Lithium Pharmacology and a Potential Role of Lithium on Methamphetamine Abuse and Dependence

Author(s): Nobue Kitanaka, Frank Scott Hall, George Richard Uhl, Junichi Kitanaka*

Journal Name: Current Drug Research Reviews
(Formerly Current Drug Abuse Reviews)

Volume 11 , Issue 2 , 2019


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: The effectiveness of lithium salts in neuropsychiatric disorders such as bipolar disorder, Alzheimer’s disease, and treatment-resistant depression has been documented in an extensive scientific literature. Lithium inhibits inositol monophosphatase, inositol polyphosphate 1- phosphatase, and glycogen synthase kinase-3 and decreases expression level of tryptophan hydroxylase 2, conceivably underlying the mood stabilizing effects of lithium, as well as procognitive and neuroprotective effects. However, the exact molecular mechanisms of action of lithium on mood stabilizing and pro-cognitive effects in humans are still largely unknown.

Objective: On the basis of the known aspects of lithium pharmacology, this review will discuss the possible mechanisms underlying the therapeutic effects of lithium on positive symptoms of methamphetamine abuse and dependence.

Conclusion: It is possible that lithium treatment reduces the amount of newly synthesized phosphatidylinositol, potentially preventing or reversing neuroadaptations contributing to behavioral sensitization induced by methamphetamine. In addition, it is suggested that exposure to repeated doses of methamphetamine induces hyperactivation of glycogen synthase kinase-3β in the nucleus accumbens and in dorsal hippocampus, resulting in a long-term alterations in synaptic plasticity underlying behavioral sensitization as well as other behavioral deficits in memory-related behavior. Therefore it is clear that glycogen synthase kinase-3β inhibitors can be considered as a potential candidate for the treatment of methamphetamine abuse and dependence.

Keywords: Lithium, methamphetamine abuse, phosphoinositide turnover, glycogen synthase kinase-3, nucleus accumbens, neuropsychiatric disorders.

[1]
Ruffalo ML. A brief history of lithium treatment in psychiatry Prim Care Companion CNS Disord 2017; 19(5): 17br02140.
[http://dx.doi.org/10.4088/PCC.17br02140] [PMID: 29045768]
[2]
Cade JF. Lithium salts in the treatment of psychotic excitement. Med J Aust 1949; 2(10): 349-52.
[PMID: 18142718]
[3]
Ketter TA, Miller S, Dell’Osso B, Wang PW. Treatment of bipolar disorder: Review of evidence regarding quetiapine and lithium. J Affect Disord 2016; 191: 256-73.
[http://dx.doi.org/10.1016/j.jad.2015.11.002] [PMID: 26688495]
[4]
Malhi GS, Outhred T. Therapeutic mechanisms of lithium in bipolar disorder: Recent advances and current understanding. CNS Drugs 2016; 30(10): 931-49.
[http://dx.doi.org/10.1007/s40263-016-0380-1] [PMID: 27638546]
[5]
Curran G, Ravindran A. Lithium for bipolar disorder: A review of the recent literature. Expert Rev Neurother 2014; 14(9): 1079-98.
[http://dx.doi.org/10.1586/14737175.2014.947965] [PMID: 25130062]
[6]
Zhong J, Lee WH. Lithium: A novel treatment for Alzheimer’s disease? Expert Opin Drug Saf 2007; 6(4): 375-83.
[http://dx.doi.org/10.1517/14740338.6.4.375] [PMID: 17688381]
[7]
Morlet É, Hozer F, Costemale-Lacoste JF. Neuroprotective effects of lithium: What are the implications in humans with neurodegenerative disorders? Geriatr Psychol Neuropsychiatr Vieil 2018; 16(1): 78-86.
[PMID: 29400298]
[8]
Forlenza OV, de Paula VJ, Machado-Vieira R, Diniz BS, Gattaz WF. Does lithium prevent Alzheimer’s disease? Drugs Aging 2012; 29(5): 335-42.
[http://dx.doi.org/10.2165/11599180-000000000-00000] [PMID: 22500970]
[9]
Costemale-Lacoste JF, Guilloux JP, Gaillard R. The role of GSK-3 in treatment-resistant depression and links with the pharmacological effects of lithium and ketamine: A review of the literature. Encephale 2016; 42(2): 156-64.
[http://dx.doi.org/10.1016/j.encep.2016.02.003] [PMID: 26995153]
[10]
Tundo A, de Filippis R, Proietti L. Pharmacologic approaches to treatment resistant depression: Evidences and personal experience. World J Psychiatry 2015; 5(3): 330-41.
[http://dx.doi.org/10.5498/wjp.v5.i3.330] [PMID: 26425446]
[11]
WHO. WHO Model List of Essential Medicines 2017.
[12]
Wu J, Zhu D, Zhang J, Li G, Liu Z, Sun J. Lithium protects against methamphetamine-induced neurotoxicity in PC12 cells via Akt/GSK3β/mtor pathway. Biochem Biophys Res Commun 2015; 465(3): 368-73.
[http://dx.doi.org/10.1016/j.bbrc.2015.08.005] [PMID: 26271595]
[13]
Xu CM, Wang J, Wu P, et al. Glycogen synthase kinase 3β in the nucleus accumbens core is critical for methamphetamine-induced behavioral sensitization. J Neurochem 2011; 118(1): 126-39.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07281.x] [PMID: 21517846]
[14]
Namima M, Sugihara K, Watanabe Y, Sasa H, Umekage T, Okamoto K. Quantitative analysis of the effects of lithium on the reverse tolerance and the c-Fos expression induced by methamphetamine in mice. Brain Res Brain Res Protoc 1999; 4(1): 11-8.
[http://dx.doi.org/10.1016/S1385-299X(99)00002-1] [PMID: 10234448]
[15]
Kleber HD, Gawin FH. Cocaine abuse: A review of current and experimental treatments. NIDA Res Monogr 1984; 50: 111-29.
[PMID: 6440022]
[16]
Nunes EV, McGrath PJ, Wager S, Quitkin FM. Lithium treatment for cocaine abusers with bipolar spectrum disorders. Am J Psychiatry 1990; 147(5): 655-7.
[http://dx.doi.org/10.1176/ajp.147.5.655] [PMID: 2109540]
[17]
Scott ME, Mullaly RW. Lithium therapy for cocaine-induced psychosis: A clinical perspective. South Med J 1981; 74(12): 1475-7.
[http://dx.doi.org/10.1097/00007611-198112000-00015] [PMID: 7313740]
[18]
Oliveira JL, Silva Júnior GB, Abreu KL, et al. Lithium nephrotoxicity. Rev Assoc Med Bras 1992; 56(5): 600-6.
[19]
Grandjean EM, Aubry JM. Lithium: Updated human knowledge using an evidence-based approach: Part iii: Clinical safety. CNS Drugs 2009; 23(5): 397-418.
[http://dx.doi.org/10.2165/00023210-200923050-00004] [PMID: 19453201]
[20]
Rej S, Pira S, Marshe V, et al. Molecular mechanisms in lithium-associated renal disease. A systematic review. Int Urol Nephrol 2016; 48(11): 1843-53.
[http://dx.doi.org/10.1007/s11255-016-1352-6] [PMID: 27357223]
[21]
Hedya SA, Swoboda HD. Lithium Toxicity.In Stat Pearls. Treasure Island, FL: StatPearls Publishing LLC 2018.
[22]
Findling RL, Landersdorfer CB, Kafantaris V, et al. First-dose pharmacokinetics of lithium carbonate in children and adolescents. J Clin Psychopharmacol 2010; 30(4): 404-10.
[http://dx.doi.org/10.1097/JCP.0b013e3181e66a62] [PMID: 20531219]
[23]
Taright N, Mentré F, Mallet A, Jouvent R. Nonparametric estimation of population characteristics of the kinetics of lithium from observational and experimental data, individualization of chronic dosing regimen using a new Bayesian approach. Ther Drug Monit 1994; 16(3): 258-69.
[http://dx.doi.org/10.1097/00007691-199406000-00006] [PMID: 8085280]
[24]
Karila L, Weinstein A, Aubin HJ, Benyamina A, Reynaud M, Batki SL. Pharmacological approaches to methamphetamine dependence: A focused review. Br J Clin Pharmacol 2010; 69(6): 578-92.
[http://dx.doi.org/10.1111/j.1365-2125.2010.03639.x] [PMID: 20565449]
[25]
Cretzmeyer M, Sarrazin MV, Huber DL, Block RI, Hall JA. Treatment of methamphetamine abuse, research findings and clinical directions. J Subst Abuse Treat 2003; 24(3): 267-77.
[http://dx.doi.org/10.1016/S0740-5472(03)00028-X] [PMID: 12810148]
[26]
Panenka WJ, Procyshyn RM, Lecomte T, et al. Methamphetamine use a comprehensive review of molecular, preclinical and clinical findings. Drug Alcohol Depend 2013; 129(3): 167-79.
[http://dx.doi.org/10.1016/j.drugalcdep.2012.11.016] [PMID: 23273775]
[27]
Nahorski SR, Kendall DA, Batty I. Receptors and phosphoinositide metabolism in the central nervous system. Biochem Pharmacol 1986; 35(15): 2447-53.
[http://dx.doi.org/10.1016/0006-2952(86)90038-9] [PMID: 2427081]
[28]
Hawthorne JN. Polyphosphoinositide metabolism in excitable membranes Review. Biosci Rep 1983; 3(10): 887-904.
[http://dx.doi.org/10.1007/BF01140658] [PMID: 6317077]
[29]
Arai R, Ito K, Ohnishi T, et al. Crystal structure of human myo-inositol monophosphatase 2, the product of the putative susceptibility gene for bipolar disorder, schizophrenia, and febrile seizures. Proteins 2007; 67(3): 732-42.
[http://dx.doi.org/10.1002/prot.21299] [PMID: 17340635]
[30]
Catt KJ, Balla T. Phosphoinositide metabolism and hormone action. Annu Rev Med 1989; 40: 487-509.
[http://dx.doi.org/10.1146/annurev.me.40.020189.002415] [PMID: 2543268]
[31]
Berridge MJ. Phosphatidylinositol hydrolysis, a multifunctional transducing mechanism. Mol Cell Endocrinol 1981; 24(2): 115-40.
[http://dx.doi.org/10.1016/0303-7207(81)90055-1] [PMID: 6117490]
[32]
Berridge MJ, Downes CP, Hanley MR. Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem J 1982; 206(3): 587-95.
[http://dx.doi.org/10.1042/bj2060587] [PMID: 7150264]
[33]
Kitanaka J, Kitanaka N, Takemura M. Chronic methamphetamine administration reduces histamine-stimulated phosphoinositide hydrolysis in mouse frontal cortex. Biochem Biophys Res Commun 2003; 300(4): 932-7.
[http://dx.doi.org/10.1016/S0006-291X(02)02948-0] [PMID: 12559963]
[34]
Hallcher LM, Sherman WR. The effects of lithium ion and other agents on the activity of myo-inositol-1-phosphatase from bovine brain. J Biol Chem 1980; 255(22): 10896-901.
[PMID: 6253491]
[35]
Kato T, Shioiri T, Takahashi S, Inubushi T. Measurement of brain phosphoinositide metabolism in bipolar patients using in vivo 31P-MRS. J Affect Disord 1991; 22(4): 185-90.
[http://dx.doi.org/10.1016/0165-0327(91)90064-Y] [PMID: 1658103]
[36]
Pollack SJ, Atack JR, Knowles MR, et al. Mechanism of inositol monophosphatase, the putative target of lithium therapy. Proc Natl Acad Sci USA 1994; 91(13): 5766-70.
[http://dx.doi.org/10.1073/pnas.91.13.5766] [PMID: 8016062]
[37]
Atack JR, Broughton HB, Pollack SJ. Inositol monophosphatase- A putative target for Li+ in the treatment of bipolar disorder. Trends Neurosci 1995; 18(8): 343-9.
[http://dx.doi.org/10.1016/0166-2236(95)93926-O] [PMID: 7482796]
[38]
Ohnishi T, Ohba H, Seo KC, et al. Spatial expression patterns and biochemical properties distinguish a second myo-inositol monophosphatase IMPA2 from IMPA1. J Biol Chem 2007; 282(1): 637-46.
[http://dx.doi.org/10.1074/jbc.M604474200] [PMID: 17068342]
[39]
Jope RS, Song L, Li PP, et al. The phosphoinositide signal transduction system is impaired in bipolar affective disorder brain. J Neurochem 1996; 66(6): 2402-9.
[http://dx.doi.org/10.1046/j.1471-4159.1996.66062402.x] [PMID: 8632163]
[40]
Kaiya H, Nishida A, Imai A, Nakashima S, Nozawa Y. Accumulation of diacylgylcerol in platelet phosphoinositide turnover in schizophrenia: A biological marker of good prognosis? Biol Psychiatry 1989; 26(7): 669-76.
[http://dx.doi.org/10.1016/0006-3223(89)90101-7] [PMID: 2553139]
[41]
York JD, Majerus PW. Isolation and heterologous expression of a cdna encoding bovine inositol polyphosphate 1-phosphatase. Proc Natl Acad Sci USA 1990; 87(24): 9548-52.
[http://dx.doi.org/10.1073/pnas.87.24.9548] [PMID: 2175905]
[42]
Steen VM, Løvlie R, Osher Y, Belmaker RH, Berle JO, Gulbrandsen AK. The polymorphic inositol polyphosphate 1-phosphatase gene as a candidate for pharmacogenetic prediction of lithium-responsive manic-depressive illness. Pharmacogenetics 1998; 8(3): 259-68.
[PMID: 9682271]
[43]
Piccardi MP, Ardau R, Chillotti C, et al. Manic-depressive illness: An association study with the inositol polyphosphate 1-phosphatase and serotonin transporter genes. Psychiatr Genet 2002; 12(1): 23-7.
[http://dx.doi.org/10.1097/00041444-200203000-00003] [PMID: 11901356]
[44]
Mansour HA, Talkowski ME, Wood J, et al. Serotonin gene polymorphisms and bipolar I disorder: Focus on the serotonin transporter. Ann Med 2005; 37(8): 590-602.
[http://dx.doi.org/10.1080/07853890500357428] [PMID: 16338761]
[45]
Kuzelova H, Ptacek R, Macek M. The serotonin transporter gene (5-HTT) variant and psychiatric disorders: Review of current literature. Neuroendocrinol Lett 2010; 31(1): 4-10.
[PMID: 20150867]
[46]
Reynolds GP, McGowan OO, Dalton CF. Pharmacogenomics in psychiatry: The relevance of receptor and transporter polymorphisms. Br J Clin Pharmacol 2014; 77(4): 654-72.
[http://dx.doi.org/10.1111/bcp.12312] [PMID: 24354796]
[47]
Collier DA, Stöber G, Li T, et al. A novel functional polymorphism within the promoter of the serotonin transporter gene: Possible role in susceptibility to affective disorders. Mol Psychiatry 1996; 1(6): 453-60.
[PMID: 9154246]
[48]
Embi N, Rylatt DB, Cohen P. Glycogen synthase kinase-3 from rabbit skeletal muscle. Eur J Biochem 1980; 107(2): 519-27.
[http://dx.doi.org/10.1111/j.1432-1033.1980.tb06059.x] [PMID: 6249596]
[49]
Rylatt DB, Aitken A, Bilham T, Condon GD, Embi N, Cohen P. Glycogen synthase from rabbit skeletal muscle. Amino acid sequence at the sites phosphorylated by glycogen synthase kinase-3, and extension of the N-terminal sequence containing the site phosphorylated by phosphorylase kinase. Eur J Biochem 1980; 107(2): 529-37.
[http://dx.doi.org/10.1111/j.1432-1033.1980.tb06060.x] [PMID: 6772446]
[50]
Patel P, Woodgett JR. Glycogen Synthase Kinase 3: A kinase for all pathways? Curr Top Dev Biol 2017; 123: 277-302.
[http://dx.doi.org/10.1016/bs.ctdb.2016.11.011] [PMID: 28236969]
[51]
Amar S, Belmaker RH, Agam G. The possible involvement of glycogen synthase kinase-3 (GSK-3) in diabetes, cancer and central nervous system diseases. Curr Pharm Des 2011; 17(22): 2264-77.
[http://dx.doi.org/10.2174/138161211797052484] [PMID: 21736545]
[52]
Beurel E, Grieco SF, Jope RS. Glycogen synthase kinase-3 (GSK3): Regulation, actions, and diseases. Pharmacol Ther 2015; 148: 114-31.
[http://dx.doi.org/10.1016/j.pharmthera.2014.11.016] [PMID: 25435019]
[53]
Parker PJ, Caudwell FB, Cohen P. Glycogen synthase from rabbit skeletal muscle; Effect of insulin on the state of phosphorylation of the seven phosphoserine residues in vivo. Eur J Biochem 1983; 130(1): 227-34.
[http://dx.doi.org/10.1111/j.1432-1033.1983.tb07140.x] [PMID: 6402364]
[54]
Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 1995; 378(6559): 785-9.
[http://dx.doi.org/10.1038/378785a0] [PMID: 8524413]
[55]
Shaw PC, Davies AF, Lau KF, et al. Isolation and chromosomal mapping of human glycogen synthase kinase-3 alpha and -3 beta encoding genes. Genome 1998; 41(5): 720-7.
[PMID: 9809441]
[56]
Schaffer B, Wiedau-Pazos M, Geschwind DH. Gene structure and alternative splicing of glycogen synthase kinase 3 beta (GSK-3beta) in neural and non-neural tissues. Gene 2003; 302(1-2): 73-81.
[http://dx.doi.org/10.1016/S0378-1119(02)01092-2] [PMID: 12527198]
[57]
Sutherland C, Leighton IA, Cohen P. Inactivation of glycogen synthase kinase-3 beta by phosphorylation: New kinase connections in insulin and growth-factor signalling. Biochem J 1993; 296(Pt 1): 15-9.
[http://dx.doi.org/10.1042/bj2960015] [PMID: 8250835]
[58]
Sutherland C, Cohen P. The alpha-isoform of glycogen synthase kinase-3 from rabbit skeletal muscle is inactivated by p70 S6 kinase or MAP kinase-activated protein kinase-1 in vitro. FEBS Lett 1994; 338(1): 37-42.
[http://dx.doi.org/10.1016/0014-5793(94)80112-6] [PMID: 8307153]
[59]
Stambolic V, Woodgett JR. Mitogen inactivation of glycogen synthase kinase-3 beta in intact cells via serine 9 phosphorylation. Biochem J 1994; 303(Pt 3): 701-4.
[http://dx.doi.org/10.1042/bj3030701] [PMID: 7980435]
[60]
Meijer L, Flajolet M, Greengard P. Pharmacological inhibitors of glycogen synthase kinase 3. Trends Pharmacol Sci 2004; 25(9): 471-80.
[http://dx.doi.org/10.1016/j.tips.2004.07.006] [PMID: 15559249]
[61]
Leroy K, Brion JP. Developmental expression and localization of glycogen synthase kinase-3beta in rat brain. J Chem Neuroanat 1999; 16(4): 279-93.
[http://dx.doi.org/10.1016/S0891-0618(99)00012-5] [PMID: 10450875]
[62]
Morales-García JA, Susín C, Alonso-Gil S, et al. Glycogen synthase kinase-3 inhibitors as potent therapeutic agents for the treatment of Parkinson disease. ACS Chem Neurosci 2013; 4(2): 350-60.
[http://dx.doi.org/10.1021/cn300182g] [PMID: 23421686]
[63]
Kozikowski AP, Gaisina IN, Petukhov PA, et al. Highly potent and specific GSK-3beta inhibitors that block tau phosphorylation and decrease alpha-synuclein protein expression in a cellular model of Parkinson’s disease. ChemMedChem 2006; 1(2): 256-66.
[http://dx.doi.org/10.1002/cmdc.200500039] [PMID: 16892358]
[64]
Willi R, Harmeier A, Giovanoli S, Meyer U. Altered GSK3β signaling in an infection-based mouse model of developmental neuropsychiatric disease. Neuropharmacology 2013; 73: 56-65.
[http://dx.doi.org/10.1016/j.neuropharm.2013.05.012] [PMID: 23707483]
[65]
Klein PS, Melton DA. A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci USA 1996; 93(16): 8455-9.
[http://dx.doi.org/10.1073/pnas.93.16.8455] [PMID: 8710892]
[66]
Freland L, Beaulieu JM. Inhibition of GSK3 by lithium, from single molecules to signaling networks. Front Mol Neurosci 2012; 5: 14.
[http://dx.doi.org/10.3389/fnmol.2012.00014] [PMID: 22363263]
[67]
Ryves WJ, Dajani R, Pearl L, Harwood AJ. Glycogen synthase kinase-3 inhibition by lithium and beryllium suggests the presence of two magnesium binding sites. Biochem Biophys Res Commun 2002; 290(3): 967-72.
[http://dx.doi.org/10.1006/bbrc.2001.6305] [PMID: 11798168]
[68]
Ryves WJ, Harwood AJ. Lithium inhibits glycogen synthase kinase-3 by competition for magnesium. Biochem Biophys Res Commun 2001; 280(3): 720-5.
[http://dx.doi.org/10.1006/bbrc.2000.4169] [PMID: 11162580]
[69]
Beaulieu JM, Sotnikova TD, Yao WD, et al. Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. Proc Natl Acad Sci USA 2004; 101(14): 5099-104.
[http://dx.doi.org/10.1073/pnas.0307921101] [PMID: 15044694]
[70]
Beaulieu JM, Gainetdinov RR, Caron MG. The Akt-GSK-3 signaling cascade in the actions of dopamine. Trends Pharmacol Sci 2007; 28(4): 166-72.
[http://dx.doi.org/10.1016/j.tips.2007.02.006] [PMID: 17349698]
[71]
Jope RS, Yuskaitis CJ, Beurel E. Glycogen synthase kinase-3 (GSK3): Inflammation, diseases, and therapeutics. Neurochem Res 2007; 32(4-5): 577-95.
[http://dx.doi.org/10.1007/s11064-006-9128-5] [PMID: 16944320]
[72]
Chalecka-Franaszek E, Chuang DM. Lithium activates the serine/threonine kinase Akt-1 and suppresses glutamate-induced inhibition of Akt-1 activity in neurons. Proc Natl Acad Sci USA 1999; 96(15): 8745-50.
[http://dx.doi.org/10.1073/pnas.96.15.8745] [PMID: 10411946]
[73]
Kaladchibachi SA, Doble B, Anthopoulos N, Woodgett JR, Manoukian AS. Glycogen synthase kinase 3, circadian rhythms, and bipolar disorder: A molecular link in the therapeutic action of lithium. J Circadian Rhythms 2007; 5: 3.
[http://dx.doi.org/10.1186/1740-3391-5-3] [PMID: 17295926]
[74]
Muneer A. Wnt and GSK3 signaling pathways in bipolar disorder: Clinical and therapeutic implications. Clin Psychopharmacol Neurosci 2017; 15(2): 100-14.
[http://dx.doi.org/10.9758/cpn.2017.15.2.100] [PMID: 28449557]
[75]
Markou A, Kosten TR, Koob GF. Neurobiological similarities in depression and drug dependence: A self-medication hypothesis. Neuropsychopharmacology 1998; 18(3): 135-74.
[http://dx.doi.org/10.1016/S0893-133X(97)00113-9] [PMID: 9471114]
[76]
Hall FS, Der-Avakian A, Gould TJ, et al. Negative affective states and cognitive impairments in nicotine dependence. Neurosci Biobehav Rev 2015; 58: 168-85.
[http://dx.doi.org/10.1016/j.neubiorev.2015.06.004] [PMID: 26054790]
[77]
Furukawa T, Ushizima I, Ono N. Modifications by lithium of behavioral responses to methamphetamine and tetrabenazine. Psychopharmacology (Berl) 1975; 42(3): 243-8.
[http://dx.doi.org/10.1007/BF00421263] [PMID: 1161982]
[78]
Cassens GP, Mills AW. Lithium and amphetamine: Opposite effects on threshold of intracranial reinforcement. Psychopharmacology (Berl) 1973; 30(3): 283-90.
[http://dx.doi.org/10.1007/BF00422875] [PMID: 4716618]
[79]
Flemenbaum A. Antagonism of behavioral effects of cocaine by lithium. Pharmacol Biochem Behav 1977; 7(1): 83-5.
[http://dx.doi.org/10.1016/0091-3057(77)90015-6] [PMID: 561966]
[80]
Cronson AJ, Flemenbaum A. Antagonism of cocaine highs by lithium. Am J Psychiatry 1978; 135(7): 856-7.
[http://dx.doi.org/10.1176/ajp.135.7.856] [PMID: 757970]
[81]
Kitanaka N, Kitanaka J, Takemura M. Repeated clorgyline treatment inhibits methamphetamine-induced behavioral sensitization in mice. Neurochem Res 2005; 30(4): 445-51.
[http://dx.doi.org/10.1007/s11064-005-2679-z] [PMID: 16076014]
[82]
Nishikawa T, Mataga N, Takashima M, Toru M. Behavioral sensitization and relative hyperresponsiveness of striatal and limbic dopaminergic neurons after repeated methamphetamine treatment. Eur J Pharmacol 1983; 88(2-3): 195-203.
[http://dx.doi.org/10.1016/0014-2999(83)90006-7] [PMID: 6133769]
[83]
Robinson TE, Becker JB. Enduring changes in brain and behavior produced by chronic amphetamine administration: A review and evaluation of animal models of amphetamine psychosis. Brain Res 1986; 396(2): 157-98.
[http://dx.doi.org/10.1016/0165-0173(86)90002-0] [PMID: 3527341]
[84]
Pierce RC, Kalivas PW. A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Res Brain Res Rev 1997; 25(2): 192-216.
[http://dx.doi.org/10.1016/S0165-0173(97)00021-0] [PMID: 9403138]
[85]
Robinson TE, Berridge KC. The neural basis of drug craving: An incentive-sensitization theory of addiction. Brain Res Brain Res Rev 1993; 18(3): 247-91.
[http://dx.doi.org/10.1016/0165-0173(93)90013-P] [PMID: 8401595]
[86]
Brebner K, Wong TP, Liu L, et al. Nucleus accumbens long-term depression and the expression of behavioral sensitization. Science 2005; 310(5752): 1340-3.
[http://dx.doi.org/10.1126/science.1116894] [PMID: 16311338]
[87]
Thomas MJ, Kalivas PW, Shaham Y. Neuroplasticity in the mesolimbic dopamine system and cocaine addiction. Br J Pharmacol 2008; 154(2): 327-42.
[http://dx.doi.org/10.1038/bjp.2008.77] [PMID: 18345022]
[88]
Kalant H. What neurobiology cannot tell us about addiction? Addiction 2010; 105(5): 780-9.
[http://dx.doi.org/10.1111/j.1360-0443.2009.02739.x] [PMID: 19919596]
[89]
Hughes K, Nikolakaki E, Plyte SE, Totty NF, Woodgett JR. Modulation of the glycogen synthase kinase-3 family by tyrosine phosphorylation. EMBO J 1993; 12(2): 803-8.
[http://dx.doi.org/10.1002/j.1460-2075.1993.tb05715.x] [PMID: 8382613]
[90]
Wang QM, Fiol CJ, DePaoli-Roach AA, Roach PJ. Glycogen synthase kinase-3 beta is a dual specificity kinase differentially regulated by tyrosine and serine/threonine phosphorylation. J Biol Chem 1994; 269(20): 14566-74.
[PMID: 7514173]
[91]
Zhao R, Chen J, Ren Z, Shen H, Zhen X. GSK-3β inhibitors reverse cocaine-induced synaptic transmission dysfunction in the nucleus accumbens. Synapse 2016; 70(11): 461-70.
[http://dx.doi.org/10.1002/syn.21922] [PMID: 27377051]
[92]
Yan P, Xu D, Ji Y, et al. Licl pretreatment ameliorates adolescent methamphetamine exposure-induced long-term alterations in behavior and hippocampal ultrastructure in adulthood in mice. Int J Neuropsychopharmacol 2019; 22(4): 303-16.
[http://dx.doi.org/10.1093/ijnp/pyz001] [PMID: 30649326]
[93]
Gray EG. Axo-somatic and axo-dendritic synapses of the cerebral cortex: An electron microscope study. J Anat 1959; 93: 420-33.
[PMID: 13829103]
[94]
Kitanaka J, Kitanaka N, Takemura M. Neurochemical consequences of dysphoric state during amphetamine withdrawal in animal models: A review. Neurochem Res 2008; 33(1): 204-19.
[http://dx.doi.org/10.1007/s11064-007-9409-7] [PMID: 17605106]
[95]
Cuesta S, Batuecas J, Severin MJ, Funes A, Rosso SB, Pacchioni AM. Role of Wnt/β-catenin pathway in the nucleus accumbens in long-term cocaine-induced neuroplasticity: A possible novel target for addiction treatment. J Neurochem 2017; 140(1): 114-25.
[http://dx.doi.org/10.1111/jnc.13863] [PMID: 27718509]
[96]
Hong SI, Kim MJ, You IJ, et al. Phentermine induces conditioned rewarding effects via activation of the PI3K/Akt signaling pathway in the nucleus accumbens. Psychopharmacology (Berl) 2016; 233(8): 1405-13.
[http://dx.doi.org/10.1007/s00213-016-4231-z] [PMID: 26887589]
[97]
Beaulieu JM, Gainetdinov RR, Caron MG. Akt/GSK3 signaling in the action of psychotropic drugs. Annu Rev Pharmacol Toxicol 2009; 49: 327-47.
[http://dx.doi.org/10.1146/annurev.pharmtox.011008.145634] [PMID: 18928402]
[98]
Mendes CT, Mury FB, de Sá Moreira E, et al. Lithium reduces Gsk3b mrna levels: Implications for Alzheimer Disease. Eur Arch Psychiatry Clin Neurosci 2009; 259(1): 16-22.
[http://dx.doi.org/10.1007/s00406-008-0828-5] [PMID: 18932008]
[99]
Bhat RV, Budd Haeberlein SL, Avila J. Glycogen synthase kinase 3: A drug target for CNS therapies. J Neurochem 2004; 89(6): 1313-7.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02422.x] [PMID: 15189333]


open access plus

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 11
ISSUE: 2
Year: 2019
Published on: 10 December, 2019
Page: [85 - 91]
Pages: 7
DOI: 10.2174/2589977511666190620141824

Article Metrics

PDF: 30
HTML: 9