Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Food-Derived Peptides as Promising Neuroprotective Agents: Mechanism and Therapeutic Potential

In Press, (this is not the final "Version of Record"). Available online 28 March, 2024
Author(s): Kavita Patel and Ashutosh Mani*
Published on: 28 March, 2024

DOI: 10.2174/0115680266289248240322061723

Price: $95

Abstract

Many food-derived peptides have the potential to improve brain health and slow down neurodegeneration. Peptides are produced by the enzymatic hydrolysis of proteins from different food sources. These peptides have been shown to be involved in antioxidant and anti-inflammatory activity, neuro-transmission modulation, and gene expression regulation. Although few peptides directly affect chromatin remodeling and histone alterations, others indirectly affect the neuroprotection process by interfering with epigenetic changes. Fish-derived peptides have shown neuroprotective properties that reduce oxidative stress and improve motor dysfunction in Parkinson's disease models. Peptides from milk and eggs have been found to have anti-inflammatory properties that reduce inflammation and improve cognitive function in Alzheimer's disease models. These peptides are potential therapeutics for neurodegenerative diseases, but more study is required to assess their efficacy and the underlying neuroprotective benefits. Consequently, this review concentrated on each mechanism of action used by food-derived peptides that have neuroprotective advantages and applications in treating neurodegenerative diseases. This article highlights various pathways, such as inflammatory pathways, major oxidant pathways, apoptotic pathways, neurotransmitter modulation, and gene regulation through which food-derived peptides interact at the cellular level.

Keywords: neurodegenerative diseases, food-derived peptides, neuroprotection, oxidative stress, inflammation, apoptosineurodegenerative diseases, apoptosis


Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy