Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Assessment of Amentoflavone Loaded Sub-Micron Particle Preparation using Supercritical Antisolvent for its Antitumor Activity

Author(s): Shulei Duan, Jing fu Jia, Biao Hong, Jie Zhou, Yi Zhang, Fahuan Ge* and Ming Li

Volume 19, Issue 1, 2022

Published on: 10 August, 2021

Page: [41 - 48] Pages: 8

DOI: 10.2174/1567201818666210810142750

Price: $65

Abstract

Introduction: The amentoflavone (AMF) loaded polymeric sub-micron particles were prepared using supercritical antisolvent (SAS) technology with the aim of improving the anticancer activity of AMF.

Methods: Zein and phospholipid mixtures composed of Hydrogenated Phosphatidylcholine (HPC) and egg lecithin (EPC) were used as carrier materials and, the effects of carrier composition on the product morphology and drug release behavior were investigated. When the mass ratio of Zein/HPC/ EPC was 7/2/1, the AMF loaded particles were spherical shape and sub-micron sized around 400 nm, with a drug load of 4.3±0.3 w% and entrapment efficacy of 87.8±1.8%. The in vitro drug release assay showed that adding EPC in the wall materials could improve the dispersion stability of the released AMF in an aqueous medium, and the introduction of HPC could accelerate the drug release speed.

Results: MTT assay demonstrated that AMF-loaded micron particles have an improved inhibitory effect on A375 cells, whose IC50 was 37.39μg/ml, compared with that of free AMF(130.2μg/ml).

Conclusion: It proved that the AMF loaded sub-micron particles prepared by SAS were a prospective strategy to improve the antitumor activity of AMF, and possibly promote the clinical use of AMF preparations.

Keywords: Amentoflavone, zein, sub-micron particles, supercritical antisolvent, antitumor activity, drug release.

Graphical Abstract
[1]
Lee, J.; Kim, M.; Jeong, S.E. Amentoflavone, a novel cyanobacterial killing agent from Selaginella tamariscina. J. Hazard. Mater., 2019.
[PMID: 31699478]
[2]
Zhen, Z.; Feng, W. Progress in research of the biological activity of amentoflavone. Zhongguo Xin Yao Zazhi, 2013, 22(23), 2775-2778.
[3]
National Pharmacopoeia Commission. Chinese pharmacopoeia.Beijing: China Medical Science and Technology Press, 2015, 248, .
[4]
Yu, S.; Yan, H.; Zhang, L. A review on the phytochemistry, pharmacology, and pharmacokinetics of amentoflavone, a naturally occurring bioflavonoid. Molecules, 2017, 22(299), 1-23.
[5]
George, A.; Shah, P.A.; Shrivastav, P.S. Natural biodegradable polymers based nano-formulations for drug delivery: A review. Int. J. Pharm., 2019, 561, 244-264.
[http://dx.doi.org/10.1016/j.ijpharm.2019.03.011] [PMID: 30851391]
[6]
Aftab, S.; Shah, A.; Nadhman, A.; Kurbanoglu, S.; Aysıl Ozkan, S.; Dionysiou, D.D.; Shukla, S.S.; Aminabhavi, T.M. Nanomedicine: An effective tool in cancer therapy. Int. J. Pharm., 2018, 540(1-2), 132-149.
[http://dx.doi.org/10.1016/j.ijpharm.2018.02.007] [PMID: 29427746]
[7]
Feng, X.; Chen, Y.; Li, L.; Zhang, Y.; Zhang, L.; Zhang, Z. Preparation, evaluation and metabolites study in rats of novel amentoflavone-loaded TPGS/soluplus mixed nanomicelles. Drug Deliv., 2020, 27(1), 137-150.
[http://dx.doi.org/10.1080/10717544.2019.1709920] [PMID: 31913733]
[8]
Kurakula, M.; Naveen, N.R. In situ gel loaded with chitosan-coated simvastatin nanoparticles: Promising delivery for effective anti-proliferative activity against tongue carcinoma. Mar. Drugs, 2020, 18(4), E201.
[http://dx.doi.org/10.3390/md18040201] [PMID: 32283782]
[9]
Souto, E.B.; Silva, G.F.; Dias-Ferreira, J.; Zielinska, A.; Ventura, F.; Durazzo, A.; Lucarini, M.; Novellino, E.; Santini, A. Nanopharmaceutics: Part II-production scales and clinically compliant production methods. Nanomaterials (Basel), 2020, 10(3), E455.
[http://dx.doi.org/10.3390/nano10030455] [PMID: 32143286]
[10]
Souto, E.B.; Silva, G.F.; Dias-Ferreira, J.; Zielinska, A.; Ventura, F.; Durazzo, A.; Lucarini, M.; Novellino, E.; Santini, A. Nanopharmaceutics: Part I-clinical trials legislation and good manufacturing practices (GMP) of nanotherapeutics in the EU. Pharmaceutics, 2020, 12(2), E146.
[http://dx.doi.org/10.3390/pharmaceutics12020146] [PMID: 32053962]
[11]
Vehring, R. Pharmaceutical particle engineering via spray drying. Pharm. Res., 2008, 25(5), 999-1022.
[http://dx.doi.org/10.1007/s11095-007-9475-1] [PMID: 18040761]
[12]
Van Eerdenbrugh, B.; Van den Mooter, G.; Augustijns, P. Top- down production of drug nanocrystals: Nanosuspension stabilization, miniaturization and transformation into solid products. Int. J. Pharm., 2008, 364(1), 64-75.
[http://dx.doi.org/10.1016/j.ijpharm.2008.07.023] [PMID: 18721869]
[13]
Rogers, T.L.; Nelsen, A.C.; Hu, J.; Brown, J.N.; Sarkari, M.; Young, T.J.; Johnston, K.P.; Williams, R.O.I., III A novel particle engineering technology to enhance dissolution of poorly water soluble drugs: Spray-freezing into liquid. Eur. J. Pharm. Biopharm., 2002, 54(3), 271-280.
[http://dx.doi.org/10.1016/S0939-6411(02)00063-2] [PMID: 12445556]
[14]
Campardelli, R.; Reverchon, E.; De Marco, I. Dependence of SAS particle morphologies on the ternary phase equilibria. J Supercritical Fluids luids, 2017, 130, 273-281.
[15]
Kalani, M.; Yunus, R. Application of supercritical antisolvent method in drug encapsulation: A review. Int. J. Nanomedicine, 2011, 6, 1429-1442.
[http://dx.doi.org/10.2147/IJN.S19021] [PMID: 21796245]
[16]
Girotra, P.; Singh, S.K.; Nagpal, K. Supercritical fluid technology: A promising approach in pharmaceutical research. Pharm. Dev. Technol., 2012, 1, 13-281.
[PMID: 23036159]
[17]
Moneghini, M.; Perissutti, B.; Vecchione, F.; Kikic, I.; Alessi, P.; Cortesi, A.; Princivalle, F. Supercritical antisolvent precipitation of nimesulide: Preliminary experiments. Curr. Drug Deliv., 2007, 4(3), 241-248.
[http://dx.doi.org/10.2174/156720107781023901] [PMID: 17627498]
[18]
Arango-Ruiz, Á.; Martin, Á.; Cosero, M.J.; Jiménez, C.; Londoño, J. Encapsulation of curcumin using supercritical antisolvent (SAS) technology to improve its stability and solubility in water. Food Chem., 2018, 258, 156-163.
[http://dx.doi.org/10.1016/j.foodchem.2018.02.088] [PMID: 29655717]
[19]
Franco, P.; Marco, I.D. Supercritical antisolvent process for pharmaceutical applications: A review. Processes (Basel), 2020, 8(8)
[http://dx.doi.org/10.3390/pr8080938]
[20]
Cardoso, M.A.T.; Monteiro, G.A.; Cardoso, J.P.; Prazeres, T.J.V.; Figueiredo, J.M.F.; Martinho, J.M.G. Supercritical antisolvent micronization of minocycline hydrochloride. J. Supercrit. Fluids, 2008, 44, 238-244.
[http://dx.doi.org/10.1016/j.supflu.2007.09.035]
[21]
Prosapio, V.; Reverchon, E.; De Marco, I. Formation of PVP/nimesulide microspheres by supercritical antisolvent coprecipitation. J. Supercrit. Fluids, 2016, 118, 19-26.
[http://dx.doi.org/10.1016/j.supflu.2016.07.023]
[22]
Mattea, F.; Martin, A.; Gago, A.M.; Cocero, M.J. Supercritical antisolvent precipitation from an emulsion: β-carotene nanoparticle formation. J. Supercrit. Fluids, 2009, 51, 238-247.
[http://dx.doi.org/10.1016/j.supflu.2009.08.013]
[23]
Yu, X.; Wu, H.; Hu, H.; Dong, Z.; Dang, Y.; Qi, Q.; Wang, Y.; Du, S.; Lu, Y. Zein nanoparticles as nontoxic delivery system for maytansine in the treatment of non-small cell lung cancer. Drug Deliv., 2020, 27(1), 100-109.
[http://dx.doi.org/10.1080/10717544.2019.1704942] [PMID: 31870183]
[24]
Zhang, X.; Zhang, T.; Zhou, X.; Liu, H.; Sun, H.; Ma, Z.; Wu, B. Enhancement of oral bioavailability of tripterine through lipid nanospheres: Preparation, characterization, and absorption evaluation. J. Pharm. Sci., 2014, 103(6), 1711-1719.
[http://dx.doi.org/10.1002/jps.23967] [PMID: 24700417]
[25]
García-Pinel, B.; Porras-Alcalá, C.; Ortega-Rodríguez, A.; Sarabia, F.; Prados, J.; Melguizo, C.; López-Romero, J.M. Lipid-based nanoparticles: Application and recent advances in cancer treatment. Nanomaterials (Basel), 2019, 9(4), E638.
[http://dx.doi.org/10.3390/nano9040638] [PMID: 31010180]
[26]
Riva, A.; Ronchi, M.; Petrangolini, G.; Bosisio, S.; Allegrini, P. Improved oral absorption of quercetin from quercetin phytosome®, a new delivery system based on food grade lecithin. Eur. J. Drug Metab. Pharmacokinet., 2019, 44(2), 169-177.
[http://dx.doi.org/10.1007/s13318-018-0517-3] [PMID: 30328058]
[27]
Jia, J.; Zhang, K.; Zhou, X.; Ma, J.; Liu, X.; Xiang, A.; Ge, F. Berberine-loaded solid proliposomes prepared using solution enhanced dispersion by supercritical CO2: Sustained release and bioavailability enhancement. J Drug Deliv. Sci. Tec., 2019, 51, 356-363.
[http://dx.doi.org/10.1016/j.jddst.2019.03.021]
[28]
Naik, S.; Patel, D.; Surti, N.; Misra, A. Preparation of PEGylated liposomes of docetaxel using supercritical fluid technology. J. Supercrit. Fluids, 2010, 54(1), 110-119.
[http://dx.doi.org/10.1016/j.supflu.2010.02.005]
[29]
Alhakamy, N.A.; Fahmy, U.A.; Ahmed, O.A.A.; Caruso, G.; Caraci, F.; Asfour, H.Z.; Bakhrebah, M.A.; N Alomary, M.; Abdulaal, W.H.; Okbazghi, S.Z.; Abdel-Naim, A.B.; Eid, B.G.; Aldawsari, H.M.; Kurakula, M.; Mohamed, A.I. Chitosan coated microparticles enhance simvastatin colon targeting and pro-apoptotic activity. Mar. Drugs, 2020, 18(4), E226.
[http://dx.doi.org/10.3390/md18040226] [PMID: 32344610]
[30]
Zhang, Z.; Quan, G.; Wu, Q.; Zhou, C.; Li, F.; Bai, X.; Li, G.; Pan, X.; Wu, C. Loading amorphous Asarone in mesoporous silica SBA-15 through supercritical carbon dioxide technology to enhance dissolution and bioavailability. Eur. J. Pharm. Biopharm., 2015, 92, 28-31.
[http://dx.doi.org/10.1016/j.ejpb.2015.02.018] [PMID: 25720818]
[31]
Jia, J.; Wang, J.; Zhang, K.; Zhou, D.; Ge, F.; Zhao, Y. Aescin nanoparticles prepared using SEDS: Composition stability and dissolution enhancement. J supercrit fluid; , 2017.
[32]
Cerreia Vioglio, P.; Chierotti, M.R.; Gobetto, R. Pharmaceutical aspects of salt and cocrystal forms of APIs and characterization challenges. Adv. Drug Deliv. Rev., 2017, 117, 86-110.
[http://dx.doi.org/10.1016/j.addr.2017.07.001] [PMID: 28687273]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy