Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Synthesis, Characterization and Antimicrobial Activity of Thiamine Complexes

Author(s): Sumaira Khurshid*, Shazia Shah, Qurrat-ul-Ain, Arshia, Zahida T. Maqsood, Saima Tauseef and Khalid Mohammed Khan*

Volume 15, Issue 12, 2018

Page: [1276 - 1287] Pages: 12

DOI: 10.2174/1570180815666180321155734

Price: $65

Abstract

Background: Thiamine hydrochloride is a vital nutrient for development, growth and variety of other body functions. It is also used as a co-factor for several enzymatic reactions. An early study showed that thiamine can form ionic salt with metals such as [Th]2+[MX4]2-, [Th]2+([MX3]-)2, or [Th+]2[MX4]2- (M = Zn2+ Co2+, Ni2+ when X = Cl-, Br- and Th = thiamine).

Methods: In this study, thiamine hydrochloride reacts with iron (II), zinc (II) and cobalt (II) to form [Fe6L2(NH3)12(H2O)12](SO4)6.10H2O, [Zn3L(H2O)6Cl3]Cl3 and [Co3L(H2O)6Cl3]Cl3 complexes, respectively. Antimicrobial activity was carried out by agar well diffusion method.

Results: Structures of these complexes were characterized by different methods like IR, EIMS and CHN analysis. The ligand and their complexes were screened for antimicrobial activities. The maximum antibacterial activity against Gram positive bacterial strains (C. xerosis 23 mm, S. aureus, and S. saprophyticus, 22 mm) was observed by Th-Zn complex. The highest antibacterial activity against Gram negative bacterial strains was observed as follows: Th-Zn complex (25 mm, S. dysenteriae), Th-Co complex (20 mm, S. paratyphi B and vibrio) and Th-Fe complex (20 mm, E. aerogene). All complexes were found to be inactive against A. flavus, A. niger. C. tropicalis, Penicillium spp., Rhizopus spp., and S. cerevisiae fungal strains, while Th-Fe and Th-Co complexes showed very weak activity against C. albican (4mm).

Conclusion: In synthetic compounds, Th-Zn complex is responsible for good antibacterial activity against Gram positive bacterial strains. However, Th-Zn, Th-Co, and Th-Fe complexes are suitable for Gram negative strains. All compounds showed no activity against tested fungal strains. Consequently, these complexes might have good potential for further studies as antiobiotics.

Keywords: Thiamine hydrochloride, iron, zinc, cobalt metal complexes, characterization, antimicrobial activities.

Graphical Abstract

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy