Recent Advances in Plant Nanobionics and Nanobiosensors for Toxicology Applications

Author(s): Mohammad Hasan Dad Ansari, Santosh Lavhale, Raviraj M. Kalunke, Prabhakar L. Srivastava, Vaibhav Pandit, Subodh Gade, Sanjay Yadav, Peter Laux, Andreas Luch, Donato Gemmati, Paolo Zamboni, Ajay Vikram Singh*.

Journal Name: Current Nanoscience

Volume 16 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Emerging applications in the field of nanotechnology are able to solve a gamut of problems surrounding the applications of agroecosystems and food technology. Nano Engineered Material (NEM) based nanosensors are important tools for monitoring plant signaling pathways and metabolism that are nondestructive, minimally invasive, and can provide real-time analysis of biotic and abiotic threats for better plant health. These sensors can measure chemical flux even at the singlemolecule level. Therefore, plant health could be monitored through nutrient management, disease assessment, plant hormones level, environmental pollution, etc. This review provides a comprehensive account of the current trends and practices for the proposed NEM related research and its (i) structural aspect, (ii) experimental design and performance as well as (iii) mechanisms of field application in agriculture and food system. This review also discusses the possibility of integration of data from NEM based nanosensors in current and emerging trends of precision agriculture, urban farming, and plant nanobionics to adopt a sustainable approach in agriculture.

Keywords: Nanotechnology, agro-ecosystems, nanobionics, engineered nanomaterials, nanosensors, nanotoxicology.

[1]
Meyerowitz, E.M. Plants compared to animals: The broadest comparative study of development. Science, 2002, 295, 1482-1485.
[2]
Ruelland, E.; Zachowski, A. How plants sense temperature. Environ. Exp. Bot., 2010, 69(3), 225-232.
[3]
Beck, E.H.; Fettig, S.; Knake, C.; Hartig, K.; Bhattarai, T. Specific and unspecific responses of plants to cold and drought stress. J. Biosci., 2007, 32(3), 501-510.
[4]
Xu, J.; Pickrell, G.; Wang, X.; Peng, W.; Cooper, K.; Wang, A. A novel temperature-insensitive optical fiber pressure sensor for harsh environments. IEEE Photon Technol. Lett., 2005, 17(4), 870-872.
[5]
Singh, A.V.; Rahman, A.; Sudhir Kumar, N.V.G.; Aditi, A.S.; Galluzzi, M.; Bovio, S.; Barozzi, S.; Montani, E.; Parazzoli, D. Bio-inspired approaches to design smart fabrics. Mater. Des. (1980-2015), 2012, 36, 829-839.
[6]
Bar-Cohen, Y. Biomimetics: Biologically Inspired Technologies; CRC Press: Boca Raton, 2005, p. 552.
[7]
Lv, R.; Chen, G.; Li, Q.; McCreary, A.; Botello-Méndez, A.; Morozov, S.V.; Liang, L.; Declerck, X.; Perea-López, N.; Cullen, D.A.; Feng, S.; Elías, A.L.; Cruz-Silva, R.; Fujisawa, K.; Endo, M.; Kang, F.; Charlier, J-C.; Meunier, V.; Pan, M.; Harutyunyan, A.R.; Novoselov, K.S.; Terrones, M. Ultrasensitive gas detection of large-area boron-doped graphene. Proc. Nat. Acad. Sci. , 2015, 112(47), 14527-14532.
[8]
Bérut, A.; Chauvet, H.; Legué, V.; Moulia, B.; Pouliquen, O.; Forterre, Y. Gravisensors in plant cells behave like an active granular liquid. Proc. Nat. Acad. Sci., 2018, 115(20), 5123-5128.
[9]
Raman, S.; Rogers, J.K.; Taylor, N.D.; Church, G.M. Evolution-guided optimization of biosynthetic pathways. Proc. Nat. Acad. Sci., 2014, 111(50), 17803-17808.
[10]
Di Giacomo, R.; Daraio, C.; Maresca, B. Plant nanobionic materials with a giant temperature response mediated by pectin-Ca2+. Proc. Nat. Acad. Sci., 2015, 112(15), 4541-4545.
[11]
Sadeghi, A.; Mondini, A.; Del Dottore, E.; Mattoli, V.; Beccai, L.; Taccola, S.; Lucarotti, C.; Totaro, M.; Mazzolai, B. A plant-inspired robot with soft differential bending capabilities. Bioinspir. Biomim., 2016, 12(1)015001
[12]
Kim, J.H.; Hwang, J-Y.; Hwang, H.R.; Kim, H.S.; Lee, J.H.; Seo, J-W.; Shin, U.S.; Lee, S-H. Simple and cost-effective method of highly conductive and elastic carbon nanotube/polydimethylsilo-xane composite for wearable electronics. Sci. Rep., 2018, 8(1), 1375.
[13]
Agarwal, M.; Lvov, Y.; Varahramyan, K. Conductive wood microfibres for smart paper through layer-by-layer nanocoating. Nanotechnology, 2006, 17(21), 5319.
[14]
Singh, A.V.; Mehta, K.K.; Worley, K.; Dordick, J.S.; Kane, R.S.; Wan, L.Q. Carbon nanotube-induced loss of multicellular chirality on micropatterned substrate is mediated by oxidative stress. ACS Nano, 2014, 8(3), 2196-2205.
[15]
Su, B.; Gong, S.; Ma, Z.; Yap, L.W.; Cheng, W. Mimosa-inspired design of a flexible pressure sensor with touch sensitivity. Small, 2015, 11(16), 1886-1891.
[16]
Singh, S.P.; Rathee, N.; Gupta, H.; Zamboni, P.; Singh, A.V. Contactless and hassle free real time heart rate measurement with facial video. J. Card. Crit. Care, 2017, 1, 24-29.
[17]
Khare, M.; Singh, A.; Zamboni, P. Prospect of brain machine interface in motor disabilities: the future support for multiple sclerosis patient to improve quality of life. Annu. Med. Heal Sci. Res., 2014, 4(3), 305-312.
[18]
Wan, Y.; Qiu, Z.; Huang, J.; Yang, J.; Wang, Q.; Lu, P.; Yang, J.; Zhang, J.; Huang, S.; Wu, Z.; Guo, C.F. Natural plant materials as dielectric layer for highly sensitive flexible electronic skin. Small, 2018, 14(35)e1801657
[19]
Singh, A.; Patil, R.; Lenardi, C.; Milani, P.; Gade, W. Nanobiomaterial applications in tissue repair and ulcer management: A new role for nanomedicine. Curr. Nanosci., 2010, 6(6), 577-586.
[20]
Kim, S.Y.; Sivaguru, M.; Stacey, G. Extracellular ATP in plants. Visualization, localization, and analysis of physiological significance in growth and signaling. Plant Physiol., 2006, 142(3), 984-992.
[21]
Nakatsu, T.; Ichiyama, S.; Hiratake, J.; Saldanha, A.; Kobashi, N.; Sakata, K.; Kato, H. Structural basis for the spectral difference in luciferase bioluminescence. Nature, 2006, 440, 372-376.
[22]
Kwak, S-Y.; Giraldo, J.P.; Wong, M.H.; Koman, V.B.; Lew, T.T.S.; Ell, J.; Weidman, M.C.; Sinclair, R.M.; Landry, M.P.; Tisdale, W.A.; Strano, M.S. A nanobionic light-emitting plant. Nano Lett., 2017, 17(12), 7951-7961.
[23]
Seliger, H.H.; Mc, E.W. Spectral emission and quantum yield of firefly bioluminescence. Arch. Biochem. Biophys., 1960, 88(1), 136-141.
[24]
Boghossian, A.A.; Sen, F.; Gibbons, B.M.; Sen, S.; Faltermeier, S.M.; Giraldo, J.P.; Zhang, C.T.; Zhang, J.; Heller, D.A.; Strano, M.S. Application of nanoparticle antioxidants to enable hyperstable chloroplasts for solar energy harvesting. Adv. Energy Mater., 2013, 3(7), 881-893.
[25]
Ma, X.; Yan, J. Plant Uptake and Accumulation of Engineered Metallic Nanoparticles from Lab to Field Conditions. Curr. Opin. Environ. Sci. Heal., 2018, 6, 16-20.
[26]
Gray, C.H. Postmodern War: the New Politics of Conflict; Routledge, 2013.
[27]
Bourgois, P. The power of violence in war and peace: Post-cold war lessons from El Salvador. Ethnography, 2001, 2(1), 5-34.
[28]
Wong, M.H.; Giraldo, J.P.; Kwak, S-Y.; Koman, V.B.; Sinclair, R.; Lew, T.T.S.; Bisker, G.; Liu, P.; Strano, M.S. Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics. Nat. Mater., 2017, 16(2), 264-272.
[29]
Harvey, J.D.; Zerze, G.l.H.; Tully, K.M.; Mittal, J.; Heller, D.A. Electrostatic screening modulates analyte binding and emission of carbon nanotubes. J. Phys. Chem. C, 2018, 122(19), 10592-10599.
[30]
Chandrasekhar, P. CNT Applications in Sensors and Actuators. In: Conducting Polymers, Fundamentals and Applications; Springer: Switzerland, 2018; pp. 53-60.
[31]
Wang, J. Near infrared optical biosensor based on peptide functionalized single-walled carbon nanotubes hybrids for 2, 4, 6-trinitrotoluene (TNT) explosive detection. AnBio, 2018, 550, 49-53.
[32]
Li, B.; Zhang, Z.; Jin, Y. Plant tissue-based chemiluminescence flow biosensor for determination of unbound dopamine in rabbit blood with on-line microdialysis sampling. Biosens. Bioelectron., 2002, 17(6-7), 585-589.
[33]
Pekrul, P.J.; Thiele, A.W. Method and apparatus for automatic abnormal events monitor in operating plants. US4060716A, November 29, 1977.
[34]
Grierson, C.; Barnes, S.; Chase, M.; Clarke, M.; Grierson, D.; Edwards, K.; Jellis, G.; Jones, J.; Knapp, S.; Oldroyd, G. One hundred important questions facing plant science research. New Phytol., 2011, 192(1), 6-12.
[35]
Walter, A.; Liebisch, F.; Hund, A. Plant phenotyping: From bean weighing to image analysis. Plant Methods, 2015, 11(1), 14.
[36]
Fiorani, F.; Schurr, U. Future scenarios for plant phenotyping. Annu. Rev. Plant Biol., 2013, 64, 267-291.
[37]
Chen, L-Q.; Hou, B-H.; Lalonde, S.; Takanaga, H.; Hartung, M.L.; Qu, X-Q.; Guo, W-J.; Kim, J-G.; Underwood, W.; Chaudhuri, B. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature, 2010, 468(7323), 527-532.
[38]
Chaudhuri, B.; Hörmann, F.; Frommer, W.B. Dynamic imaging of glucose flux impedance using FRET sensors in wild-type Arabidopsis plants. J. Exp. Bot., 2011, 62(7), 2411-2417.
[39]
Chaerle, L.; Van Der Straeten, D. Seeing is believing: imaging techniques to monitor plant health. Biochim. Biophys. Acta, 2001, 1519(3), 153-166.
[40]
Chaerle, L.; Hagenbeek, D.; De Bruyne, E.; Valcke, R.; Van Der Straeten, D. Thermal and chlorophyll-fluorescence imaging distinguish plant-pathogen interactions at an early stage. Plant Cell Physiol., 2004, 45(7), 887-896.
[41]
Anker, J.N.; Hall, W.P.; Lyandres, O.; Shah, N.C.; Zhao, J.; Van Duyne, R.P. Biosensing with plasmonic nanosensors. Nat. Mater., 2008, 7, 442-453.
[42]
White, J.C.; Gardea-Torresdey, J. Achieving food security through the very small. Nat. Nanotechnol., 2018, 13(8), 627-629.
[43]
Kwak, S-Y.; Wong, M.H.; Lew, T.T.S.; Bisker, G.; Lee, M.A.; Kaplan, A.; Dong, J.; Liu, A.T.; Koman, V.B.; Sinclair, R. Nanosensor technology applied to living plant systems. Annu. Rev. Anal. Chem., 2017, 10, 113-140.
[44]
Schmidt, R.R.; Weits, D.A.; Feulner, C.F.J.; van Dongen, J.T. Oxygen sensing and integrative stress signaling in plants. Plant Physiol., 2018, 176(2), 1131.
[45]
Baena-González, E.; Rolland, F.; Thevelein, J.M.; Sheen, J. A central integrator of transcription networks in plant stress and energy signalling. Nature, 2007, 448(7156), 938-942.
[46]
Zadran, S.; Standley, S.; Wong, K.; Otiniano, E.; Amighi, A.; Baudry, M. Fluorescence resonance energy transfer (FRET)-based biosensors: Visualizing cellular dynamics and bioenergetics. Appl. Microbiol. Biotechnol., 2012, 96(4), 895-902.
[47]
Okumoto, S.; Jones, A.; Frommer, W.B. Quantitative imaging with fluorescent biosensors. Annu. Rev. Plant Biol., 2012, 63, 663-706.
[48]
Maxwell, D.J.; Taylor, J.R.; Nie, S. Self-assembled nanoparticle probes for recognition and detection of biomolecules. J. Am. Chem. Soc., 2002, 124(32), 9606-9612.
[49]
Singh, A.V.; Jahnke, T.; Kishore, V.; Park, B-W.; Batuwangala, M.; Bill, J.; Sitti, M. Cancer cells biomineralize ionic gold into nanoparticles-microplates via secreting defense proteins with specific gold-binding peptides. Acta Biomater., 2018, 71, 61-71.
[50]
Sheykhansari, S.; Kozielski, K.; Bill, J.; Sitti, M.; Gemmati, D.; Zamboni, P.; Singh, A.V. Redox metals homeostasis in multiple sclerosis and amyotrophic lateral sclerosis: A review. Cell Death Dis., 2018, 9(3), 348.
[51]
Singh, A.V.; Vyas, V.; Montani, E.; Cartelli, D.; Parazzoli, D.; Oldani, A.; Zeri, G.; Orioli, E.; Gemmati, D.; Zamboni, P. Investigation of in vitro cytotoxicity of the redox state of ionic iron in neuroblastoma cells. J. Neurosci. Rural Pract., 2012, 3(3), 301-310.
[52]
Xia, Y.; Song, L.; Zhu, C. Turn-on and near-infrared fluorescent sensing for 2, 4, 6-trinitrotoluene based on hybrid (gold nanorod)-(quantum dots) assembly. Anal. Chem., 2011, 83(4), 1401-1407.
[53]
Chen, N-T.; Cheng, S-H.; Liu, C-P.; Souris, J.S.; Chen, C-T.; Mou, C-Y.; Lo, L-W. Recent advances in nanoparticle-based Förster resonance energy transfer for biosensing, molecular imaging and drug release profiling. Int. J. Mol. Sci., 2012, 13(12), 16598-16623.
[54]
Sun, L.; Song, Y.; Wang, L.; Guo, C.; Sun, Y.; Liu, Z.; Li, Z. Ethanol-induced formation of silver nanoparticle aggregates for highly active SERS substrates and application in DNA detection. J. Phys. Chem. C, 2008, 112(5), 1415-1422.
[55]
Singh, A.V.; Subhashree, L.; Milani, P.; Gemmati, D.; Zamboni, P. Review: Interplay of iron metallobiology, metalloproteinases, and FXIII, and role of their gene variants in venous leg ulcer. Int. J. Low. Extrem. Wounds, 2010, 9(4), 166-179.
[56]
Wang, L.; Han, D.; Ni, S.; Ma, W.; Wang, W.; Niu, L. Photoelectrochemical device based on Mo-doped BiVO4 enables smart analysis of the global antioxidant capacity in food. Chem. Sci., 2015, 6(11), 6632-6638.
[57]
Zhang, J.; Landry, M.P.; Barone, P.W.; Kim, J-H.; Lin, S.; Ulissi, Z.W.; Lin, D.; Mu, B.; Boghossian, A.A.; Hilmer, A.J. Molecular recognition using corona phase complexes made of synthetic polymers adsorbed on carbon nanotubes. Nat. Nanotechnol., 2013, 8(12), 959-968.
[58]
Zhang, J.; Boghossian, A.A.; Barone, P.W.; Rwei, A.; Kim, J-H.; Lin, D.; Heller, D.A.; Hilmer, A.J.; Nair, N.; Reuel, N.F. Single molecule detection of nitric oxide enabled by d(AT)15 DNA adsorbed to near infrared fluorescent single-walled carbon nanotubes. J. Am. Chem. Soc., 2010, 133(3), 567-581.
[59]
Kruss, S.; Hilmer, A.J.; Zhang, J.; Reuel, N.F.; Mu, B.; Strano, M.S. Carbon nanotubes as optical biomedical sensors. Adv. Drug Deliv. Rev., 2013, 65(15), 1933-1950.
[60]
Degenhardt, D.C.; Greene, J.K.; Khalilian, A. Temporal dynamics and electronic nose detection of stink bug-induced volatile emissions from cotton bolls. Psyche, 2012, 2012 Article ID 236762
[61]
Choi, J.H.; Strano, M.S. Solvatochromism in single-walled carbon nanotubes. Appl. Phys. Lett., 2007, 90(22) 223114
[62]
Mu, B.; Ahn, J.; McNicholas, T.P.; Strano, M.S. Generating selective saccharide binding affinity of phenyl boronic acids by using single‐walled carbon nanotube corona phases. Chem. Eur. J., 2015, 21(12), 4523-4528.
[63]
Menéndez, J.A.; Arenillas, A.; Fidalgo, B.; Fernández, Y.; Zubizarreta, L.; Calvo, E.G.; Bermúdez, J.M. Microwave heating processes involving carbon materials. Fuel Process. Technol., 2010, 91(1), 1-8.
[64]
Dwivedi, C.; Pandey, I.; Misra, V.; Giulbudagian, M.; Jungnickel, H.; Laux, P.; Luch, A.; Ramteke, P.W.; Singh, A.V. The prospective role of nanobiotechnology in food and food packaging products. Integr. Food Nutr. Metab., 2018, 5(6), 1-5.
[65]
Wu, H.; Qu, S.; Lin, K.; Qing, Y.; Wang, L.; Fan, Y.; Fu, Q.; Zhang, F. Enhanced low-frequency microwave absorbing property of SCFs@TiO2 composite. Powder Technol., 2018, 333, 153-159.
[66]
Wu, G.; Cheng, Y.; Ren, Y.; Wang, Y.; Wang, Z.; Wu, H. Synthesis and characterization of γ-Fe2O3@C nanorod-carbon sphere composite and its application as microwave absorbing material. J. Alloys Compd., 2015, 652, 346-350.
[67]
Wu, H.; Wu, G.; Ren, Y.; Yang, L.; Wang, L.; Li, X. Co2+/Co3+ ratio dependence of electromagnetic wave absorption in hierarchical NiCo2O4–CoNiO2 hybrids. J. Mater. Chem., 2015, 3(29), 7677-7690.
[68]
Lan, D.; Qin, M.; Yang, R.; Chen, S.; Wu, H.; Fan, Y.; Fu, Q.; Zhang, F. Facile synthesis of hierarchical chrysanthemum-like copper cobaltate-copper oxide composites for enhanced microwave absorption performance. J. Colloid Interface Sci., 2019, 533, 481-491.
[69]
Laux, P.; Riebeling, C.; Booth, A.M.; Brain, J.D.; Brunner, J.; Cerrillo, C.; Creutzenberg, O.; Estrela-Lopis, I.; Gebel, T.; Johanson, G. Biokinetics of nanomaterials: The role of biopersistence. NanoImpact, 2017, 6, 69-80.
[70]
Hassan, S.; Singh, A.V. Biophysicochemical perspective of nanoparticle compatibility: A critically ignored parameter in nanomedicine. J. Nanosci. Nanotechnol., 2014, 14(1), 402-414.
[71]
Wang, Z.L. The new field of nanopiezotronics. Mater. Today, 2007, 10(5), 20-28.
[72]
Motamed, C.; Kirov, K.; Combes, X.; Duvaldestin, P. Comparison between the Datex-Ohmeda M-NMT® module and a force-displacement transducer for monitoring neuromuscular blockade. Eur. J. Anaesthesiol., 2003, 20(6), 467-469.
[73]
Nguyen, T.D.; Deshmukh, N.; Nagarah, J.M.; Kramer, T.; Purohit, P.K.; Berry, M.J.; McAlpine, M.C. Piezoelectric nanoribbons for monitoring cellular deformations. Nat. Nanotechnol., 2012, 7(9), 587-593.
[74]
Wang, X.; Zhou, J.; Song, J.; Liu, J.; Xu, N.; Wang, Z.L. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett., 2006, 6(12), 2768-2772.
[75]
Krouk, G.; Lacombe, B.; Bielach, A.; Perrine-Walker, F.; Malinska, K.; Mounier, E.; Hoyerova, K.; Tillard, P.; Leon, S.; Ljung, K.; Zazimalova, E.; Benkova, E.; Nacry, P.; Gojon, A. Nitrate-regulated auxin transport by NRT1. 1 defines a mechanism for nutrient sensing in plants. Dev. Cell, 2010, 18(6), 927-937.
[76]
Bird, A.J. Metallosensors, the ups and downs of gene regulation. Adv. Microb. Physiol., 2007, 53, 231-267.
[77]
Kumar, P.; Lucini, L.; Rouphael, Y.; Cardarelli, M.; Kalunke, R.M.; Colla, G. Insight into the role of grafting and arbuscular mycorrhiza on cadmium stress tolerance in tomato. Front. Plant Sci., 2015, 6, 477.
[78]
Velásquez, A.C.; Castroverde, C.D.M.; He, S.Y. Plant-pathogen warfare under changing climate conditions. Curr. Biol., 2018, 28(10), R619-R634.
[79]
Singh, A.V.; Patil, R.; Kasture, M.B.; Gade, W.N.; Prasad, B.L.V. Synthesis of Ag–Pt alloy nanoparticles in aqueous bovine serum albumin foam and their cytocompatibility against human gingival fibroblasts. Colloids Surf. B Biointerfaces, 2009, 69(2), 239-245.
[80]
Singh, A.V.; Sitti, M. Targeted drug delivery and imaging using mobile milli/microrobots: A promising future towards theranostic pharmaceutical design. Curr. Pharm. Des., 2016, 22(11), 1418-1428.
[81]
Singh, A.V.; Aditi, A.S.; Gade, N.W.; Vats, T.; Lenardi, C.; Milani, P. Nanomaterials: New generation therapeutics in wound healing and tissue repair. Curr. Nanosci., 2010, 6(6), 577-586.
[82]
Singh, A.V.; Raymond, M.; Pace, F.; Certo, A.; Zuidema, J.M.; McKay, C.A.; Gilbert, R.J.; Lu, X.L.; Wan, L.Q. Astrocytes increase ATP exocytosis mediated calcium signaling in response to microgroove structures. Sci. Rep., 2015, 5, 7847.
[83]
Singh, A.V.; Lenardi, C.; Gailite, L.; Gianfelice, A.; Milani, P. A simple lift-off-based patterning method for micro- and nanostructuring of functional substrates for cell culture. J. Micromech. Microeng., 2009, 19(11)115028
[84]
Yeturu, S.; Jentzsch, P.V.; Ciobotă, V.; Guerrero, R.; Garrido, P.; Ramos, L.A. Handheld Raman spectroscopy for the early detection of plant diseases: Abutilon mosaic virus infecting Abutilon sp. Anal. Methods, 2016, 8(17), 3450-3457.
[85]
Pérez, M.R.V.; Mendoza, M.G.G.; Elías, M.G.R.; González, F.J.; Contreras, H.R.N.; Servín, C.C. Raman spectroscopy an option for the early detection of citrus Huanglongbing. Appl. Spectrosc., 2016, 70(5), 829-839.
[86]
Oyelami, A.O.; Semple, K.T. Impact of carbon nanomaterials on microbial activity in soil. Soil Biol. Biochem., 2015, 86, 172-180.
[87]
Wang, X.; Zhou, Z.; Chen, F. Surface modification of carbon nanotubes with an enhanced antifungal activity for the control of plant fungal pathogen. Materials (Basel), 2017, 10(12) pii: E1375
[88]
Savary, S.; Ficke, A.; Aubertot, J-N.; Hollier, C. Crop losses due to diseases and their implications for global food production losses and food security. Food Sec., 2012, 4(4), 519-537.
[89]
Etheridge, D.M.; Steele, L.P.; Langenfelds, R.L.; Francey, R.J.; Barnola, J-M.; Morgan, V.I. Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. J. Geophys. Res. D, 1996, 101(D2), 4115-4128.
[90]
Bebber, D.P.; Ramotowski, M.A.; Gurr, S.J. Crop pests and pathogens move polewards in a warming world. Nat. Clim. Chang., 2013, 3(11), 985-988.
[91]
Ainsworth, E.A.; Long, S.P. What have we learned from 15 years of free‐air CO2 enrichment (FACE)? A meta‐analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol., 2005, 165(2), 351-371.
[92]
Long, S.P.; Ainsworth, E.A.; Leakey, A.D.; Nösberger, J.; Ort, D.R. Food for thought: Lower-than-expected crop yield stimulation with rising CO2 concentrations. Sci, 2006, 312(5782), 1918-1921.
[93]
Váry, Z.; Mullins, E.; McElwain, J.C.; Doohan, F.M. The severity of wheat diseases increases when plants and pathogens are acclimatized to elevated carbon dioxide. Global. Change Biol., 2015, 21(7), 2661-2669.
[94]
Eastburn, D.M.; Degennaro, M.M.; Delucia, E.H.; Dermody, O.; McElrone, A.J. Elevated atmospheric carbon dioxide and ozone alter soybean diseases at SoyFACE. Global. Change Biol., 2010, 16(1), 320-330.
[95]
Skelsey, P.; Cooke, D.E.; Lynott, J.S.; Lees, A.K. Crop connectivity under climate change: Future environmental and geographic risks of potato late blight in Scotland. Global. Change Biol., 2016, 22(11), 3724-3738.
[96]
Trębicki, P.; Vandegeer, R.K.; Bosque-Pérez, N.A.; Powell, K.S.; Dader, B.; Freeman, A.J.; Yen, A.L.; Fitzgerald, G.J.; Luck, J.E. Virus infection mediates the effects of elevated CO2 on plants and vectors. Sci. Rep., 2016, 6, 22785.
[97]
Jones, L.M.; Koehler, A.K.; Trnka, M.; Balek, J.; Challinor, A.J.; Atkinson, H.J.; Urwin, P.E. Climate change is predicted to alter the current pest status of Globodera pallida and G. rostochiensis in the United Kingdom. Glob. Change Biol., 2017, 23(11), 4497-4507.
[98]
Horino, O.; Mew, T.W.; Yamada, T. The effect of temperature on the development of bacterial leaf blight on rice. Jpn. J. Phytopathol., 1982, 48(1), 72-75.
[99]
Mangrauthia, S.K.; Shakya, V.P.S.; Jain, R.; Praveen, S. Ambient temperature perception in papaya for papaya ringspot virus interaction. Virus Genes, 2009, 38(3), 429-434.
[100]
Park, R. The role of temperature and rainfall in the epidemiology of Puccinia striiformis f. sp. tritici in the summer rainfall area of eastern Australia. Plant Pathol., 1990, 39(3), 416-423.
[101]
Shakya, S.; Goss, E.; Dufault, N.; van Bruggen, A. Potential effects of diurnal temperature oscillations on potato late blight with special reference to climate change. Phytopathology, 2015, 105(2), 230-238.
[102]
Robson, J.D.; Wright, M.G.; Almeida, R.P. Biology of Pentalonia nigronervosa (Hemiptera, Aphididae) on banana using different rearing methods. Environ. Entomol., 2014, 36(1), 46-52.
[103]
Anhalt, M.; Almeida, R. Effect of temperature, vector life stage, and plant access period on transmission of banana bunchy top virus to banana. Phytopathology, 2008, 98(6), 743-748.
[104]
Clarkson, J.P.; Fawcett, L.; Anthony, S.G.; Young, C. A model for Sclerotinia sclerotiorum infection and disease development in lettuce, based on the effects of temperature, relative humidity and ascospore density. PLoS One, 2014, 9(4) e94049
[105]
Granke, L.; Hausbeck, M. Effects of temperature, humidity, and wounding on development of Phytophthora rot of cucumber fruit. Plant Dis., 2010, 94(12), 1417-1424.
[106]
Magarey, R.; Sutton, T.; Thayer, C. A simple generic infection model for foliar fungal plant pathogens. Phytopathology, 2005, 95(1), 92-100.
[107]
Johansen, T.J.; Dees, M.W.; Hermansen, A. High soil moisture reduces common scab caused by Streptomyces turgidiscabies and Streptomyces europaeiscabiei in potato. Acta Agric. Scand. B Soil Plant Sci., 2015, 65(3), 193-198.
[108]
Juroszek, P.; Von Tiedemann, A. Potential strategies and future requirements for plant disease management under a changing climate. Plant Pathol., 2011, 60(1), 100-112.
[109]
Prasch, C.M.; Sonnewald, U. Simultaneous application of heat, drought and virus to Arabidopsis thaliana plants reveals significant shifts in signaling networks. Plant Physiol., 2013, 162(4), 1849-1866.
[110]
Ciliberti, N.; Fermaud, M.; Roudet, J.; Rossi, V. Environmental conditions affect Botrytis cinerea infection of mature grape berries more than the strain or transposon genotype. Phytopathology, 2015, 105(8), 1090-1096.
[111]
Siddiqui, M.H.; Al-Whaibi, M.H.; Mohammad, F. Nanotechnology and plant sciences: nanoparticles and their impact on plants; Springer: Switzerland, 2015.
[112]
Bourgaud, F.; Gravot, A.; Milesi, S.; Gontier, E. Production of plant secondary metabolites: A historical perspective. Plant Sci., 2001, 161(5), 839-851.
[113]
Komaty, S.; Letertre, M.; Dang, H.D.; Jungnickel, H.; Laux, P.; Luch, A.; Carrié, D.; Merdrignac-Conanec, O.; Bazureau, J-P.; Gauffre, F. Sample preparation for an optimized extraction of localized metabolites in lichens: Application to Pseudevernia furfuracea. Talanta, 2016, 150, 525-530.
[114]
Wagener, S.; Dommershausen, N.; Jungnickel, H.; Laux, P.; Mitrano, D.; Nowack, B.; Schneider, G.; Luch, A. Textile functionalization and its effects on the release of silver nanoparticles into artificial sweat. Environ. Sci. Technol., 2016, 50(11), 5927-5934.
[115]
Jungnickel, H.; Laux, P.; Luch, A. Time-of-flight secondary ion mass spectrometry (ToF-SIMS): A new tool for the analysis of toxicological effects on single cell level. Toxics, 2016, 4(1), 5.
[116]
Kalunke, R.M.; Kolge, A.M.; Babu, K.H.; Prasad, D.T. Agrobacterium mediated transformation of sugarcane for borer resistance using Cry 1Aa3 gene and one-step regeneration of transgenic plants. Sugar Tech, 2009, 11(4), 355-359.
[117]
Dietz, K-J.; Herth, S. Plant nanotoxicology. Trends Plant Sci., 2011, 16(11), 582-589.
[118]
Gilbertson, L.M.; Zimmerman, J.B.; Plata, D.L.; Hutchison, J.E.; Anastas, P.T. Designing nanomaterials to maximize performance and minimize undesirable implications guided by the principles of green chemistry. Chem. Soc. Rev., 2015, 44(16), 5758-5777.
[119]
Kalunke, R.M.; Janni, M.; Sella, L.; David, P.; Geffroy, V.; Favaron, F.; D’Ovidio, R. Transcript analysis of the bean polygalacturonase inhibiting protein gene family reveals that PVPGIP2 is expressed in the whole plant and is strongly induced by pathogen infection. J. Plant Pathol., 2011, 93(1), 141-148.
[120]
Gallagher, M.J.; Allen, C.; Buchman, J.T.; Qiu, T.A.; Clement, P.L.; Krause, M.O.P.; Gilbertson, L.M. Research highlights: Applications of life-cycle assessment as a tool for characterizing environmental impacts of engineered nanomaterials. Environ. Sci. Nano, 2017, 4(2), 276-281.
[121]
Pagano, L.; Pasquali, F.; Majumdar, S.; De la Torre-Roche, R.; Zuverza-Mena, N.; Villani, M.; Zappettini, A.; Marra, R.E.; Isch, S.M.; Marmiroli, M.; Maestri, E.; Dhankher, O.P.; White, J.C.; Marmiroli, N. Exposure of Cucurbita pepo to binary combinations of engineered nanomaterials: Physiological and molecular response. Environ. Sci. Nano, 2017, 4(7), 1579-1590.
[122]
Srivastava, P.L.; Shukla, A.; Kalunke, R.M. Comprehensive metabolic and transcriptomic profiling of various tissues provide insights for saponin biosynthesis in the medicinally important Asparagus racemosus. Sci. Rep., 2018, 8(1), 9098.
[123]
Srivastava, P.L.; Daramwar, P.P.; Krithika, R.; Pandreka, A.; Shankar, S.S.; Thulasiram, H.V. Functional characterization of novel sesquiterpene synthases from Indian Sandalwood, Santalum album. Sci. Rep., 2015, 5, 10095.
[124]
Jain, M.; Srivastava, P.L.; Verma, M.; Ghangal, R.; Garg, R. De novo transcriptome assembly and comprehensive expression profiling in Crocus sativus to gain insights into apocarotenoid biosynthesis. Sci. Rep., 2016, 6, 22456.
[125]
Singh, P.; Kalunke, R.M.; Giri, A.P. Towards comprehension of complex chemical evolution and diversification of terpene and phenylpropanoid pathways in Ocimum species. RSC Adv, 2015, 5(129), 106886-106904.
[126]
Navarro, E.; Baun, A.; Behra, R.; Hartmann, N.H.; Filser, J.; Miao, A-J.; Quigg, A.; Santschi, P.H. Sigg, L. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology, 2008, 17, 372-386.
[127]
Segmehl, J.S.; Lauria, A.; Keplinger, T.; Berg, J.K.; Burgert, I. Tracking of short distance transport pathways in biological tissues by ultra-small Nanoparticles. Front Chem., 2018, 6, 28.
[128]
Scholes, G.D.; Sargent, E.H. Boosting plant biology. Nat. Mater., 2014, 13(4), 329-331.
[129]
Giraldo, J.P.; Landry, M.P.; Kwak, S-Y.; Jain, R.M.; Wong, M.H.; Iverson, N.M.; Ben-Naim, M.; Strano, M.S. A ratiometric sensor using single chirality near-infrared fluorescent carbon nanotubes: Application to in vivo monitoring. Small, 2015, 11(32), 3973-3984.
[130]
Schmälzlin, E.; van Dongen, J.T.; Klimant, I.; Marmodée, B.; Steup, M.; Fisahn, J.; Geigenberger, P.; Löhmannsröben, H.G. An optical multifrequency phase-modulation method using microbeads for measuring intracellular oxygen concentrations in plants. Biophys. J., 2005, 89(2), 1339-1345.
[131]
Saito, K.; Chang, Y-F.; Horikawa, K.; Hatsugai, N.; Higuchi, Y.; Hashida, M.; Yoshida, Y.; Matsuda, T.; Arai, Y.; Nagai, T. Luminescent proteins for high-speed single-cell and whole-body imaging. Nat. Commun., 2012, 3(1), 1262.
[132]
Walia, A.; Waadt, R.; Jones, A.M. Genetically encoded biosensors in plants: Pathways to discovery. Annu. Rev. Plant Biol., 2018, 69(1), 497-524.
[133]
Movafeghi, A.; Khataee, A.; Abedi, M.; Tarrahi, R.; Dadpour, M.; Vafaei, F. Effects of TiO2 nanoparticles on the aquatic plant Spirodela polyrrhiza : Evaluation of growth parameters, pigment contents and antioxidant enzyme activities. J. Environ. Sci., 2018, 64, 130-138.
[134]
Wang, P.; Lombi, E.; Zhao, F-J.; Kopittke, P.M. Nanotechnology: A new opportunity in plant sciences. Trends Plant Sci., 2016, 21(8), 699-712.
[135]
Kińska, K.; Jiménez-Lamana, J.; Kowalska, J.; Krasnodębska-Ostręga, B.; Szpunar, J. Study of the uptake and bioaccumulation of palladium nanoparticles by Sinapis alba using single particle ICP-MS. Sci. Total Environ., 2018, 615, 1078-1085.
[136]
Neethirajan, S.; Ragavan, K.V.; Weng, X. Agro-defense: Biosensors for food from healthy crops and animals. Trends Food Sci. Technol., 2018, 73, 25-44.
[137]
Khater, M.; de la Escosura-Muñiz, A.; Merkoçi, A. Biosensors for plant pathogen detection. Biosens. Bioelectron., 2017, 93, 72-86.
[138]
Galvão, V.C.; Fankhauser, C. Sensing the light environment in plants: Photoreceptors and early signaling steps. Curr. Opin. Neurobiol., 2015, 34, 46-53.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 1
Year: 2020
Page: [27 - 41]
Pages: 15
DOI: 10.2174/1573413715666190409101305
Price: $65

Article Metrics

PDF: 23
HTML: 1