Bicyclic 6 + 6 Systems: Advances in the Chemistry of Heterocyclic Compounds Incorporated Pyrimido[1,2-a]Pyrimidine Skeleton

Author(s): Mohamed Monier, Doaa Abdel-Latif, Ahmed El-Mekabaty, Khaled M. Elattar*

Journal Name: Mini-Reviews in Organic Chemistry

Volume 17 , Issue 6 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

The present review has highlighted the chemistry of pyrimido[1,2-a]pyrimidine compounds as one of the most important classes of heterocyclic systems. The main sections include: (1) The synthesis of pyrimido[1,2-a]pyrimidines, (2) reactivity of the substituents attached to the carbon and nitrogen atoms of the ring and (3) biological applications. A discussion demonstrated that the proposed mechanisms of unexpected synthetic routes were intended. The purpose of this review is to provide an overview of the chemistry of pyrimido[1,2-a]pyrimidines to date, in which the compounds should be widely applied in medicinal and pharmaceutical chemistry based on the significant, variable and potent biological results of pyrimidopyrimidine and pyridopyrimidine analogs. This survey will assist scientists in the organic and medicinal chemistry fields to design and develop procedures for the construction of new standard biological compounds.

Keywords: Biological importance, pyrimido[1, 2-a]pyrimidines, reactivity, heterocyclic systems, medicinal and pharmaceutical chemistry, synthetic routes.

[1]
Gastpar, H. The inhibition of the cancer cell stickiness by pyrimido-pyrimidine derivatives induced by inhibition. Acta Med. Scand. Suppl., 1972, 525, 269-271.
[PMID: 5292100]
[2]
Bunag, R.D.; Douglas, C.R.; Imai, S.; Berne, R.M. Influence of pyrimidopyrimidine derivative on deamination of adenosine by blood. Circ. Res., 1964, 15, 83-88.
[http://dx.doi.org/10.1161/01.RES.15.1.83] [PMID: 14196209]
[3]
Emmons, P.R.; Harrison, M.J.; Honour, A.J.; Mitchell, J.R.A. Effect of a pyrimidopyrimidine derivative on thrombus formation in the rabbit. Nature, 1965, 208(5007), 255-257.
[http://dx.doi.org/10.1038/208255a0] [PMID: 5882451]
[4]
Kaiser, H.J.; Stümpfig, D.; Flammer, J. Short-term effect of dipyridamole on blood flow velocities in the extraocular vessels. Int. Ophthalmol., 1995, 19(6), 355-358.
[http://dx.doi.org/10.1007/BF00130854] [PMID: 8970869]
[5]
Eliasson, R.; Bygdeman, S. Effect of dipyridamole and two pyrimido-pyrimidine derivatives on the kinetics of human platelet aggregation and on platelet adhesiveness. Scand. J. Clin. Lab. Invest., 1969, 24(2), 145-151.
[http://dx.doi.org/10.3109/00365516909080145] [PMID: 5383322]
[6]
Ivy, D.D.; Kinsella, J.P.; Ziegler, J.W.; Abman, S.H. Dipyridamole attenuates rebound pulmonary hypertension after inhaled nitric oxide withdrawal in postoperative congenital heart disease. J. Thorac. Cardiovasc. Surg., 1998, 115(4), 875-882.
[http://dx.doi.org/10.1016/S0022-5223(98)70369-1] [PMID: 9576224]
[7]
Virgilio, A.; Spano, D.; Esposito, V.; Di Dato, V.; Citarella, G.; Marino, N.; Maffia, V.; De Martino, D.; De Antonellis, P.; Galeone, A.; Zollo, M. Novel pyrimidopyrimidine derivatives for inhibition of cellular proliferation and motility induced by h-prune in breast cancer. Eur. J. Med. Chem., 2012, 57, 41-50.
[http://dx.doi.org/10.1016/j.ejmech.2012.08.020] [PMID: 23059542]
[8]
de la Cruz, J.P.; Carrasco, T.; Ortega, G.; Sanchez de la Cuesta, F. Inhibition of ferrous-induced lipid peroxidation by pyrimidopyrimidine derivatives in human liver membranes. Lipids, 1992, 27(3), 192-194.
[http://dx.doi.org/10.1007/BF02536177] [PMID: 1522764]
[9]
Gebauer, M.G.; McKinlay, C.; Gready, J.E. Synthesis of quaternised 2-aminopyrimido[4,5-d]pyrimidin-4(3H)-ones and their biological activity with dihydrofolate reductase. Eur. J. Med. Chem., 2003, 38(7-8), 719-728.
[http://dx.doi.org/10.1016/S0223-5234(03)00140-5] [PMID: 12932903]
[10]
Fang, Y.; Xu, J.; Li, Z.; Yang, Z.; Xiong, L.; Jin, Y.; Wang, Q.; Xie, S.; Zhu, W.; Chang, S. Design and synthesis of novel pyrimido[5,4-d]pyrimidine derivatives as GPR119 agonist for treatment of type 2 diabetes. Bioorg. Med. Chem., 2018, 26(14), 4080-4087.
[http://dx.doi.org/10.1016/j.bmc.2018.06.035] [PMID: 30100020]
[11]
Simcox, M.; Higgins, B.; McDermott, L.; Nevins, T.; Kolinsky, K.; Smith, M.; Yang, H.; Li, J.; Chen, Y.; Luk, K. 189 Rodent pharmacokinetics and antiangiogenic activity of a pyrimidopyrimidine dual KDR/FGFR antagonist. Eur. J. Cancer, Suppl., 2004, 2(8), 59.
[http://dx.doi.org/10.1016/S1359-6349(04)80197-6]
[12]
Barlow, H.C.; Bowman, K.J.; Curtin, N.J.; Calvert, A.H.; Golding, B.T.; Huang, B.; Loughlin, P.J.; Newell, D.R.; Smith, P.G.; Griffin, R.J. Resistance-modifying agents. Part 7: 2,6-disubstituted-4,8-dibenzylaminopyrimido[5,4-d]pyrimidines that inhibit nucleoside transport in the presence of α1-acid glycoprotein (AGP). Bioorg. Med. Chem. Lett., 2000, 10(6), 585-589.
[http://dx.doi.org/10.1016/S0960-894X(00)00053-6] [PMID: 10741559]
[13]
Bacelar, A.H.; Carvalho, M.A.; Proença, M.F. Synthesis and in vitro evaluation of substituted pyrimido[5,4-d]pyrimidines as a novel class of anti-Mycobacterium tuberculosis agents. Eur. J. Med. Chem., 2010, 45(7), 3234-3239.
[http://dx.doi.org/10.1016/j.ejmech.2010.03.047] [PMID: 20416983]
[14]
Haggarty, S.J.; Mayer, T.U.; Miyamoto, D.T.; Fathi, R.; King, R.W.; Mitchison, T.J.; Schreiber, S.L. Dissecting cellular processes using small molecules: Identification of colchicine-like, taxol-like and other small molecules that perturb mitosis. Chem. Biol., 2000, 7(4), 275-286.
[http://dx.doi.org/10.1016/S1074-5521(00)00101-0] [PMID: 10780927]
[15]
Grover, G.J.; Dzwonczyk, S.; McMullen, D.M.; Normandin, D.E.; Parham, C.S.; Sleph, P.G.; Moreland, S. Pharmacologic profile of the dihydropyrimidine calcium channel blockers SQ 32,547 and SQ 32,926 [correction of SQ 32,946] J. Cardiovasc. Pharmacol., 1995, 26(2), 289-294.
[http://dx.doi.org/10.1097/00005344-199508000-00015] [PMID: 7475054]
[16]
Martin, M.W.; Newcomb, J.; Nunes, J.J.; Boucher, C.; Chai, L.; Epstein, L.F.; Faust, T.; Flores, S.; Gallant, P.; Gore, A.; Gu, Y.; Hsieh, F.; Huang, X.; Kim, J.L.; Middleton, S.; Morgenstern, K.; Oliveira-dos-Santos, A.; Patel, V.F.; Powers, D.; Rose, P.; Tudor, Y.; Turci, S.M.; Welcher, A.A.; Zack, D.; Zhao, H.; Zhu, L.; Zhu, X.; Ghiron, C.; Ermann, M.; Johnston, D.; Saluste, C.G. Structurebased design of novel 2-amino-6-phenyl-pyrimido[5′,4′:5,6] pyrimido[1,2-a]benzimidazol-5(6H)-ones as potent and orally active inhibitors of lymphocyte specific kinase (Lck): Synthesis, SAR, and in vivo anti-inflammatory activity. J. Med. Chem., 2008, 51(6), 1637-1648.
[http://dx.doi.org/10.1021/jm701095m] [PMID: 18278858]
[17]
Tenser, R.B.; Gaydos, A.; Hay, K.A. Inhibition of herpes simplex virus reactivation by dipyridamole. Antimicrob. Agents Chemother., 2001, 45(12), 3657-3659.
[http://dx.doi.org/10.1128/AAC.45.12.3657-3659.2001] [PMID: 11709364]
[18]
Taylor, E.C.; Knopf, R.J.; Meyer, R.F.; Holmes, A.; Hoefle, M.L. Pyrimido[4,5-d]pyrimidines. Part I. J. Am. Chem. Soc., 1960, 82(21), 5711-5718.
[http://dx.doi.org/10.1021/ja01506a038]
[19]
Kitamura, N.; Onishi, A. use of alprostadil (prostaglandin e1) for producing a medicament for angioneogenesis. european patent 163599, 1984; chem. abstr, 1984, 104, 186439.
[20]
Sanghvi, Y.S.; Larson, S.B.; Matsumoto, S.S.; Nord, L.D.; Smee, D.F.; Willis, R.C.; Avery, T.L.; Robins, R.K.; Revankar, G.R. Antitumor and antiviral activity of synthetic alpha- and betaribonucleosides of certain substituted pyrimido[5,4-d]pyrimidines: A new synthetic strategy for exocyclic aminonucleosides. J. Med. Chem., 1989, 32(3), 629-637.
[http://dx.doi.org/10.1021/jm00123a022] [PMID: 2918511]
[21]
Ram, V.J.; Goel, A.; Sarkhel, S.; Maulik, P.R. A convenient synthesis and hepatoprotective activity of imidazo[1,2-c]pyrimido[5,4-e]pyrimidine, tetraazaacenaphthene and tetraazaphenalene from cyclic ketene aminals through tandem addition-cyclization reactions. Bioorg. Med. Chem., 2002, 10(5), 1275-1280.
[http://dx.doi.org/10.1016/S0968-0896(01)00423-0] [PMID: 11886790]
[22]
Rewcastle, G.W.; Bridges, A.J.; Fry, D.W.; Rubin, J.R.; Denny, W.A. Tyrosine kinase inhibitors. 12. Synthesis and structureactivity relationships for 6-substituted 4-(phenylamino)pyrimido [5,4-d]pyrimidines designed as inhibitors of the epidermal growth factor receptor. J. Med. Chem., 1997, 40(12), 1820-1826.
[http://dx.doi.org/10.1021/jm960879m] [PMID: 9191958]
[23]
Fry, D.W.; Becker, M.A.; Switzer, R.L. Inhibition of human 5-phosphoribosyl-1-pyrophosphate synthetase by 4-amino-8-(beta-Dribofuranosylamino)-pyrimido[5,4-d]pyrimidine-5′- monophosphate: Evidence for interaction at the ADP allosteric site. Mol. Pharmacol., 1995, 47(4), 810-815.
[PMID: 7723742]
[24]
Dabiri, M.; Arvin-Nezhad, H.; Khavasi, H.R.; Bazgir, A. A novel and efficient synthesis of pyrimido[4,5-d]pyrimidine-2,4,7-trione and pyrido[2,3-d:6,5-d]dipyrimidine-2,4,6,8-tetrone derivatives. Tetrahedron, 2007, 63, 1770-1774.
[http://dx.doi.org/10.1016/j.tet.2006.12.043]
[25]
Liu, M.; Li, J.; Chen, S.; Huang, D.; Chai, H.; Zhang, Q.; Shi, D. One-pot NHC-assisted access to 2,3-dihydropyrimido[4,5-d]pyrimidin-4(1H)-ones. RSC Adv., 2014, 4, 35629-35634.
[http://dx.doi.org/10.1039/C4RA05346J]
[26]
Xiang, J.; Geng, C.; Yi, L.; Dang, Q.; Bai, X. Synthesis of highly substituted 2,3-dihydropyrimido[4,5-d]pyrimidin-4(1H)-ones from 4,6-dichloro-5-formylpyrimidine, amines and aldehydes. Mol. Divers., 2011, 15(4), 839-847.
[http://dx.doi.org/10.1007/s11030-011-9314-5] [PMID: 21509500]
[27]
Rostamizadeh, S.; Nojavan, M.; Aryan, R.; Azad, M. Dual acidic ionic liquid immobilized on α-Fe2O3–MCM-41 magnetic mesoporous materials as the hybrid acidic nanocatalyst for the synthesis of pyrimido[4,5-d]pyrimidine derivatives. Catal. Lett., 2014, 144, 1772-1783.
[http://dx.doi.org/10.1007/s10562-014-1330-5]
[28]
Das, S.; Thakur, A.J.; Medhic, T.; Das, B. An efficient stereocontrolled synthesis of bis-pyrimido[4,5-d]-pyrimidine derivatives via aza-diels-Alder methodology and their preliminary bioactivity. RSC Advances, 2013, 3, 3407-3413.
[http://dx.doi.org/10.1039/c3ra22089c]
[29]
Abd El Latif, F.M.; Barsy, M.A.; Arefa, A.M.; Sadek, K.U. Microwave-assisted reactions: Part 2 one-pot synthesis of pyrimido[1,2-a]pyrimidines. Green Chem., 2002, 4, 196-198.
[http://dx.doi.org/10.1039/b110723m]
[30]
Liu, J.; Lei, M.; Hu, L. A catalyst-free reaction in water: Synthesis of benzo[4,5]imidazo[1,2-a]pyrimido[4,5-d]pyrimidin-4(1H)-one derivatives. Green Chem., 2012, 14, 2534-2539.
[http://dx.doi.org/10.1039/c2gc35745c]
[31]
Shi, F.; Jia, R.; Zhang, X.; Tu, S.; Yan, S.; Zhang, Y.; Jiang, B.; Zhang, J.; Yao, C. Extension of the Biginelli-Type reaction: Onepot synthesis of pyrimido-pyrimidines and spirobi[pyrimidine]s using potassium hydrogen sulfate as a catalyst. Synthesis, 2007, 18, 2782-2790.
[http://dx.doi.org/10.1055/s-2007-983874]
[32]
Prajapati, D.; Borah, K.J.; Gohain, M. an efficient regiospecific synthesis of highly functionalized novel dihydropyrimido[4,5-d]pyrimidine derivatives by a three-component one-pot condensation under solvent-free conditions. synlett, 2007, 4, 0595-0598.
[33]
Katiyar, S.B.; Kumar, A.; Chauhan, P.M.S. Facile Synthesis of Pyrazolo[3,4−d]pyrimidines and pyrimido[4,5-d]pyrimidin-4-one derivatives. Synth. Commun., 2006, 36(20), 2963-2973.
[http://dx.doi.org/10.1080/00397910600773726]
[34]
Majumder, S.; Borah, P.; Bhuyan, P.J. An efficient and regioselective one-pot multi-component synthesis of pyrimido[4,5-d]pyrimidine derivatives in water. Tetrahedron Lett., 2014, 55(6), 1168-1170.
[http://dx.doi.org/10.1016/j.tetlet.2013.12.095]
[35]
Sharma, P.; Rane, N.; Gurram, V.K. Synthesis and QSAR studies of pyrimido[4,5-d]pyrimidine-2,5-dione derivatives as potential antimicrobial agents. Bioorg. Med. Chem. Lett., 2004, 14(16), 4185-4190.
[http://dx.doi.org/10.1016/j.bmcl.2004.06.014] [PMID: 15261267]
[36]
Mobinikhaledi, A.; Mosleh, T.; Foroughifar, N. Triethyl benzyl ammonium chloride (TEBAC) catalyzed solvent-free one-pot synthesis of pyrimido[4,5-d]pyrimidines. Res. Chem. Intermed., 2015, 41(5), 2985-2990.
[http://dx.doi.org/10.1007/s11164-013-1406-7]
[37]
Kadatz, R. Die pharmakologischen Eigenschaften der neuen coronarerweiternden Substanz 2,6-Bis(diaethanolamino)-4, 8dipiperi-dino-pyrimido(5,4-d)pyrimidin. Arzneimittelforschung, 1959, 9(1), 39-45.
[PMID: 13628477]
[38]
Magar, R.L.; Thorat, P.B.; Thorat, P.B.; Thorat, V.V.; Patil, B.R.; Pawar, R.P. Distereoselective one-pot synthesis of pyrimidopyrimidines using sulfated tin oxide as a reusable catalyst: An extension of Biginelli-type reaction. Chin. Chem. Lett., 2013, 24(12), 1070-1074.
[http://dx.doi.org/10.1016/j.cclet.2013.07.012]
[39]
Prajapati, D.; Gohain, M.; Thakur, A.J. Regiospecific one-pot synthesis of pyrimido[4,5-d]pyrimidine derivatives in the solid state under microwave irradiations. Bioorg. Med. Chem. Lett., 2006, 16(13), 3537-3540.
[http://dx.doi.org/10.1016/j.bmcl.2006.03.088] [PMID: 16650990]
[40]
Echavarren, A.; Galan, A.; Lehn, J.M.; de Mendoza, J. Chiral recognition of aromatic carboxylate anions by an optically active abiotic receptor containing a rigid guanidinium binding subunit. J. Am. Chem. Soc., 1989, 111(13), 4994-4995.
[http://dx.doi.org/10.1021/ja00195a071]
[41]
Kurzmeier, H.; Schmidtehen, F.P. Abiotic anion receptor functions. A facile and dependable access to chiral guanidinium anchor groups. J. Org. Chem., 1990, 55(12), 3749-3755.
[http://dx.doi.org/10.1021/jo00299a013]
[42]
Song, Y.; Chen, W.; Kang, D.; Zhang, Q.; Zhan, P.; Liu, X. “Old friends in new guise”: Exploiting privileged structures for scaffold re-evolution/refining. Comb. Chem. High Throughput Screen., 2014, 17(6), 536-553.
[http://dx.doi.org/10.2174/1386207317666140122101631] [PMID: 24446784]
[43]
Song, Y.; Zhan, P.; Liu, X. Heterocycle-thioacetic acid motif: a privileged molecular scaffold with potent, broad-ranging pharmacological activities. Curr. Pharm. Des., 2013, 19(40), 7141-7154.
[http://dx.doi.org/10.2174/13816128113199990505] [PMID: 23859548]
[44]
Song, Y.; Zhan, P.; Zhang, Q.; Liu, X. Privileged scaffolds or promiscuous binders: A glance of pyrrolo[2,1-f][1,2,4]triazines and related bridgehead nitrogen heterocycles in medicinal chemistry. Curr. Pharm. Des., 2013, 19(8), 1528-1548.
[PMID: 23131184]
[45]
Wang, R.; Xu, K.; Shi, W. quinolone derivatives: potential anti-hiv agent-development and application. arch. pharm. (weinheim), 2019., e1900045e1900045.
[46]
Ju, H.; Zhan, P.; Liu, X. Designing influenza polymerase acidic endonuclease inhibitors via ‘privileged scaffold’ re-evolution/refining strategy. Future Med. Chem., 2019, 11(4), 265-268.
[http://dx.doi.org/10.4155/fmc-2018-0489] [PMID: 30763130]
[47]
Kumari, A.; Singh, R.K. Medicinal chemistry of indole derivatives: Current to future therapeutic prospectives. Bioorg. Chem., 2019, 89, 103021.
[http://dx.doi.org/10.1016/j.bioorg.2019.103021] [PMID: 31176854]
[48]
Mahapatra, D.K.; Bharti, S.K.; Asati, V.; Singh, S.K. Perspectives of medicinally privileged chalcone based metal coordination compounds for biomedical applications. Eur. J. Med. Chem., 2019, 174, 142-158.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.032] [PMID: 31035237]
[49]
Hellberg, M.; Stubbins, J.F.; Glennon, R.A. A preliminary investigation of mesoionic xanthine analogues as inhibitors of platelet aggregation. Bioorg. Med. Chem., 2000, 8(8), 1917-1923.
[http://dx.doi.org/10.1016/S0968-0896(00)00123-1] [PMID: 11003136]
[50]
Bundy, G.L.; Ciske, F.L.; Genin, M.J.; Heasley, S.E.; Larsen, S.D.; Lee, B.H.; May, P.D.; Palmer, J.R.; Schnute, M.E.; Vaillancourt, V.A.; Thorarensen, A.; Wolf, A.J.; Wicnienski, N.A.; Wilhite, D.; Wolf, A.J. heterocycle carboxamides as antiviral agents. ep1301493a2, 2002.
[51]
Guo, T.; Hunter, R.C.; Zhang, R.; Greenlee, W.J. Microwave assisted synthesis of isothiazolo-, thiazolo-, imidazo-, and pyrimidopyrimidinones as novel MCH1R antagonists. Tetrahedron Lett., 2007, 48(4), 613-615.
[http://dx.doi.org/10.1016/j.tetlet.2006.11.120]
[52]
Jimenez, J-M.; Patel, S.; Kay, D.; Knegtel, R.; Philps, O. fused cyclic systems useful as inhibitors of tec family protein kinases. u.s. patent 7,855,214 b2, 2010.
[53]
Hummersone, M.G.; Gomez, S.; Menear, K.A.; Smith, G.C.M.; Malagu, K.; Duggan, H.M.E.; Cockcroft, X.-L.F.; Hermann, G.J. pyrido-, pyrazo- and pyrimido-pyrimidine derivatives as mtor inhibitors. wo 060404a1, 2007.
[54]
Wyatt, E.E.; Fergus, S.; Galloway, W.R.J.D.; Bender, A.; Fox, D.J.; Plowright, A.T.; Jessiman, A.S.; Welch, M.; Spring, D.R. Skeletal diversity construction via a branching synthetic strategy. Chem. Commun. (Camb.), 2006, (31), 3296-3298.
[http://dx.doi.org/10.1039/b607710b] [PMID: 16883415]
[55]
Wyatt, E.E.; Galloway, W.R.J.D.; Thomas, G.L.; Welch, M.; Loiseleur, O.; Plowright, A.T.; Spring, D.R. Identification of an anti-MRSA dihydrofolate reductase inhibitor from a diversityoriented synthesis. Chem. Commun. (Camb.), 2008, 4962-4964(40), 4962-4964.
[http://dx.doi.org/10.1039/b812901k] [PMID: 18931753]
[56]
Prager, R.H.; Singh, Y. The chemistry of 5-oxodihydroisoxazoles. ix. annelated pyrimidines by flash vacuum pyrolysis. Aust. J. Chem., 1994, 47(7), 1263-1270.
[http://dx.doi.org/10.1071/CH9941263]
[57]
Jovanovic, M.V. Iodination of some diazines and diazine n-oxides. Heterocycles, 1984, 22(5), 1195-1210.
[http://dx.doi.org/10.3987/R-1984-05-1195]
[58]
Sonogashira, K.; Tohda, Y.; Hagihara, N. A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett., 1975, 16(50), 4467-4470.
[http://dx.doi.org/10.1016/S0040-4039(00)91094-3]
[59]
Fisher, M.J.; Gunn, B.; Harms, C.S.; Kline, A.D.; Mullaney, J.T.; Nunes, A.; Scarborough, R.M.; Arfsten, A.E.; Skelton, M.A.; Um, S.L.; Utterback, B.G.; Jakubowski, J.A. Non-peptide RGD surrogates which mimic a Gly-Asp β-turn: Potent antagonists of platelet glycoprotein IIb-IIIa. J. Med. Chem., 1997, 40(13), 2085-2101.
[http://dx.doi.org/10.1021/jm9701076] [PMID: 9207949]
[60]
(a) Elattar, K.M.; Mert, B.D. Recent developments in the chemistry of bicyclic 6-6 systems: Chemistry of pyrido[4,3-d]pyrimidines. RSC Adv., 2016, 6, 71827-71851.
(b) Fadda, A.A.; El-Hadidy, S.A.; Elattar, K.M. Advances in 1,8-naphthyridines chemistry. Synth. Commun., 2015, 45(24), 2765-2801.
(c) Fadda, A.A.; El-Mekabaty, A.; Elattar, K.M. Chemistry of enaminonitriles of pyrano[2,3-c]pyrazole and related compounds. Synth. Commun., 2013, 43(20), 2685-2719.
[61]
(a) Elattar, K.M.; Youssef, I.; Fadda, A. A Reactivity of indolizines in organic synthesis. Synth. Commun., 2016, 46, 719-744.
(b) Elattar, K.M.; Rabie, R.; Hammouda, M.M. Recent developments in the chemistry of bicyclic 6-6 systems: Chemistry of pyrido[1,2-c]pyrimidines. Synth. Commun., 2016, 46, 1477-1498.
[62]
(a) Elattar, K.M; Rabie, R; Hammouda, M.M Recent progress in the chemistry of bicyclic 6-6 systems: Chemistry of pyrido[1,2-a]pyrimidines. Monatsh. Chem., 2017, 148, 601-627.
(b) Monier, M; Abdel-Latif, D; El-Mekabaty, A; Mert, B.D.; Elattar, K.M. Advances in the chemistry of 6-6 bicyclic systems: Chemistry of pyrido[3,4-d]pyrimidines. Curr. Org. Synth., 2019, 16(5)
[63]
Stoss, P.; Kaes, E.; Eibel, G.; Thewalt, U. Novel pyrimidine and pyrimido[1,2a]pyrimidine derivatives. By-products of a guanidinebased thymine synthesis. J. Heterocycl. Chem., 1991, 28, 231-236.
[http://dx.doi.org/10.1002/jhet.5570280205]
[64]
Siddesh, M.B.; Padmashali, B.; Thriveni, K.S.; Sandeep, C. Synthesis of thiophene-linked pyrimidopyrimidines as pharmaceutical leads. J. Chem. Sci., 2014, 126(3), 821-826.
[http://dx.doi.org/10.1007/s12039-014-0614-z]
[65]
Pryadeina, M.V.; Burgart, Ya.V.; Kodess, M.I.; Saloutin, V.I.; Chupakhin, O.N. Reactions of alkyl 2-benzylidene-2-polyfluoroacylacetates with N,N-dinucleophiles. Russ. Chem. Bull. Int. Ed., 2004, 53(6), 1261-1266.
[http://dx.doi.org/10.1023/B:RUCB.0000042284.03940.41]
[66]
Wendelin, W.; Riedl, R. Uber die struktur der acrylnitril- guanidinkondensate uber tieterocyclen, 78. Mitt. “On the structure of acrylonitrile-guanidine condensates via teterocycles, 78. Mitt. Monatsh. Chem., 1984, 115, 445-453.
[http://dx.doi.org/10.1007/BF00810006]
[67]
Winfried, W.; Kerbl, H. Synthese arylsubstituierter 2-pyrimidinamine, dihydro-2-pyrimidinamine und pyrimido[1,2-a]pyrimidine durch reaktion yon guanidin mit chalkonen uber heterocyclen, 77. mitteilung. Synthesis of aryl-substituted 2-pyrimidineamines, dihydro-2-pyrimidineamines and pyrimido[1,2-a]pyrimidines by reaction of guanidine with chalcones. Monatsh. Chem., 1984, 115, 309-325.
[http://dx.doi.org/10.1007/BF00798803]
[68]
Wendelin, W.; Schermanz, K.; Kerbl, J. Zur Kenntnis der Struktur der Chalkon-Guanidin-Kondensatc Uher Heterocyclen, 75. Mitt. “To note the structure of the chalcone-guanidine-condensate heterocycles. Monatsh. Chem., 1983, 114, 717-737.
[http://dx.doi.org/10.1007/BF01134185]
[69]
Patil, P.T.; Warekar, P.P.; Patil, K.T.; Jamale, D.K.; Kolekar, G.B.; Anbhule, P.V. Uncatalyzed synthesis of new substituted dihydro-2H-dipyrimido[1,2-a,4,5-d]pyrimidine-2,4-(3H)-dione. Res. Chem. Intermed., 2017, 43, 4103-4114.
[http://dx.doi.org/10.1007/s11164-017-2868-9]
[70]
(a) Patil, P.T.; Warekar, P.P.; Patil, K.T.; Undare, S.S. Jamale, D.K.; Vibhute, S.S.; Valekar, N.J.; Kolekar, G.B.; Deshmukh, M.B. Anbhule, P.V. A simple and efficient one-pot novel synthesis of pyrazolo[3,4-b][1,8]naphthyridine and pyrazolo[3,4-d]pyrimido[1,2-a]pyrimidine derivatives as anti-inflammatory agents. Res. Chem. Intermed., 2018, 44, 1119-1130.
(b) Karoui, A; Allouche, F.; Deghrigue, M; Agrebi, A.; Bouraoui, A.; Chabchoub, F. Synthesis and pharmacological evaluation of pyrazolopyrim-idopyrimidine derivatives: Anti-inflammatory agents with gastroprotective effect in rats. Med. Chem. Res., 2014, 23(3), 1591-1598.
[71]
Arnold, D.M.; Laporte, M.G.; Anderson, S.M.; Wipf, P. Condensation reactions of guanidines with bis-electrophiles: Formation of highly nitrogenous heterocycles. Tetrahedron, 2013, 69(36), 7719-7731.
[http://dx.doi.org/10.1016/j.tet.2013.04.127] [PMID: 23976798]
[72]
Milcent, R.; Malanda, J-C.; Barbier, G.; Vaissermann, J. Synthesis of ethyl 2-aminodihydro-5-pyrimidinecarboxylate derivatives and 3,7-diethoxycarbonyl-4,6-dihydro-2,4,6,8-tetraaryl-1H-pyrimido[1,2a]pyrimidines. J. Heterocycl. Chem., 1997, 34(1), 329-336.
[http://dx.doi.org/10.1002/jhet.5570340152]
[73]
Ibrahim, M.A.; Abdel-Hamed, M.A-M.; El-Gohary, N.M. A New Approach for the synthesis of bioactive heteroaryl thiazolidine-2,4-diones. J. Braz. Chem. Soc., 2011, 22(6), 1130-1139.
[http://dx.doi.org/10.1590/S0103-50532011000600019]
[74]
Angier, R.B.; Curran, W.V. Alkylation of 2-amino-4-hydroxypyrimidines with acrylonitrile and with dimethyl sulfate: Two pyrirnido[1,2-a]pyrimidinediones. J. Org. Chem., 1961, 26(6), 1891-1895.
[http://dx.doi.org/10.1021/jo01065a048]
[75]
Güllü, M.; Dinçsönmez, A.; Özyavas, Ö. Facile synthesis of novel pyrimido[1,2-a]pyrimidin-4-ones from highly reactive malonates. Eur. J. Org. Chem., 2010, 2010, 2113-2120.
[http://dx.doi.org/10.1002/ejoc.200901419]
[76]
Ivanov, A.; Koltun, D.; Vasilevich, N.; Zablocki, J. Heterocyclic compounds useful as stearoyl CoA desaturase inhibitors. world intellectual property organization international bureau, pct, wo 2010/045371 al, 2010.
[77]
Konradi, A.W.; Pleiss, M.A.; Thorsett, E.D.; Ashwell, S.; Welmaker, G.S.; Kreft, A.; Sarantakis, D.; Dressen, D.B.; Grant, F.S.; Semko, C.; Xu, Y.-Z. heteroaryl-beta-alanine derivatives as alpha 4 integrin inhibitors. wo2002008222, 2002.
[78]
Grosjean, S.; Triki, S.; Meslin, J-C.; Julienne, K.; Deniaud, D. Synthesis of nitrogen bicyclic scaffolds: Pyrimido[1,2-a]pyrimi-dine-2,6-diones. Tetrahedron, 2010, 66(52), 9912-9924.
[http://dx.doi.org/10.1016/j.tet.2010.10.059]
[79]
Abdelghani, E.; Said, S.A.; Assy, M.G.; Abdel Hamid, A.M. Synthesis and antimicrobial evaluation of some new pyrimidines and condensed pyrimidines. Arab. J. Chem., 2017, 10, S2926-S2933.
[http://dx.doi.org/10.1016/j.arabjc.2013.11.025]
[80]
Světlík, J.; Liptaj, T.; Tureček, F. Conformationally locked heterocycles. Structure of a doubly bridged pyrimido[1,2a]pyrimidine from the Hantzsch synthesis with 4-(2-hydroxyphenyl)but-3-en-2-one. J. Heterocycl. Chem., 1999, 36(1), 209-215.
[http://dx.doi.org/10.1002/jhet.5570360132]
[81]
El-Gaby, M.S.A.; Micky, J.A.; Saleh, N.M.; Ammar, Y.A.; Mohamed, H.S.A. Synthesis and spectroscopic characterization of novel 2-amino-4,5,6,7-tetrahydro-3H-cyclopenta[d]pyrimidine and pyrimido[1,2-a]pyrimidine derivatives. Chin. Chem. Lett., 2015, 26, 690-694.
[http://dx.doi.org/10.1016/j.cclet.2015.04.003]
[82]
Chowdhury, A.Z.M.S.; Shibata, Y. Synthesis of fused pyrimidines with N-, S-heterocyclic moieties by double-annelation reaction. J. Heterocycl. Chem., 2001, 38, 743-747.
[http://dx.doi.org/10.1002/jhet.5570380333]
[83]
Yin, P.; Liu, N.; Deng, Y-X.; Chen, Y.; Deng, Y.; He, L. Synthesis of 2,4-diaminoquinazolines and tricyclic quinazolines by cascade reductive cyclization of methyl N-cyano-2-nitrobenzimidates. J. Org. Chem., 2012, 77(6), 2649-2658.
[http://dx.doi.org/10.1021/jo2023697] [PMID: 22283399]
[84]
Ghorai, M.K.; Das, K.; Kumar, A. An efficient synthetic route to substituted tetrahydropyrimidines by Cu(OTf)2-mediated nucleophilic ring-opening followed by the [4+2] cycloaddition of Ntosylazetidines with nitriles. Tetrahedron Lett., 2009, 50(10), 1105-1109.
[http://dx.doi.org/10.1016/j.tetlet.2008.12.035]
[85]
Schwamm, R.J.; Vianello, R.; Maršavelski, A.; García, M.A.; Claramunt, R.M.; Alkorta, I.; Saame, J.; Leito, I.; Fitchett, C.M.; Edwards, A.J.; Coles, M.P. (15)N NMR spectroscopy, X-ray and neutron diffraction, quantum-chemical calculations, and UV/visspectrophotometric titrations as complementary techniques for the analysis of pyridine-supported bicyclic guanidine superbases. J. Org. Chem., 2016, 81(17), 7612-7625.
[http://dx.doi.org/10.1021/acs.joc.6b01330] [PMID: 27494395]
[86]
Hurd, C.D.; Hayao, S. Reaction of propiolactone with heterocyclic amines. J. Am. Chem. Soc., 1955, 77(1), 117-121.
[http://dx.doi.org/10.1021/ja01606a037]
[87]
Abdel-Fattah, A.M.; Sherif, S.M.; El-Reedy, A.M.; Gad-Alla, S.A. New synthesis of imidazo[1,2-a]- and pyrimido[1,2-a]pyrimidines. Phosphorus Sulfur Silicon Relat. Elem., 1992, 70, 67-73.
[http://dx.doi.org/10.1080/10426509208049153]
[88]
Chereze, N.; Lochead, A.; Saady, M.; Slowinski, F.; Yaiche, P. derives de 8'-pyri(mi)dinyl-dihydrospiro-[cycloalkylamine]-pyrimido[1,2-.alpha.]pyrimidin-6-one substitues. ca2550168a1, 2005.
[89]
Wendelin, W.; Riedl, R. Über die Struktur der Acrylnitril-Guanidin-Kondensate Über Heterocyclen, 78. Mitt. About the structure of acrylonitrile-guanidine condensates about heterocycles. Monatsh. Chem., 1984, 115, 445-453.
[http://dx.doi.org/10.1007/BF00810006]
[90]
Wendelin, W.; Harler, A. Über polycyclische 2-Alken-1-on - Guanidin- Kondensate “About polycyclic 2-alkene-1-one-guanidine condensates”. Monatsh. Chem., 1976, 107, 133-140.
[http://dx.doi.org/10.1007/BF00909090]
[91]
Kappe, C. O.; Kappe, T. cross-conjugated and pseudo-crossconjugated mesomeric betaines, xviii: bicyclic mesoionic pyrimidines with cardio-vascular activity. arch. pharm. (weinheim, ger.), 1991, 324(11), 863-866.
[92]
Pathak, R.; Batra, S. Expeditious synthesis of 5,6,7,8-tetrahydroimidazo[1,2-a]pyrimidin-2-ones and 3,4,6,7,8,9-hexahydro-pyrimido[1,2-a]pyrimidin-2-ones. Tetrahedron, 2007, 63(38), 9448-9455.
[http://dx.doi.org/10.1016/j.tet.2007.06.115]
[93]
Deetz, M.J.; Malerich, P.J.; Beatty, A.M.; Smith, B.D. One-step synthesis of 4(3H)-quinazolinones. Tetrahedron Lett., 2001, 42(10), 1851-1854.
[http://dx.doi.org/10.1016/S0040-4039(01)00096-X]
[94]
Bibas, H.; Moloney, D.W.J.; Neumann, R.; Shtaiwi, M.; Bernhardt, P.V.; Wentrup, C. Chemistry of stable iminopropadienones, RN=C=C=C=O. J. Org. Chem., 2002, 67(8), 2619-2631.
[http://dx.doi.org/10.1021/jo0110552] [PMID: 11950308]
[95]
Adib, M.; Sayahi, M.H.; Ziyadi, H.; Bijanzadeh, H.R.; Zhu, L. A new, one-pot, three-component synthesis of 4H-pyrido[1,2-a]pyrimidines, 4H-pyrimido[1,2-a]pyrimidines, and 4H-pyrazino[1,2-a]pyrimidines. Tetrahedron, 2007, 63(45), 11135-11140.
[http://dx.doi.org/10.1016/j.tet.2007.08.024]
[96]
Eynde, J.J.V.; Hecq, N.; Kataeva, O.; Kappe, C.O. Microwavemediated regioselective synthesis of novel pyrimido[1,2-a] pyrimidines under solvent-free conditions. Tetrahedron, 2001, 57(9), 1785-1791.
[http://dx.doi.org/10.1016/S0040-4020(00)01157-1]
[97]
Wang, T.; Liu, X.; Luo, J.; Xu, X.; Yu, D. Progress in synthesis of pyrimidopyrimidine analogues. Youji Huaxue, 2011, 31(11), 1773-1784.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 6
Year: 2020
Published on: 25 September, 2019
Page: [717 - 739]
Pages: 23
DOI: 10.2174/1389557519666190925161145
Price: $65

Article Metrics

PDF: 28
HTML: 4
PRC: 1