Sulfonic Acid-Functionalized Magnetic Nanoparticles as an Efficient Catalyst for the Synthesis of Benzo[4, 5]imidazo[1, 2-a]pyrimidine Derivatives, 2-Aminobenzothia Zolomethylnaphthols and 1-Amidoalkyl-2-naphthols

Author(s): Fatemeh K. Damghani, Seied A. Pourmousavi*, Hamzeh Kiyani

Journal Name: Current Organic Synthesis

Volume 16 , Issue 7 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Carbon-based sulfonated catalysts have several advantages but their separation by filtration is still a challenge. On the other hand, the synthesis of magnetic sulfonated carbon nanoparticle indicated that the magnetic separation could be an efficient way to separate the catalyst from the reaction mixture.

Objective: In order to synthesize a separable magnetic Fe3O4@C-SO3H nanoparticle (MNPs) with high catalytic activity in organic transformation, three environmental-benign and low-cost sulfonic acidfunctionalized magnetic nanoparticle (Fe3O4@C-SO3H) were successfully synthesized.

Materials and Methods: The Nano catalysts were prepared by solvothermal carbonization of Sucrose (Suc), Starch (Sta) or Cellulose (Cel) in the presence of Fe3O4 Nanoparticle and then grafting of the sulfonic groups on the surface of resulted Fe3O4@C nanoparticles in the presence of p-Toluenesulfonic. Then the Nano catalysts were characterized using XRD, FESEM and FT-IR.

Results: Three Fe3O4@C-SO3H were successfully synthesized. The resulted MNPs were used for the synthesis of benzo [4, 5] imidazo[1, 2-a]-pyrimidine derivatives, 2/-aminobenzothiazolomethylnaphthols and 1-amidoalkyl-2-naphthols under solvent-free conditions in excellent yields. It was found that high catalytic activity and easy magnetic separation from the reaction mixture are important achievement with regard to the efficiency and reusability of the catalyst in synthesis.

Conclusion: The MNPs were synthesized and used as an efficient catalysts for the one-pot synthesis of benzo [4, 5] imidazo[1, 2-a]-pyrimidine derivatives, 2/-aminobenzothiazolomethylnaphthols, and 1-amidoalkyl-2- naphthols under solvent-free conditions in excellent yields. High catalytic activity and easy magnetic separation from the reaction mixture are two factors for evaluating the performance of Fe3O4@C-SO3H nanoparticles in the organic transformations.

Keywords: Magnetic nanoparticle, multicomponent reaction, Fe3O4@C-SO3H, Benzo[4, 5]imidazo[1, 2-a]-pyrimidine, 1-amidoalkyl-2- naphthol, aminobenzothiazolomethylnaphthol.

[1]
Deng, W.; Tan, X.; Fang, W.; Zhang, Q.; Wang, Y. Conversion of cellulose into sorbitol over carbon nanotube supported ruthenium catalyst. Catal. Lett., 2009, 133, 167-174.
[http://dx.doi.org/10.1007/s10562-009-0136-3]
[2]
Lai, D.; Deng, L.Q. Guo, Fu, Y. Hydrolysis of biomass by magnetic solid acid. Energy Environ. Sci., 2011, 4, 3552.
[http://dx.doi.org/10.1039/c1ee01526e]
[3]
Rinaldi, R.; Palkovits, R.; Schüth, F. Depolymerization of cellulose using solid catalysts in ionic liquids. Angew. Chem. Int. Ed. Engl., 2008, 47(42), 8047-8050.
[http://dx.doi.org/10.1002/anie.200802879] [PMID: 18814164]
[4]
Zheng, X.; Luo, S.; Zhang, L.; Cheng, J.P. Brønsted acidic ionic liquid based magnetic nanoparticles: a new promoter for the Biginelli synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones. Green Chem., 2012, 11, 455.
[http://dx.doi.org/10.1039/b823123k]
[5]
Rajkumari, K.; Kalita, J.; Das, D.; Rokhum, L. Magnetic Fe3O4@silica sulfuric acid nanoparticles promoted regioselective protection/deprotection of alcohols with dihydropyran under solvent-free conditions. RSC Advances, 2017, 7, 56559-56565.
[http://dx.doi.org/10.1039/C7RA12458A]
[6]
Ramón, D.J.; Yus, M. Asymmetric multicomponent reactions (AMCRs): the new frontier. Angew. Chem. Int. Ed. Engl., 2005, 44(11), 1602-1634.
[http://dx.doi.org/10.1002/anie.200460548] [PMID: 15719349]
[7]
Mao, Q.; Dai, X.; Xu, G.; Su, Y.; Zhang, B.; Liu, D.; Wang, S. Design, synthesis and biological evaluation of 2-(4-alkoxy-3-cyano)phenyl-6-oxo-1,6-dihydropyrimidine-5-carboxylic acid derivatives as novel xanthine oxidase inhibitors. Eur. J. Med. Chem., 2019, 181111558
[http://dx.doi.org/10.1016/j.ejmech.2019.07.061]
[8]
Sharma, S.; Abuzar, S. The benzimidazole anthelmintics--chemistry and biological activity. Prog. Drug Res., 1983, 27, 85-161.
[http://dx.doi.org/10.1007/978-3-0348-7115-0_3] [PMID: 6361852]
[9]
Awadallah, F.M.; Piazza, G.A.; Gary, B.D.; Keeton, A.B.; Canzoneri, J.C. Synthesis of some dihydropyrimidine-based compounds bearing pyrazoline moiety and evaluation of their antiproliferative activity. Eur. J. Med. Chem., 2013, 70, 273-279.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.003] [PMID: 24161704]
[10]
Tu, S.; Shao, Q.; Zhou, D.; Cao, L.; Shi, F.; Li, C. Poly(ethyleneglycol): A versatile and recyclable reaction medium in gaining access to benzo[4,5] imidazo[1,2‐a] pyrimidines under microwave heating. Tetrahedron, 2007, 68, 1401.
[11]
Liubchak, K.; Nazarenko, K. Synthesis of annulated benzimidazoles via amidine cyclization. Tetrahedron, 2012, 68, 2993-3000.
[http://dx.doi.org/10.1016/j.tet.2012.02.027]
[12]
Barolo, S.; Wang, Y.; Rossi, R.A.; Cuny, G.D. Synthesis of pyrido [1, 2-a] benzimidazoles by photo-stimulated C–N bond formation via SRN1 reactions. Tetrahedron, 2013, 69, 5487.
[http://dx.doi.org/10.1016/j.tet.2013.04.087]
[13]
Tran, P.H; Thi Bui, T.-P.; Bach Lam, X-Q Thi Nguyen, X-T Synthesis of benzo [4,5] imidazo[1,2 a] pyrimidines and 2,3-dihydroquinazolin-4(1H)- ones under metal-free and solvent-free conditions for minimizing waste generation. RSC adv., 2018, 8, 36392-36399.
[14]
Karimi, A.R.; Bayat, F. Mono- and Bis-Pyrimido[1,2-a]benzimidazoles: Alum Catalyzed Regioselective Three- or Pseudo Five-Component Reaction of 2-Aminobenzimidazole with Aldehyde and Malononitrile. Lett. Org. Chem., 2011, 9, 631-636.
[http://dx.doi.org/10.2174/157017811799304368]
[15]
Kubo, K.; Inada, Y.; Kohara, Y.; Sugiura, Y.; Ojima, M.; Itoh, K.; Furukawa, Y.; Nishikawa, K.; Naka, T. Nonpeptide angiotensin II receptor antagonists. Synthesis and biological activity of benzimidazoles. J. Med. Chem., 1993, 36(12), 1772-1784.
[http://dx.doi.org/10.1021/jm00064a011] [PMID: 8510105]
[16]
Makhsous, M.; Shirini, F.; Seddighi, M.; Mazloumi, M. Efficient synthesis of pyrimido[1,2-a] benzimidazoles and ethyl pyrimido[1,2-a] benzimidazole-3-carboxylates using brönsted acidic ionic liquid supported on nanoporous Na+-montmorillonite. Polycycl. Aromat. Compd., 2018, 38, 1-8.
[http://dx.doi.org/10.1080/10406638.2018.1454967]
[17]
Arpana Rana, N.; Siddiqui, S.A. Khan. Benzothiazoles: A new profile of biological activities. Indian J. Pharm. Sci., 2007, 70, 10-17.
[18]
El-Shorbagi, A.N.; Sakai, S.; el-Gendy, M.A.; Omar, N.; Farag, H.H. Imidazo[2,1-b] benzothiazoles. II. Synthesis and antiinflammatory activity of some imidazo[2,1-b] benzothiazoles. Chem. Pharm. Bull. (Tokyo), 1989, 37(11), 2971-2975.
[http://dx.doi.org/10.1248/cpb.37.2971] [PMID: 2632041]
[19]
Shi, D.F.; Bradshaw, T.D.; Wrigley, S.; McCall, C.J.; Lelieveld, P.; Fichtner, I.; Stevens, M.F. Antitumor benzothiazoles. 3. Synthesis of 2-(4-aminophenyl)benzothiazoles and evaluation of their activities against breast cancer cell lines in vitro and in vivo. J. Med. Chem., 1996, 39(17), 3375-3384.
[http://dx.doi.org/10.1021/jm9600959] [PMID: 8765521]
[20]
Wells, G.; Bradshaw, T.D.; Diana, P.; Seaton, A.; Shi, D.F.; Westwell, A.D.; Stevens, M.F. Antitumour benzothiazoles. Part 10: the synthesis and antitumour activity of benzothiazole substituted quinol derivatives. Bioorg. Med. Chem. Lett., 2000, 10(5), 513-515.
[http://dx.doi.org/10.1016/S0960-894X(00)00027-5] [PMID: 10743960]
[21]
Hutchinson, I.; Chua, M.S.; Browne, H.L.; Trapani, V.; Bradshaw, T.D.; Westwell, A.D.; Stevens, M.F. Antitumor benzothiazoles. 14. Synthesis and in vitro biological properties of fluorinated 2-(4-aminophenyl)benzo-thiazoles. J. Med. Chem., 2001, 44(9), 1446-1455.
[http://dx.doi.org/10.1021/jm001104n] [PMID: 11311068]
[22]
Chopade, R.S.; Bahekar, R.H.; Khedekar, P.B.; Bhusari, K.P.; Rao, A.R. Synthesis and anticonvulsant activity of 3-(6-substituted-benzothiazol-2-yl)-6-phenyl-[1, 3] -xazinane-2-thiones. Arch. Pharm. (Weinheim), 2002, 335(8), 381-388.
[http://dx.doi.org/10.1002/1521-4184(200211)335:8<381:AID-ARDP381>3.0.CO;2-S] [PMID: 12397622]
[23]
Amnerkar, N.D.; Bhusari, K.P. Synthesis, anticonvulsant activity and 3D-QSAR study of some prop-2-eneamido and 1-acetyl-pyrazolin derivatives of aminobenzothiazole. Eur. J. Med. Chem., 2010, 45(1), 149-159.
[http://dx.doi.org/10.1016/j.ejmech.2009.09.037] [PMID: 19853976]
[24]
Palkar, M.; Noolvi, M.; Sankangoud, R.; Maddi, V.; Gadad, A.; Nargund, L.V.G. Synthesis and antibacterial activity of a novel series of 2,3-diaryl-substituted-imidazo(2,1-b)-benzothiazole derivatives. Arch. Pharm. (Weinheim), 2010, 343(6), 353-359.
[http://dx.doi.org/10.1002/ardp.200900260] [PMID: 20397211]
[25]
Singh, T.; Srivastava, V.K.; Saxena, K.K.; Goel, S.L.; Kumar, A. Synthesis of new thiazolylthiazolidinylbenzothiazoles and thiazolylazetidinylbenzo-thiazoles as potential insecticidal, antifungal, and antibacterial agents. Arch. Pharm. (Weinheim), 2006, 339(8), 466-472.
[http://dx.doi.org/10.1002/ardp.200500265] [PMID: 16881039]
[26]
Li, W.L.; Wang, L.L.; Luo, Q.Y. One-pot synthesis of 2′-amino-benzothiazolo-arylmethyl-2-naphthols catalyzed by NBS under solvent-free conditions. Sci. World J., 2013, 2013702929
[http://dx.doi.org/10.1155/2013/702929] [PMID: 23818828]
[27]
Moghanian, H.; Ebrahimi, S. Three component, one-pot synthesis of amidoalkyl naphthols using polyphosphate ester under solvent-free con-ditions. J. Saudi Chem. Soc., 2014, 18, 165.
[http://dx.doi.org/10.1016/j.jscs.2011.06.017]
[28]
Gawand, P.; Deokar, H.; Langi, B.; Yadav, A.; Chaskar, A. H3Mo12O40P-catalyzed one-pot synthesis of amidoalkyl naphthols. Synth. Commun., 2009, 39, 4171-4179.
[http://dx.doi.org/10.1080/00397910902885541]
[29]
Karimi-Jaberi, Z.; Jokar, M.; Abbasi, S.Z. Efficient Synthesis of 1-Amidoalkyl-2-Naphthols by One-Pot, Three-Component Reaction under Solvent-Free Conditions. J. Chem., 2013, 2013, 1-5.
[http://dx.doi.org/10.1155/2013/341649]
[30]
Kantevari, S.; Vuppalapati, S.V.N.; Nagarapu, L. Montmorillonite K10 catalyzed efficient synthesis of amidoalkyl naphthols under solvent free conditions. Catal. Commun., 2007, 8, 1857-1862.
[http://dx.doi.org/10.1016/j.catcom.2007.02.022]
[31]
Khodaei, M.M.; Khosropour, A.R.; Moghanian, H. A simple and efficient procedure for the synthesis of amidoalkyl naphthols by p-TSA in solution or under solvent-free conditions. Synlett, 2006, 6, 916-920.
[http://dx.doi.org/10.1055/s-2006-939034]
[32]
Kumar, A.; Rao, M.S.; Ahmad, I.; Khungar, B. A simple, facile synthesis of amidoalkyl naphthols catalyzed by Yb (OTf)3 in ionic liquids. Can. J. Chem., 2009, 87, 714-719.
[http://dx.doi.org/10.1139/V09-049]
[33]
Li, X.; Yeung, C.H.; Chan, A.S.C.; Yang, T.K. New 1, 3-amino alcohols derived from ketopinic acid and their application in catalytic enantioselective reduction of prochiral ketones. Tetrahedron Asymmetry, 1999, 10, 759-763.
[http://dx.doi.org/10.1016/S0957-4166(99)00043-9]
[34]
Nagarapu, L.; Baseeruddin, M.; Apuri, S.; Kantevari, S. Potassium dodecatungstocobaltate trihydrate (K5CoW12O40 3H2O): A mild and efficient reusable catalyst for the synthesis of amidoalkyl naphthols in solution and under solvent-free conditions. Catal. Commun., 2007, 8, 1729.
[http://dx.doi.org/10.1016/j.catcom.2007.02.008]
[35]
Nagawade, R.R.; Shinde, D.B. Zirconyl (IV) chloride-catalyzed multi-component reaction of 2-naphthols: an expeditious synthesis of amidoalkyl naphthols. Acta Chim. Slov., 2007, 54, 642-646.
[36]
Nandi, G.C.; Samai, S.; Kumar, R.; Singh, M.S. Atom-efficient and environment-friendly multicomponent synthesis of amidoalkyl naphthols catalyzed by P2O5. Tetrahedron Lett., 2009, 50, 7220-7222.
[http://dx.doi.org/10.1016/j.tetlet.2009.10.055]
[37]
Shaterian, H.R.; Mohammadnia, M. Acidic Brønsted Ionic Liquids Catalyzed the Preparation of 1-((Benzo[d]thiazol-2-ylamino)(aryl)-methyl)naphthalen-2-ol Derivatives 1-[(1,3-Benzothiazol-2-ylamino)(aryl)methyl]-2-naphthol. J. Chem., 2013, 66, 60-63.
[38]
Zhao, G.; Jiang, T.; Gao, H.; Han, B.; Huang, J.; Sun, D. Mannich reaction using acidic ionic liquids as catalysts and solvents. Green Chem., 2004, 6, 75.
[http://dx.doi.org/10.1039/b309700p]
[39]
Wang, G.; Zhang, X.; Skallberg, A.; Liu, Y.; Hu, Z.; Mei, X.; Uvdal, K. One-step synthesis of water-dispersible ultra-small Fe3O4 nanoparticles as contrast agents for T1 and T2 magnetic resonance imaging. Nanoscale, 2014, 6(5), 2953-2963.
[http://dx.doi.org/10.1039/c3nr05550g] [PMID: 24480995]
[40]
Liu, X.; Zhong, Z.; Tang, Y.; Liang, B. Review on the Synthesis and Applications of Fe3O4 Nanomaterials. J. Nanomater., 2013, 10, 1155.
[41]
Hu, G.; Cheng, M.J.; Ma, D.; Bao, X.H. Synthesis of carbon nanotube bundles with mesoporous structure by a self-assembly solvothermal route. Chem. Mater., 2003, 15, 1470-1473.
[http://dx.doi.org/10.1021/cm0209362]
[42]
Mok, W.S.; Antal, M.J.; Varhergyi, G. Productive and parasitic pathways in dilute acid-catalyzed hydrolysis of cellulose. Ind. Eng. Chem. Res., 1992, 31, 94-100.
[http://dx.doi.org/10.1021/ie00001a014]
[43]
Nakajima, K.; Hara, M. Amorphous carbon with SO3H groups as a solid Brønsted acid catalyst. ACS Catal., 2012, 2, 1296-1304.
[http://dx.doi.org/10.1021/cs300103k]
[44]
Yin, L.; Liebscher, J. Carbon-carbon coupling reactions catalyzed by heterogeneous palladium catalysts. Chem. Rev., 2007, 107(1), 133-173.
[http://dx.doi.org/10.1021/cr0505674] [PMID: 17212474]
[45]
Tu, S.; Shao, Q.; Zhou, D.; Cao, L.; Shi, F.; Li, C. Microwave-assisted efficient synthesis of benzo [4, 5] imidazo [1, 2‐a]‐pyrimidine derivatives in water under catalyst-free conditions. J. Heterocycl. Chem., 2007, 44, 1401.
[http://dx.doi.org/10.1002/jhet.5570440625]
[46]
Yao, C.; Lei, S.; Wang, C.; Li, T.C.; Wang, X.; Tu, S. Three-component synthesis of 4‐aryl‐1H‐pyrimido [1, 2‐a] benzimidazole derivatives in ionic liquid. J. Heterocycl. Chem., 2010, 47, 26.
[47]
Yao, C.S.; Lei, S.; Wang, C.H.; Yu, C.X.; Shao, Q.Q.; Tu, S.J. One-pot three‐component solvent-free synthesis of benzo[4,5]imidazo[1,2‐a] pyrimidine derivatives catalyzed by sulfamic acid. Chin. J. Chem., 2008, 26(11), 2107-2111.
[http://dx.doi.org/10.1002/cjoc.200890376]
[48]
Shaabani, A.; Rahmati, A.; Rezayan, A.H.; Darvish, M.i.; Badri, Z.; Sarvari, A. Clean synthesis in water: uncatalyzed three-component condensation reaction of 3-amino-1,2,4-triazole or 2-aminobenzimidazole with aldehyde in the presence of activated CH-acids. QSAR Comb. Sci., 2007, 26, 973-979.
[http://dx.doi.org/10.1002/qsar.200620024]
[49]
Su, W.K.; Tang, W.Y.; Li, J.J. Strontium(II) triflate catalyzed condensation of β-naphthol, aldehyde and urea or amides: A facile synthesis of amidoalkyl naphthols. J. Chem. Res., 2008, 3, 123-128.
[http://dx.doi.org/10.3184/030823408X298508]
[50]
Sastry, K.; Yadav, J.S. A novel three-component one-pot reaction involving β-naphthol, aldehydes, and urea promoted by TMSCl/NaI. J. Heterocycl. Chem., 2010, 47, 272.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 7
Year: 2019
Page: [1040 - 1054]
Pages: 15
DOI: 10.2174/1570179416666190725101422
Price: $65

Article Metrics

PDF: 18
HTML: 5