Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Design and Analyze the Effect of Hetero Material and Dielectric on TFET with Dual Work Function Engineering

Author(s): Vimala Palanichamy* and Arun Samuel Thankamony Sarasam

Volume 14, Issue 1, 2024

Published on: 24 January, 2024

Article ID: e240124226161 Pages: 10

DOI: 10.2174/0122106812279723231224172041

Price: $65

Abstract

Background: As the size of the field effect transistors is reduced down to nanometers, the performance of the devices is affected by various short-channel effects. To overcome these effects, various novel devices are used. Tunnel Field Effect Transistors (TFET) are novel devices in which the drain current needs to be improved. Gate engineering and III-V compound materials are proposed to improve the ON current and reduce the leakage current along with its ambipolar behaviour.

Methods: The proposed device structure is designed with a heterojunction hetero dielectric dual material gate Tunnel Field Effect Transistor incorporating various combinations of III-V compound materials such as AlGaAsSb/InGaAs, InGaAs/Ge, InGaAs/InP and SiGe/Si. As in III-V composite materials like AlGaAsSb/InGaAs, the narrower bandgap at the source channel interface helps to improve the electric field across the junction. At the same time, the wider bandgap at the channel drain junction leads to unidirectional current flow, resulting in ambipolar reduction. 2D TCAD simulation is used to obtain the electrical parameters for Hetero junction TFETs and the comparison analysis of different Hetero device structures.

Results: The device's electrical parameters, such as energy band diagram, current density, electric field, drain current, gate capacitance and transconductance, have been simulated and analyzed. Besides, the dual material used in the gate, such as Metal1 (M1) and Metal2 (M2), along with HfO2/SiO2 stacked dielectric, helps improve the gate controllability over the channel and the leakage current reduction.

Conclusion: An ION=10-1A/μm, IOFF = 10-12A/μm at drive voltage 0.5V is obtained for InGaAs/InP layer at the source channel hetero junction TFET, and ION=10-2A/μm, IOFF =10-14A/μm at drive voltage 0.5V is obtained for SiGe/Si layer at the source channel hetero junction TFET. Therefore, the InGaAs/InP and SiGe/Si layer TFET are more suitable for ultra-low power integrated circuits.

Keywords: Hetero junction, hetero stacked dielectric, tunnel field effect transistors, drain current, transconductance, MOS transistors.

Graphical Abstract
[1]
Vanitha, P.; Arun Samuel, T.S.; Vimala, P. Performance investigation of ge based pocket doped TMSG-TFET with a SIO2/HFO2 stacked gate oxide structure for enhanced drain current for low power applications. Silicon, 2022, 14(17), 11209-11218.
[http://dx.doi.org/10.1007/s12633-022-01856-8]
[2]
Vimala, P. ul Haque, M.; Usha, C. Modeling of source pocket engineered PNPN tunnel FET on high-K buried oxide (H-BOX) substrate for improved on current. Silicon, 2022, 14(16), 10383-10389.
[http://dx.doi.org/10.1007/s12633-022-01778-5]
[3]
Usha, C.; Vimala, P.; Ramkumar, K.; Ramakrishnan, V.N. Electrostatic characteristics of a high-k stacked gate-all-around heterojunction tunnel field-effect transistor using the superposition principle. J. Comput. Electron., 2022, 21(1), 181-190.
[http://dx.doi.org/10.1007/s10825-021-01819-z]
[4]
Saleem, S.A.M.D. B. K. R, P. R. R and P. Vimala. Design and analysis of dual material double gate tunnel-field effect transistor (DMDG-TFET) with gate oxide stack. 3rd International Conference on Intelligent Technologies (CONIT), Hubli, India2023, pp. 1-4.
[http://dx.doi.org/10.1109/CONIT59222.2023.10205672]
[5]
Rohith, S.; Naik, S.S.; Ingalagi, P.M.; Katti, S.; Vimala, P. Analysis of transfer characteristics for nanowire tunnel FET 2023 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), Bangalore, India 2023, p. 1-4.
[http://dx.doi.org/10.1109/CONECCT57959.2023.10234755]
[6]
Madan Kumar, C.; Mohan, Y.; Vimala, P. A study of GAA silicon nanowire MOSFETs for better performance. IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), 2023, pp. 1-4.
[http://dx.doi.org/10.1109/CONECCT57959.2023.10234735]
[7]
Samuel, T.S.A.; Venkatesh, M.; Pandian, M.K.; Vimala, P. Investigation of ON current and subthreshold swing of an InSb/Si heterojunction stacked oxide double-gate TFET with graphene nanoribbon. J. Electron. Mater., 2021, 50(12), 7037-7043.
[http://dx.doi.org/10.1007/s11664-021-09244-5]
[8]
Usha, C.; Vimala, P. An electrostatic analytical modeling of high-k stacked gate-all-around heterojunction tunnel FETs considering the depletion regions. AEU Int. J. Electron. Commun., 2019, 110, 152877.
[http://dx.doi.org/10.1016/j.aeue.2019.152877]
[9]
Vimala, P.; Samuel, T.S.A.; Nirmal, D.; Panda, A.K. Performance enhancement of triple material double gate TFET with heterojunction and heterodielectric. Solid State Electronics Letters, 2019, 1(2), 64-72.
[http://dx.doi.org/10.1016/j.ssel.2019.10.001]
[10]
Chien, Nguyen, Dang Shih, Chun-Hsing Oxide thickness-dependent effects of source doping profile on the performance of single- and double-gate tunnel field-effect transistors. Sup. and Micr, 2017, 102, 284-299.
[http://dx.doi.org/10.1016/j.spmi.2016.12.048]
[11]
Komalavalli, S.; Arun Samuel, T.S.; Vimala, P. Performance analysis of triple material tri gate TFET using 3D analytical modelling and TCAD simulation. AEU Int. J. Electron. Commun., 2019, 110, 152842.
[http://dx.doi.org/10.1016/j.aeue.2019.152842]
[12]
Zhao, Q.T.; Hartmann, J.M.; Mantl, S. An improved Si tunnel field effect transistor with a buried strained $Si_1-xGe_x$ source. IEEE Electron Device Lett., 2011, 32(11), 1480-1482.
[http://dx.doi.org/10.1109/LED.2011.2163696]
[13]
Mookerjea, S.; Mohata, D.; Krishnan, R.; Singh, J.; Vallett, A.; Ali, A.; Mayer, T.; Narayanan, V.; Schlom, D.; Liu, A.; Datta, S. Experimental demonstration of 100nm channel length In0.53Ga0.47As-based vertical inter-band tunnel field effect transistors (TFETs) for ultra low-power logic and SRAM applications. IEEE Elec. Dev.Lett., 2009, 31, 1-3.
[http://dx.doi.org/10.1109/IEDM.2009.5424355]
[14]
Hähnel, D.; Oehme, M.; Sarlija, M.; Karmous, A.; Schmid, M.; Werner, J. Experimental studies on germanium-Tin P-channel tunneling field effect transistors. Sol. Sta. Elec., 2011, 62, 132-137.
[http://dx.doi.org/10.1016/j.sse.2011.03.011]
[15]
Kouvetakis, J.; Menendez, J.; Chizmeshya, A.V.G. TIN-based group IV semiconductors: New platforms for opto- and microelectronics on silicon. Annu. Rev. Mater. Res., 2006, 36(1), 497-554.
[http://dx.doi.org/10.1146/annurev.matsci.36.090804.095159]
[16]
Hemmat, M.; Kamal, M.; Afzali-Kusha, A.; Pedram, M. Study on the impact of device parameter variations on performance of III-V homojunction and heterojunction tunnel FETs. Solid-State Electron., 2016, 124, 46-53.
[http://dx.doi.org/10.1016/j.sse.2016.06.010]
[17]
Joseph, H.B.; Singh, S.K.; Hariharan, R.M.; Tarauni, Y.; Thiruvadigal, D.J. Simulation study of gated nanowire InAs/Si Hetero p channel TFET and effects of interface trap. Mater. Sci. Semicond. Process., 2019, 103, 104605.
[http://dx.doi.org/10.1016/j.mssp.2019.104605]
[18]
Zhou, G.; Lu, Y.; Li, R.; Zhang, Q.; Hwang, W.S.; Liu, Q.; Vasen, T.; Chen, C.; Zhu, H.; Kuo, J-M.; Koswatta, S.; Kosel, T.; Wistey, M.; Fay, P.; Seabaugh, A.; Xing, H. Vertical InGaAs/InP tunnel FETs with tunneling normal to the gate. IEEE Electron Device Lett., 2011, 32(11), 1516-1518.
[http://dx.doi.org/10.1109/LED.2011.2164232]
[19]
Yu, T.; Teherani, J.T.; Antoniadis, D.A.; Hoyt, J.L. In0.53Ga0.47As/GaAs0.5Sb0.5 Quantum-well tunnel-FETs with tunable backward diode characteristics. IEEE Electron Device Lett., 2013, 34(12), 1503-1505.
[http://dx.doi.org/10.1109/LED.2013.2287237]
[20]
Vadizadeh, M. Digital performance assessment of the dual-material gate GaAs/InAs/Ge junctionless TFET. IEEE Trans. Electron Dev., 2021, 68(4), 1986-1991.
[http://dx.doi.org/10.1109/TED.2021.3056632]
[21]
Deng, M.; Li, Z.; Deng, X.; Hu, Y.; Fang, X. Wafer-scale heterogeneous integration of self-powered lead-free metal halide UV photodetectors with ultrahigh stability and homogeneity. J. Mater. Sci. Technol., 2023, 164, 150-159.
[http://dx.doi.org/10.1016/j.jmst.2023.05.007]
[22]
Li, Z.; Yan, T.; Fang, X. Low-dimensional wide-bandgap semiconductors for UV photodetectors. Nat. Rev. Mater., 2023, 8(9), 587-603.
[http://dx.doi.org/10.1038/s41578-023-00583-9]
[23]
Hu, Y.; Li, Z.; Fang, X. Solution-prepared AgBi 2 I 7 thin films and their photodetecting properties. J. Inorg. Mater., 2023, 38(9), 1055-1061.
[http://dx.doi.org/10.15541/jim20220569]
[24]
Chen, X.; Lv, Y.; Tian, Z.; Yang, J.; Zhu, Y.; Su, L. A two-terminal binary HfO 2 resistance switching random access memory for an artificial synaptic device. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2023, 11(2), 622-629.
[http://dx.doi.org/10.1039/D2TC03454A]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy