016/S0005-2736(00)00305-9] [PMID: 11118541]
[58]
Shen B-Q, Xu K, Liu L, et al. Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nat Biotechnol 2012; 30(2): 184-9.
[http://dx.doi.org/10.1038/nbt.2108] [PMID: 22267010]
[59]
Lyon RP, Setter JR, Bovee TD, et al. Self-hydrolyzing maleimides improve the stability and pharmacological properties of antibody-drug conjugates. Nat Biotechnol 2014; 32(10): 1059-62.
[http://dx.doi.org/10.1038/nbt.2968] [PMID: 25194818]
[60]
Tumey LN, Charati M, He T, et al. Mild method for succinimide hydrolysis on ADCs: impact on ADC potency, stability, exposure, and efficacy. Bioconjug Chem 2014; 25(10): 1871-80.
[http://dx.doi.org/10.1021/bc500357n] [PMID: 25216346]
[61]
Huwyler J, Wu D, Pardridge WM. Brain drug delivery of small molecules using immunoliposomes. In: Proc. Natl. Acad. Sci. USA 1996; 93: pp. (24)14164-9.
[http://dx.doi.org/10.1073/pnas.93.24.14164] [PMID: 8943078]
[62]
Yemişci M, Gürsoy-Özdemir Y, Caban S, Bodur E, Çapan Y, Dalkara T. Transport of a caspase inhibitor across the blood-brain barrier by chitosan nanoparticles. Methods Enzymol 2012; 508: 253-69.
[http://dx.doi.org/10.1016/B978-0-12-391860-4.00013-6] [PMID: 22449930]
[63]
Eloy JO, Petrilli R, Chesca DL, Saggioro FP, Lee RJ, Marchetti JM. Anti-HER2 immunoliposomes for co-delivery of paclitaxel and rapamycin for breast cancer therapy. Eur J Pharm Biopharm 2017; 115: 159-67.
[http://dx.doi.org/10.1016/j.ejpb.2017.02.020] [PMID: 28257810]
[64]
Wu X, Ojima I. Tumor specific novel taxoid-monoclonal antibody conjugates. Curr Med Chem 2004; 11(4): 429-38.
[http://dx.doi.org/10.2174/0929867043455963] [PMID: 14965224]
[65]
Nunes JPM, Morais M, Vassileva V, et al. Functional native disulfide bridging enables delivery of a potent, stable and targeted antibody-drug conjugate (ADC). Chem Commun (Camb) 2015; 51(53): 10624-7.
[http://dx.doi.org/10.1039/C5CC03557K] [PMID: 26051118]
[66]
Zalipsky S. Synthesis of an end-group functionalized polyethylene glycol-lipid conjugate for preparation of polymer-grafted liposomes. Bioconjug Chem 1993; 4(4): 296-9.
[http://dx.doi.org/10.1021/bc00022a008] [PMID: 8218486]
[67]
Klibanov AL, Maruyama K, Beckerleg AM, Torchilin VP, Huang L. Activity of amphipathic poly(ethylene glycol) 5000 to prolong the circulation time of liposomes depends on the liposome size and is unfavorable for immunoliposome binding to target. Biochim Biophys Acta 1991; 1062(2): 142-8.
[http://dx.doi.org/10.1016/0005-2736(91)90385-L] [PMID: 2004104]
[68]
Immunoliposomes In: 2011. Available from: http://www.liposomes.org/2011/09/immunoliposomes.html (Accessed on: 13-Oct-2019).
[69]
Zhao J-X, Yang L, Gu ZN, et al. Stabilization of the single-chain fragment variable by an interdomain disulfide bond and its effect on antibody affinity. Int J Mol Sci 2010; 12(1): 1-11.
[http://dx.doi.org/10.3390/ijms12010001] [PMID: 21339972]
[70]
Harmsen MM, De Haard HJ. Properties, production, and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol 2007; 77(1): 13-22.
[http://dx.doi.org/10.1007/s00253-007-1142-2] [PMID: 17704915]
[71]
Wesolowski J, Alzogaray V, Reyelt J, et al. Single domain antibodies: promising experimental and therapeutic tools in infection and immunity. Med Microbiol Immunol (Berl) 2009; 198(3): 157-74.
[http://dx.doi.org/10.1007/s00430-009-0116-7] [PMID: 19529959]
[72]
Holliger P, Hudson PJ. Engineered antibody fragments and the rise of single domains. Nat Biotechnol 2005; 23(9): 1126-36.
[http://dx.doi.org/10.1038/nbt1142] [PMID: 16151406]
[73]
Pastorino F, Brignole C, Marimpietri D, et al. Doxorubicin-loaded Fab’ fragments of anti-disialoganglioside immunoliposomes selectively inhibit the growth and dissemination of human neuroblastoma in nude mice. Cancer Res 2003; 63(1): 86-92.
[PMID: 12517782]
[74]
Qian C, Wang Y, Chen Y, et al. Suppression of pancreatic tumor growth by targeted arsenic delivery with anti-CD44v6 single chain antibody conjugated nanoparticles. Biomaterials 2013; 34(26): 6175-84.
[http://dx.doi.org/10.1016/j.biomaterials.2013.04.056] [PMID: 23721794]
[75]
Huang X, Yi C, Fan Y, et al. Magnetic Fe3O4 nanoparticles grafted with single-chain antibody (scFv) and docetaxel loaded β-cyclodextrin potential for ovarian cancer dual-targeting therapy. Mater Sci Eng C 2014; 42: 325-32.
[http://dx.doi.org/10.1016/j.msec.2014.05.041] [PMID: 25063125]
[76]
Alavizadeh SH, Soltani F, Ramezani M. Recent Advances in Immunoliposome-Based Cancer TherapyIn: Current Pharmacology Reports . Springer International Publishing 2016; 2: pp. (3)129-41.
[http://dx.doi.org/10.1007/s40495-016-0056-z]
[77]
Liu D, Yang F, Xiong F, Gu N. The smart drug delivery system and its clinical potential. Theranostics 2016; 6(9): 1306-23.
[http://dx.doi.org/10.7150/thno.14858]
[78]
Karimi M, Ghasemi A, Sahandi Zangabad P, et al. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev 2016; 45(5): 1457-501.
[http://dx.doi.org/10.1039/C5CS00798D] [PMID: 26776487]
[79]
Kato Y, Ozawa S, Miyamoto C, et al. Acidic extracellular microenvironment and cancer. Cancer Cell Int 2013; 13(1): 89.
[http://dx.doi.org/10.1186/1475-2867-13-89]
[80]
Riaz MK, Riaz MA, Zhang X, et al. Surface Functionalization and Targeting Strategies of Liposomes in Solid Tumor Therapy: A Review. Int J Mol Sci 2018; 19(1)E195
[http://dx.doi.org/10.3390/ijms19010195] [PMID: 29315231]
[81]
Deshpande PP, Biswas S, Torchilin VP. Current trends in the use of liposomes for tumor targeting. Nanomedicine 2013; 8(9): 1509-28.
[http://dx.doi.org/10.2217/nnm.13.118]
[82]
Apte A, Koren E, Koshkaryev A, Torchilin VP. Doxorubicin in TAT peptide-modified multifunctional immunoliposomes demonstrates increased activity against both drug-sensitive and drug-resistant ovarian cancer models. Cancer Biol Ther 2014; 15(1): 69-80.
[http://dx.doi.org/10.4161/cbt.26609] [PMID: 24145298]
[83]
Li T, Amari T, Semba K, Yamamoto T, Takeoka S. Construction and evaluation of pH-sensitive immunoliposomes for enhanced delivery of anticancer drug to ErbB2 over-expressing breast cancer cells. Nanomedicine (Lond) 2017; 13(3): 1219-27.
[http://dx.doi.org/10.1016/j.nano.2016.11.018] [PMID: 27965166]
[84]
Fouladi F, Steffen KJ, Mallik S. Enzyme-Responsive Liposomes for the Delivery of Anticancer Drugs. Bioconjug Chem 2017; 28(4): 857-68.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00736] [PMID: 28201868]
[85]
Østrem RG, Parhamifar L, Pourhassan H, et al. Secretory phospholipase A2 responsive liposomes exhibit a potent anti-neoplastic effect in vitro, but induce unforeseen severe toxicity in vivo. J Control Release 2017; 262: 212-21.
[http://dx.doi.org/10.1016/j.jconrel.2017.07.031] [PMID: 28754610]
[86]
Pourhassan H, Clergeaud G, Hansen AE, et al. Revisiting the use of sPLA2-sensitive liposomes in cancer therapy. J Control Release 2017; 261: 163-73.
[http://dx.doi.org/10.1016/j.jconrel.2017.06.024] [PMID: 28662900]
[87]
Ruan H, Hao S, Young P, Zhang H. Targeting cathepsin B for cancer therapies.Horizons in Cancer Research. Nova Science Publishers. In: Inc USA. 2015; 56: pp. 23-39.
[88]
Matarrese P, Ascione B, Ciarlo L, et al. Cathepsin B inhibition interferes with metastatic potential of human melanoma: an in vitro and in vivo study. Mol Cancer 2010; 9: 207.
[http://dx.doi.org/10.1186/1476-4598-9-207] [PMID: 20684763]
[89]
Fonseca MJ, Jagtenberg JC, Haisma HJ, Storm G. Liposome-mediated targeting of enzymes to cancer cells for site-specific activation of prodrugs: comparison with the corresponding antibody-enzyme conjugate. Pharm Res 2003; 20(3): 423-8.
[http://dx.doi.org/10.1023/A:1022608321861] [PMID: 12669963]
[90]
Tayo LL. Stimuli-responsive nanocarriers for intracellular deliveryIn: Biophysical Reviews. Springer Verlag: USA 2017; 9: pp. (6)931-40.
[http://dx.doi.org/10.1007/s12551-017-0341-z]
[91]
Goldenbogen B, Brodersen N, Gramatica A, et al. Reduction-sensitive liposomes from a multifunctional lipid conjugate and natural phospholipids: reduction and release kinetics and cellular uptake. Langmuir 2011; 27(17): 10820-9.
[http://dx.doi.org/10.1021/la201160y] [PMID: 21819046]
[92]
Karimi M, Sahandi Zangabad P, Ghasemi A, et al. Temperature-Responsive Smart Nanocarriers for Delivery Of Therapeutic Agents: Applications and Recent Advances. ACS Appl Mater Interfaces 2016; 8(33): 21107-33.
[http://dx.doi.org/10.1021/acsami.6b00371] [PMID: 27349465]
[93]
Sullivan SM, Huang L. Enhanced delivery to target cells by heat-sensitive immunoliposomes. In: Proc. Natl. Acad. Sci. USA 1986; 83: pp. (16)6117-21.
[http://dx.doi.org/10.1073/pnas.83.16.6117] [PMID: 3461478]
[94]
Gaber MH, Hong K. Targeted sterically stabilized immunoliposomes: Effect of bilayer composition and temperature on the antitumor activity in vitro. Zeitschrift fur Onkol 2000; 32(3): 78-85.
[http://dx.doi.org/10.1055/s-2000-11211]
[95]
Wang C, Wang X, Zhong T, et al. The antitumor activity of tumor-homing peptide-modified thermosensitive liposomes containing doxorubicin on MCF-7/ADR: in vitro and in vivo. Int J Nanomedicine 2015; 10: 2229-48.
[http://dx.doi.org/10.2147/IJN.S79840] [PMID: 25834435]
[96]
Su W, Wang H, Wang S, et al. PEG/RGD-modified magnetic polymeric liposomes for controlled drug release and tumor cell targeting. Int J Pharm 2012; 426(1-2): 170-81.
[http://dx.doi.org/10.1016/j.ijpharm.2012.01.013] [PMID: 22266537]
[97]
Li Q, Tang Q, Zhang P, et al. Human epidermal growth factor receptor-2 antibodies enhance the specificity and anticancer activity of light-sensitive doxorubicin-labeled liposomes. Biomaterials 2015; 57: 1-11.
[http://dx.doi.org/10.1016/j.biomaterials.2015.04.009] [PMID: 25956192]
[98]
Wang D, Sun Y, Liu Y, Meng F, Lee RJ. Clinical translation of immunoliposomes for cancer therapy: recent perspectives. Expert Opin Drug Deliv 2018; 15(9): 893-903.
[http://dx.doi.org/10.1080/17425247.2018.1517747]
[99]
Belfiore L, Saunders DN, Ranson M, Thurecht KJ, Storm G, Vine KL. Towards clinical translation of ligand-functionalized liposo-mes in targeted cancer therapy: Challenges and opportunities. J Control Release 2018; 277: 1-13.
[http://dx.doi.org/10.1016/j.jconrel.2018.02.040]
[100]
Biswas S, Dodwadkar NS, Sawant RR, Torchilin VP. Development of the novel PEG-PE-based polymer for the reversible attachment of specific ligands to liposomes: synthesis and in vitro characterization. Bioconjug Chem 2011; 22(10): 2005-13.
[http://dx.doi.org/10.1021/bc2002133] [PMID: 21870873]
[101]
Koren E, Apte A, Jani A, Torchilin VP. Multifunctional PEGylated 2C5-immunoliposomes containing pH-sensitive bonds and TAT peptide for enhanced tumor cell internalization and cytotoxicity. J Control Release 2012; 160(2): 264-73.
[http://dx.doi.org/10.1016/j.jconrel.2011.12.002] [PMID: 22182771]
[102]
Vingerhoeds MH, Haisma HJ, Belliot SO, Smit RH, Crommelin DJ, Storm G. Immunoliposomes as enzyme-carriers (immuno-enzymosomes) for antibody-directed enzyme prodrug therapy (ADEPT): optimization of prodrug activating capacity. Pharm Res 1996; 13(4): 604-10.
[http://dx.doi.org/10.1023/A:1016010524510] [PMID: 8710754]
[103]
Houba PH, Boven E, van der Meulen-Muileman IH, et al. Pronounced antitumor efficacy of doxorubicin when given as the prodrug DOX-GA3 in combination with a monoclonal antibody beta-glucuronidase conjugate. Int J Cancer 2001; 91(4): 550-4.
[http://dx.doi.org/10.1002/1097-0215(200002)9999:9999<:AID-IJC1075>3.0.CO;2-L] [PMID: 11251980]
[104]
Smith B, Lyakhov I, Loomis K, et al. Hyperthermia-triggered intracellular delivery of anticancer agent to HER2(+) cells by HER2-specific affibody (ZHER2-GS-Cys)-conjugated thermosensitive liposomes (HER2(+) affisomes). J Control Release 2011; 153(2): 187-94.
[http://dx.doi.org/10.1016/j.jconrel.2011.04.005] [PMID: 21501640]
[105]
Shin DH, Koo MJ, Kim JS, Kim JS. Herceptin-conjugated temperature-sensitive immunoliposomes encapsulating gemcitabine for breast cancer. Arch Pharm Res 2016; 39(3): 350-8.
[http://dx.doi.org/10.1007/s12272-016-0707-y] [PMID: 26781980]
[106]
Khosroshahi ME, Hassannejad Z, Firouzi M, Arshi AR. Nanoshell-mediated targeted photothermal therapy of HER2 human breast cancer cells using pulsed and continuous wave lasers: an in vitro study. Lasers Med Sci 2015; 30(7): 1913-22.
[http://dx.doi.org/10.1007/s10103-015-1782-x] [PMID: 26137934]
[107]
Li H, Guo K, Wu C, et al. Controlled and Targeted Drug Delivery by a UV-responsive Liposome for Overcoming Chemo-resistance in Non-Hodgkin Lymphoma. Chem Biol Drug Des 2015; 86(4): 783-94.
[http://dx.doi.org/10.1111/cbdd.12551] [PMID: 25739815]
[108]
Kikumori T, Kobayashi T, Sawaki M, Imai T. Anti-cancer effect of hyperthermia on breast cancer by magnetite nanoparticle-loaded anti-HER2 immunoliposomes. Breast Cancer Res Treat 2009; 113(3): 435-41.
[http://dx.doi.org/10.1007/s10549-008-9948-x] [PMID: 18311580]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 4
Year: 2020
Published on: 26 February, 2020
Page: [306 - 319]
Pages: 14
DOI: 10.2174/1573394716666200227095521
Price: $65

Article Metrics

PDF: 20
HTML: 1