Nanoparticle-assisted Therapeutic Strategies for Effective Cancer Management

Author(s): Dinobandhu Nandi, Anshula Sharma, Pranav Kumar Prabhakar*.

Journal Name: Current Nanoscience

Volume 16 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Cancer is the second leading cause of death worldwide. There are various classes of medications available for the management of cancer. Nanoparticles based drugs are the most preferred category among them due to their specificity towards target and reduction in the dose of drugs. Nanotechnology includes multiple subdisciplines like nanostructures, nanomaterials, and nanoparticles. These nanostructure-based drugs have gained extrusion in the medical field because of their small size, shape and high pharmacological efficacy. Nanomedicine is a booming field involving the use of different types of nanoparticles to kill tumor and tumorous cells. Biodegradable nanometersized particles have novel structural and physical properties that are attracting great interests from pharmaceuticals for the targeted delivery of anticancer drugs and imaging contrast agents. These nanoparticles are designed to increase more uptake of drugs or therapeutic genes into cancerous cells while noncancerous cells are intact. In this review, different nanomaterials-based strategies for a safe, fast, effective and targeted delivery system for drugs are discussed in relation to their anticancer activities.

Keywords: Nanoparticles, cancer, toxicity, nanodrugs, drug delivery, toxicity.

[1]
International Agency for Research on Cancer, “World cancer report 2014,” WHO, Geneva, Switzerland..
[2]
World Health Organization. Global Battle against Cancer Won’t Be Won with Treatment Alone. Effective Prevention Measures Urgently Needed to Prevent Cancer Crisis; International Agency for Research on Cancer: London, UK, 2014.
[3]
Wong, H.L.; Bendayan, R.; Rauth, A.M.; Xue, H.Y.; Babakhanian, K.; Wu, X.Y. A mechanistic study of enhanced doxorubicin uptake and retention in multidrug resistant breast cancer cells using a polymer-lipid hybrid nanoparticle system. J. Pharmacol. Exp. Ther., 2010, 317(3), 1372-1381.
[4]
Gottesman, M.M.; Fojo, T.; Bates, S.E. Multidrug resistance in cancer: The role of ATP-dependent transporters. Nat. Rev. Cancer, 2002, 2(1), 48-58.
[5]
Cai, Y.; Luo, Q.; Sun, M.; Corke, H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci., 2004, 74(17), 2157-2184.
[6]
Alves, T.M.; Silva, A.F.; Brandão, M.; Grandi, T.S.; Smânia, E.; Smânia Júnior, A.; Zani, C.L. Biological screening of Brazilian medicinal plants. Mem. Inst. Oswaldo Cruz, 2000, 95(3), 367-373.
[7]
Cragg, G.M.; Newman, D.J. Plants as a source of anti-cancer agents. J. Ethnopharmacol., 2005, 100(1-2), 72-79.
[8]
Balunas, M.J.; Kinghorn, A.D. Drug discovery from medicinal plants. Life Sci., 2005, 78(5), 431-441.
[9]
Ren, W.; Qiao, Z.; Wang, H.; Zhu, L.; Zhang, L. Flavonoids: Promising anticancer agents. Med. Res. Rev., 2003, 23(4), 519-534.
[10]
Hu, M.L. Dietary polyphenols as antioxidants and anticancer agents: More questions than answers. Chang Gung Med. J., 2011, 34(5), 449-460.
[11]
Dzubak, P.; Hajduch, M.; Vydra, D.; Hustova, A.; Kvasnica, M.; Biedermann, D.; Markova, L.; Urban, M.; Sarek, J. Pharmacological activities of natural triterpenoids and their therapeutic implications. Nat. Prod. Rep., 2006, 23(3), 394-411.
[12]
Lu, J.J.; Bao, J.L.; Chen, X.P.; Huang, M.; Wang, Y.T. Alkaloids isolated from natural herbs as the anticancer agents. Evid. Based Complement. Alternat. Med., 2012, 2012 Article ID 485042
[13]
Rao, P.V.; Sujana, P.; Vijayakanth, T.; Naidu, M.D. Rhinacanthus nasutus—its protective role in oxidative stress and antioxidant status in streptozotocin-induced diabetic rats. Asian Pac. J. Trop. Dis., 2012, 2(4), 327-330.
[14]
Liu, R.H. Potential synergy of phytochemicals in cancer prevention: Mechanism of action. J. Nutr., 2004, 134(12), 3479S-3485S.
[15]
Le Marchand, L. Cancer-preventive effects of flavonoids-a review. Biomed. Pharmacother., 2002, 56(6), 296-301.
[16]
Farokhzad, O.C.; Langer, R. Impact of nanotechnology on drug delivery. ACS Nano, 2009, 3, 16-20.
[17]
Ferrari, M. Cancer nanotechnology: Opportunities and challenges. Nat. Rev. Cancer, 2005, 5, 161-171.
[18]
Fox, J.L. Researchers discuss NIH’s nanotechnology initiative. Nat. Biotechnol., 2000, 18, 821.
[19]
Jiang, W.; Kim, B.Y.; Rutka, J.T.; Chan, W.C. Advances and challenges of nanotechnology-based drug delivery systems. Expert Opin. Drug Deliv., 2007, 4, 621-633.
[20]
Peppas, N.A. Intelligent therapeutics: Biomimetic systems and nanotechnology in drug delivery. Adv. Drug Deliv. Rev., 2004, 56, 1529-1531.
[21]
Sinha, R.; Kim, G.J.; Nie, S.; Shin, D.M. Nanotechnology in cancer therapeutics: Bioconjugated nanoparticles for drug delivery. Mol. Cancer Ther., 2006, 5, 1909-1917.
[22]
Uchegbu, I.F. Pharmaceutical nanotechnology: Polymeric vesicles for drug and gene delivery. Expert Opin. Drug Deliv., 2006, 3, 629-640.
[23]
Singh, R.; Lillard, Jr, J.W. Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol., 2009, 86(3), 215-223.
[24]
Koo, H.; Huh, M.S.; Sun, I.C.; Yuk, S.H.; Choi, K.; Kim, K.; Kwon, I.C. In vivo targeted delivery of nanoparticles for theranosis. Acc. Chem. Res., 2011, 44(10), 1018-1028.
[25]
Ali, I.; Rahis, U.; Salim, K.; Rather, M.A.; Wani, W.A.; Haque, A. Advances in nano drugs for cancer chemotherapy. Curr. Cancer Drug Targets, 2011, 11, 135-146.
[26]
Heidel, J.D.; Davis, M.E. Clinical developments in nanotechnology for cancer therapy. Pharm. Res., 2011, 28, 187-199.
[27]
Nguyen, K.T. Targeted nanoparticles for cancer therapy: Promises and challenges. J. Nanomed. Nanotechnol., 2011, 2, 103e.
[28]
Bangham, A.D.; Standish, M.M.; Watkins, J.C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol., 1965, 13, 238-252.
[29]
Langer, R.; Folkman, J. Polymers for the sustained release of proteins and other macromolecules. Nature, 1976, 263, 797-800.
[30]
Heath, T.D.; Fraley, R.T.; Papahdjopoulos, D. Antibody targeting of liposomes: Cell specificity obtained by conjugation of F(ab’)2 to vesicle surface. Science, 1980, 210, 539-541.
[31]
Leserman, L.D.; Barbet, J.; Kourilsky, F.; Weinstein, J.N. Targeting to cells of fluorescent liposomes covalently coupled with monoclonal antibody or protein A. Nature, 1980, 288, 602-604.
[32]
Gref, R.; Minamitake, Y.; Peracchia, M.T.; Trubetskoy, V.; Torchilin, V.; Langer, R. Biodegradable long-circulating polymeric nanospheres. Science, 1994, 263, 1600-1603.
[33]
Klibanov, A.L.; Maruyama, K.; Torchilin, V.P.; Huang, L. Amphipathic polyethylene-glycols effectively prolong the circulation time of liposomes. FEBS Lett., 1990, 268, 235-237.
[34]
James, J.S. DOXIL approved by FDA. AIDS Patient Care, 1995, 9, 306.
[35]
James, J.S. DOXIL approved for KS. AIDS Treat. News, 1995, (236), 6.
[36]
Porche, D.J. Liposomal doxorubicin (Doxil). J. Assoc. Nurses AIDS Care, 1996, 7, 55-59.
[37]
Tejada-Berges, T.; Granai, C.O.; Gordinier, M.; Gajewski, W. Caelyx/Doxil for the treatment of metastatic ovarian and breast cancer. Expert Rev. Anticancer Ther., 2002, 2, 143-150.
[38]
Moghimi, S.M. Recent developments in polymeric nanoparticle engineering and their applications in experimental and clinical oncology. Anticancer. Agents Med. Chem., 2006, 6, 553-561.
[39]
Pridgen, E.M.; Langer, R.; Farokhzad, O.C. Biodegradable, polymeric nanoparticle delivery systems for cancer therapy. Nanomedicine (Lond.), 2007, 2, 669-680.
[40]
Torchilin, V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov., 2005, 4, 145-160.
[41]
Fan, H. Nanocrystal-micelle: Synthesis, self-assembly, and application. Chem. Commun. (Camb.), 2008, 28, 1383-1394.
[42]
Matsumura, Y. Poly (amino acid) micelle nanocarriers in preclinical and clinical studies. Adv. Drug Deliv. Rev., 2008, 60, 899-914.
[43]
Lee, C.C.; MacKay, J.A.; Frechet, J.M.; Szoka, F.C. Designing dendrimers for biological applications. Nat. Biotechnol., 2005, 23, 1517-1526.
[44]
McCarthy, T.D.; Karellas, P.; Henderson, S.A.; Giannis, M.; O’Keefe, D.F.; Heery, G.; Paull, J.R.; Matthews, B.R.; Holan, G. Dendrimers as drugs: Discovery and preclinical and clinical development of dendrimer-based microbicides for HIV and STI prevention. Mol. Pharm., 2005, 2, 312-318.
[45]
Najlah, M.; D’Emanuele, A. Synthesis of dendrimers and drug-dendrimer conjugates for drug delivery. Curr. Opin. Drug Discov. Devel., 2007, 10, 756-767.
[46]
Greco, F.; Vicent, M.J. Polymer-drug conjugates: Current status and future trends. Front. Biosci., 2008, 13, 2744-2756.
[47]
Li, C.; Wallace, S. Polymer-drug conjugates: Recent development in clinical oncology. Adv. Drug Deliv. Rev., 2008, 60, 886-898.
[48]
Hawkins, M.J.; Soon-Shiong, P.; Desai, N. Protein nanoparticles as drug carriers in clinical medicine. Adv. Drug Deliv. Rev., 2008, 60, 876-885.
[49]
Wang, G.; Uludag, H. Recent developments in nanoparticle-based drug delivery and targeting systems with emphasis on protein-based nanoparticles. Expert Opin. Drug Deliv., 2008, 5, 499-515.
[50]
Murakami, T.; Tsuchida, K. Recent advances in inorganic nanoparticle-based drug delivery systems. Mini Rev. Med. Chem., 2008, 8, 175-183.
[51]
Díaz, M.R.; Vivas-Mejia, P.E. Nanoparticles as drug delivery systems in cancer medicine: Emphasis on RNAi-containing nanoliposomes. Pharmaceuticals (Basel), 2013, 6(11), 1361-1380.
[52]
Murphy, E.A.; Majeti, B.K.; Barnes, L.A.; Makale, M.; Weis, S.M.; Lutu-Fuga, K.; Wrasidlo, W.; Cheresh, D.A. Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis. Proc. Natl. Acad. Sci. USA, 2008, 105(27), 9343-9348.
[53]
Hu, C.M.; Aryal, S.; Zhang, L. Nanoparticle-assisted combination therapies for effective cancer treatment. Ther. Deliv., 2010, 1(2), 323-334.
[54]
Loo, C.; Lin, A.; Hirsch, L.; Lee, M.H.; Barton, J.; Halas, N.; West, J.; Drezek, R. Nanoshell-enabled photonics-based imaging, and therapy of cancer. Technol. Cancer Res. Treat., 2004, 3(1), 33-40.
[55]
Krishnaraj, C.; Muthukumaran, P.; Ramachandran, R.; Balakumaran, M.; Kalaichelvan, P. Acalypha indica Linn: Biogenic synthesis of silver and gold nanoparticles and their cytotoxic effects against MDA-MB-231, human breast cancer cells. Biotechnol. Rep., 2014, 4, 42-49.
[56]
Jeyaraj, M.; Sathishkumar, G.; Sivanandhan, G.; Mubarak Ali, D.; Rajesh, M.; Arun, R.; Kapildev, G.; Manickavasagam, M.; Thajuddin, N.; Premkumar, K.; Ganapathi, A. Biogenic silver nanoparticles for cancer treatment: an experimental report. Colloids Surf. B Biointerfaces, 2013, 106, 86-92.
[57]
Pan, Y.; Leifert, A.; Ruau, D.; Neuss, S.; Bornemann, J.; Schmid, G.; Brandau, W.; Simon, U.; Jahnen-Dechent, W. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small, 2009, 5(18), 2067-2076.
[58]
Mittal, A.K.; Kumar, S.; Banerjee, U.C. Quercetin and gallic acid-mediated synthesis of bimetallic (silver and selenium) nanoparticles and their antitumor and antimicrobial potential. J. Colloid Interface Sci., 2014, 431, 194-199.
[59]
Alshatwi, A.A.; Athinarayanan, J.; Periasamy, V.S. Green synthesis of bimetallic Au@Pt nanostructures and their application for proliferation inhibition and apoptosis induction in the human cervical cancer cell. J. Mater. Sci. Mater. Med., 2015, 26(3), 148-156.
[60]
Roopan, S.M.; Surendra, T.V.; Elango, G.; Kumar, S.H.S. Biosynthetic trends and future aspects of bimetallic nanoparticles and its medicinal applications. Appl. Microbiol. Biotechnol., 2014, 98(12), 5289-5300.
[61]
Wu, P.; Gao, Y.; Zhang, H.; Cai, C. Aptamer-guided silver-gold bimetallic nanostructures with highly active surface-enhanced Raman scattering for specific detection and near-infrared photothermal therapy of human breast cancer cells. Anal. Chem., 2012, 84(18), 7692-7699.
[62]
Thevenot, P.; Cho, J.; Wavhal, D.; Timmons, R.B.; Tang, L. Surface chemistry influences cancer-killing effect of TiO2 nanoparticles. Nanomedicine, 2008, 4(3), 226-236.
[63]
Hou, Z.; Zhang, Y.; Deng, K.; Chen, Y.; Li, X.; Deng, X.; Cheng, Z.; Lian, H.; Li, C.; Lin, J. UV-emitting upconversion-based TiO2 photosensitizing nanoplatform: Near-infrared light-mediated in vivo photodynamic therapy via mitochondria-involved apoptosis pathway. ACS Nano, 2015, 9(3), 2584-2599.
[64]
Pešić, M.; Podolski-Renić, A.; Stojković, S.; Matović, B.; Zmejkoski, D.; Kojić, V.; Bogdanović, G.; Pavićević, A.; Mojović, M.; Savić, A.; Milenković, I.; Kalauzi, A.; Radotić, K. Anti-cancer effects of cerium oxide nanoparticles and its intracellular redox activity. Chem. Biol. Interact., 2015, 232, 85-93.
[65]
Castor, T.P. Phospholipid nanosomes. Curr. Drug Deliv., 2005, 2, 329-340.
[66]
Andresen, T.L.; Davidsen, J.; Begtrup, M.; Mouritsen, O.G.; Jorgensen, K. Enzymatic release of antitumor ether lipids by specific phospholipase A2 activation of liposome-forming prodrugs. J. Med. Chem., 2004, 47, 1694-1703.
[67]
Andresen, T.L.; Jensen, S.S.; Kaasgaard, T.; Jorgensen, K. Triggered activation and release of liposomal prodrugs and drugs in cancer tissue by secretory phospholipase A2. Curr. Drug Deliv., 2005, 2, 353-362.
[68]
Aliabadi, H.M.; Shahin, M.; Brocks, D.R.; Lavasanifar, A. Disposition of drugs in block copolymer micelle delivery systems: From discovery to recovery. Clin. Pharmacokinet., 2008, 47, 619-634.
[69]
Lee, K.S.; Chung, H.C. Im, S.A.; Park, Y.H.; Kim, C.S.; Kim, S.B.; Rha, S.Y.; Lee, M.Y.; Ro, J. Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res. Treat., 2008, 108, 241-250.
[70]
Hamaguchi, T.; Kato, K.; Yasui, H.; Morizane, C.; Ikeda, M.; Ueno, H.; Muro, K.; Yamada, Y.; Okusaka, T.; Shirao, K.; Shimada, Y.; Nakahama, H.; Matsumura, Y. A phase I and pharmacokinetic study of NK105, a paclitaxel-incorporating micellar nanoparticle formulation. Br. J. Cancer, 2007, 97, 170-176.
[71]
Couvreur, P.; Kante, B.; Roland, M.; Speiser, P. Adsorption of antineoplastic drugs to polyalkylcyanoacrylate nanoparticles and their release in calf serum. J. Pharm. Sci., 1979, 68, 1521-1524.
[72]
Peracchia, M.T.; Harnisch, S.; Pinto-Alphandary, H.; Gulik, A.; Dedieu, J.C.; Desmaele, D.; d’Angelo, J.; Muller, R.H.; Couvreur, P. Visualization of in vitro protein-rejecting properties of PEGylated stealth polycyanoacrylate nanoparticles. Biomaterials, 1999, 20, 1269-1275.
[73]
Kelly, J.Y.; DeSimone, J.M. Shape-specific, monodisperse nano-molding of protein particles. J. Am. Chem. Soc., 2008, 130, 5438-5439.
[74]
Vasey, P.A.; Kaye, S.B.; Morrison, R.; Twelves, C.; Wilson, P.; Duncan, R.; Thomson, A.H.; Murray, L.S.; Hilditch, T.E.; Murray, T.; Burtles, S.; Fraier, D.; Frigerio, E.; Cassidy, J. Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl) methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents-drug-polymer conjugates. Cancer Research Campaign Phase I/II Committee. Clin. Cancer Res., 1999, 5, 83-94.
[75]
Alexis, F.; Pridgen, E.M.; Langer, R.; Farokhzad, O.C. Nanoparticle technologies for cancer therapy. Handb. Exp. Pharmacol., 2010, (197), 55-86.
[76]
Myc, A.; Douce, T.B.; Ahuja, N.; Kotlyar, A.; Kukowska-Latallo, J.; Thomas, T.P.; Baker, J.R., Jr Preclinical antitumor efficacy evaluation of dendrimer-based methotrexate conjugates. Anticancer Drugs, 2008, 19, 143-149.
[77]
Majoros, I.J.; Thomas, T.P.; Mehta, C.B.; Baker, J.R., Jr Poly(amidoamine) dendrimer-based multifunctional engineered nanodevice for cancer therapy. J. Med. Chem., 2005, 48, 5892-5899.
[78]
Discher, B.M.; Won, Y.Y.; Ege, D.S.; Lee, J.C.; Bates, F.S.; Discher, D.E.; Hammer, D.A. Polymersomes: Tough vesicles made from diblock copolymers. Science, 1999, 284, 1143-1146.
[79]
Ahmed, F.; Pakunlu, R.I.; Srinivas, G.; Brannan, A.; Bates, F.; Klein, M.L.; Minko, T.; Discher, D.E. Shrinkage of a rapidly growing tumor by drug-loaded polymersomes: pH-triggered release through copolymer degradation. Mol. Pharm., 2006, 3, 340-350.
[80]
Gradishar, W.J. Albumin-bound paclitaxel: A next-generation taxane. Expert Opin. Pharmacother., 2006, 7, 1041-1053.
[81]
Nyman, D.W.; Campbell, K.J.; Hersh, E.; Long, K.; Richardson, K.; Trieu, V.; Desai, N.; Hawkins, M.J.; Von Hoff, D.D. Phase I and pharmacokinetics trial of ABI-007, a novel nanoparticle formulation of paclitaxel in patients with advanced nonhematologic malignancies. J. Clin. Oncol., 2005, 23, 7785-7793.
[82]
Visaria, R.; Bischof, J.C.; Loren, M.; Williams, B.; Ebbini, E.; Paciotti, G.; Griffin, R. Nanotherapeutics for enhancing thermal therapy of cancer. Int. J. Hyperthermia, 2007, 23, 501-511.
[83]
Johannsen, M.; Gneveckow, U.; Eckelt, L.; Feussner, A.; Waldofner, N.; Scholz, R.; Deger, S.; Wust, P.; Loening, S.A.; Jordan, A. Clinical hyperthermia of prostate cancer using magnetic nanoparticles: Presentation of a new interstitial technique. Int. J. Hyperthermia, 2005, 21, 637-647.
[84]
Paciotti, G.F.; Myer, L.; Weinreich, D.; Goia, D.; Pavel, N.; McLaughlin, R.E.; Tamarkin, L. Colloidal gold: A novel nanoparticle vector for tumor directed drug delivery. Drug Deliv., 2004, 11, 169-183.
[85]
Sengupta, S.; Eavarone, D.; Capila, I.; Zhao, G.; Watson, N.; Kiziltepe, T.; Sasisekharan, R. Temporal targeting of tumor cells and neovasculature with a nanoscale delivery system. Nature, 2005, 436, 568-572.
[86]
Chung, P-H.; Perevedentseva, E.; Cheng, C-L. The particle size-dependent photoluminescence of nanodiamonds. Surf. Sci., 2007, 601(18), 3866-3870.
[87]
Yang, G.W.; Wang, J.B.; Liu, Q.X. Preparation of nano-crystalline diamonds using pulsed laser induced reactive quenching. J. Phys. Condens. Matter, 1998, 10, 7923.
[88]
Daulton, T.L.; Kirk, M.A.; Lewis, R.S.; Rehn, L.E. Production of nanodiamonds by high-energy ion irradiation of graphite at room temperature. Nucl. Instrum. Methods Phys. Res. B, 2001, 175-177, 12-20.
[89]
Welz, S.; Gogotsi, Y.; McNallan, M.J. Nucleation, growth, and graphitization of diamond nanocrystals during chlorination of carbides. J. Appl. Phys., 2003, 93(7), 4207.
[90]
Frenklach, M.; Howard, W.; Huang, D.; Yuan, J.; Spear, K.; Koba, R. Induced nucleation of diamond powder. Appl. Phys. Lett., 1991, 59(5), 546-548.
[91]
Kumar, A.; Lin, P.A.; Xue, A.; Hao, B.; Yap, Y.K.; Sankaran, R.M. Formation of nanodiamonds at near-ambient conditions via microplasma dissociation of ethanol vapour. Nat. Commun., 2013, 4, 2618.
[92]
Mochalin, V.N.; Shenderova, O.; Ho, D.; Gogotsi, Y. The properties and applications of nanodiamonds. Nat. Nanotechnol., 2012, 7(1), 11-23.
[93]
Schrand, A.M.; Huang, H.; Carlson, C.; Schlager, J.J.; Ōsawa, E.; Hussain, S.M.; Dai, L. Are diamond nanoparticles cytotoxic? J. Phys. Chem. B, 2007, 111(1), 2-7.
[94]
Neugart, F.; Zappe, A.; Jelezko, F.; Tietz, C.; Boudou, J.p.; Krueger, A.; Wrachtrup, J. Dynamics of diamond nanoparticles in solution and cells. Nano Lett., 2007, 7(12), 3588-3591.
[95]
Faklaris, O.; Joshi, V.; Irinopoulou, T.; Tauc, P.; Sennour, M.; Girard, H.; Gesset, C.; Arnault, J-C.; Thorel, A.; Boudou, J-P.; Curmi, P.A.; Treussart, F. Photoluminescent diamond nanoparticles for cell labeling: Study of the uptake mechanism in mammalian cells. ACS Nano, 2009, 3(12), 3955-3962.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 1
Year: 2020
Page: [42 - 50]
Pages: 9
DOI: 10.2174/1573413715666190206151757
Price: $65

Article Metrics

PDF: 24
HTML: 2