Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Genus Knema: An Extensive Review on Traditional Uses, Phytochemistry, and Pharmacology

Author(s): Nguyen Quang Hop and Ninh The Son*

Volume 24, Issue 12, 2023

Published on: 15 February, 2023

Page: [1524 - 1553] Pages: 30

DOI: 10.2174/1389201024666230201115303

Price: $65

Abstract

Background: Knema (the Myristicaceae family) is a large genus of small-medium trees found in Southeast Asia, Africa, and Australia. Historical records dealt with the uses of Knema species as medicinal plants against various diseases, especially cancer remedies, or their application as tonic agents in Asian communities

Objective: The aim of this review is to provide the most current knowledge on the traditional uses, chemical profiles, as well as pharmacological values of Knema plants.

Methods: Through electronic search, the literature materials on Knema plants were acquired from scholarly journals, books, and internationally recognized scientific databases, such as PubMed, ScienceDirect, Sci-Finder, Web of Science, and Google Scholar. All full-text articles and abstracts on Knema were screened. Genus Knema, traditional use, phytochemistry, and pharmacology were the first selective keywords to search for references.

Results: Since the 1970s, more than 185 metabolites have been isolated from Knema plants and structurally elucidated. Among them, phenolic lipids, flavonoids, and lignans are the principal metabolites. Crude extracts, fractions, and isolated compounds of Knema species possess a wide variety of pharmacological properties, such as antioxidative, antidiabetic, antimicrobial, antiinflammatory, antimalarial, neuroprotective, and hepatoprotective activities, but cytotoxicity is the most striking feature. Phenolic lipids containing long alkyl side chains and polar hydroxyl or acyl groups are found as the most active molecules in cytotoxic assays.

Conclusion: Further studies on phytochemistry and pharmacological activities, toxicological assessments, pharmacological mechanisms, and pharmacokinetics are urgently needed.

Keywords: Knema, myristicaceae, traditional uses, phytochemistry, pharmacology, phenolic lipids, flavonoids, lignans.

Graphical Abstract
[1]
Akhtar, M.N.; Lam, K.W.; Abas, F. Maulidiani; Ahmad, S.; Shah, S.A.A.; Atta-ur-Rahman, Choudhary, M.I.; Lajis, N.H. New class of acetylcholinesterase inhibitors from the stem bark of Knema laurina and their structural insights. Bioorg. Med. Chem. Lett., 2011, 21(13), 4097-4103.
[http://dx.doi.org/10.1016/j.bmcl.2011.04.065] [PMID: 21641207]
[2]
Salleh, W.M.N.H.W.; Anuar, M.Z.A.; Khamis, S.; Nafiah, M.A.; Sul’ain, M.D. Chemical investigation and biological activities of the essential oil of Knema kunstleri Warb. from Malaysia. Nat. Prod. Res., 2019, 2019, 1-6.
[http://dx.doi.org/10.1080/14786419.2019.1669027] [PMID: 31544509]
[3]
Tung, T.H.; Hue, C.T.; Giap, T.H.; Thoa, H.T.; Dung, N.A.; Hang, N.T.M.; Hung, N.V.; Thanh, L.T. Lignans isolated from the ethyl acetate extract of Knema pachycarpa fruit. Vietnam J. Chem., 2017, 55(4), 406-410.
[http://dx.doi.org/10.15625/2525-2321.2017-00481]
[4]
Viet, P.T.; Viet, H.D.; Chi, N.B. One new pyrone from the Knema globularia fruits. Rev. Roum. Chim., 2021, 66(8-9), 755-760.
[http://dx.doi.org/10.33224/rrch.2021.66.8-9.09]
[5]
Ragasa, C.Y.; Torres, O.B.; Mandia, E.H.; Bernardo, L.O.; Shen, C.C. Phenolics from Knema stellata subsp. cryptocaryoides. Chem. Nat. Compd., 2015, 51(6), 1169-1170.
[http://dx.doi.org/10.1007/s10600-015-1521-3]
[6]
Chuenban, C.; Sombatsri, A.; Sribuhom, T.; Pornchoo, C.; Prawan, A.; Tontapha, S.; Amornkitbamrung, V.; Yenjai, C. Knecorticosanones C–H from the fruits of Knema globularia (Lam.) warb. RSC Advances, 2021, 11(7), 4097-4103.
[http://dx.doi.org/10.1039/D0RA10498A] [PMID: 35424356]
[7]
Le, T.K.D. Danova, A.; Aree, T.; Duong, T.H.; Koketsu, M.; Ninomiya, M.; Sawada, Y.; Kamsri, P.; Pungpo, P.; Chavasiri, W. α-Glucosidase Inhibitors from the stems of Knema globularia. J. Nat. Prod., 2022, 85(4), 776-786.
[http://dx.doi.org/10.1021/acs.jnatprod.1c00765] [PMID: 35262352]
[8]
H, S.R. Hepatoprotective activity of ethanolic stem bark extract of Knema attenuata (hoo k. f. and thomson) warb. Int. J. Pharm. Pharm. Sci., 2020, 12(9), 78-82.
[http://dx.doi.org/10.22159/ijpps.2020v12i9.38172]
[9]
Wang, C.F.; Kuang, F.; Wang, W.J.; Luo, L.; Li, Q.X.; Liu, Y.; Zhan, R. Phenolic compounds with anti-inflammatory effects from Knema furfuracea. Results in Chemistry, 2021, 3100175
[http://dx.doi.org/10.1016/j.rechem.2021.100175]
[10]
Zhang, Y.X.; Lu, Z.; Wu, W.C.; Chen, Y.G.; Zhan, R. Bioactive flavonoids from Knema elegans. Phytochem. Lett., 2021, 42, 121-124.
[http://dx.doi.org/10.1016/j.phytol.2020.12.005]
[11]
Zeng, L.; Gu, Z.M.; Fang, X.P.; McLaughlin, J.L. Kneglomeratanol, kneglomeratanones A and B, and related bioactive compounds from Knema glomerata. J. Nat. Prod., 1994, 57(3), 376-381.
[http://dx.doi.org/10.1021/np50105a007] [PMID: 8201311]
[12]
Gény, C.; Rivière, G.; Bignon, J.; Birlirakis, N.; Guittet, E.; Awang, K.; Litaudon, M.; Roussi, F.; Dumontet, V. Anacardic acids from Knema hookeriana as modulators of Bcl-xL/Bak and Mcl-1/Bid interactions. J. Nat. Prod., 2016, 79(4), 838-844.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00915] [PMID: 27008174]
[13]
Giap, T.H.; Thoa, H.T.; Oanh, V.T.K.; Hang, N.T.M.; Dang, N.H.; Thuc, D.N.; Hung, N.V.; Thanh, L.N. New acetophenone and cardanol derivatives from Knema pachycarpa. Nat. Prod. Commun., 2019, 14(6), 1934578X1985004.
[http://dx.doi.org/10.1177/1934578X19850046]
[14]
Giap, T.H.; Duc, P.M.; The, N.V.; Popova, M.; Bankova, V.; Hue, C.T.; Oanh, V.T.K.; Hang, N.T.M.; Hung, N.V.; Thanh, L.N. Chemical constituents and biological activities of the fruits of Knema pachycarpa de Wilde. Nat. Pro. Res., 2019, 1-10.
[http://dx.doi.org/10.1080/14786419.2019.1637868]
[15]
Oanh, N.T.T.; Ha, P.T.T.; Giap, T.H.; Oanh, V.T.K.; Hang, N.T.M. Van The, N.; Thuc, D.N.; Fedeli, D.; Gabbianelli, R.; Huong, P.T.; Van Hung, N.; Thanh, L.N. Chemical constituents and biological activities of the leaves of Knema saxatilis. Chem. Nat. Compd., 2021, 57(2), 355-359.
[http://dx.doi.org/10.1007/s10600-021-03351-9]
[16]
Taher, M.; Susanti, D.; Rezali, M.F. A new sesquiterpene from Knema patentinervia. Chem. Nat. Compd., 2013, 48(6), 985-987.
[http://dx.doi.org/10.1007/s10600-013-0445-z]
[17]
Raja, S.H.; Suku, J. Phytochemical screening and in-vitro antioxidant activity of Knema attenuata (Hook. f. & Thomson) warb stem bark extract. Int. J. Pharm. Sci. Res., 2019, 10(9), 4238-4244.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.10(9).4238-44]
[18]
Häke, I.; Schönenberger, S.; Neumann, J.; Franke, K.; Paulsen-Merker, K.; Reymann, K.; Ismail, G. bin Din, L.; Said, I.M.; Latiff, A.; Wessjohann, L.; Zipp, F.; Ullrich, O. Neuroprotection and enhanced neurogenesis by extract from the tropical plant Knema laurina after inflammatory damage in living brain tissue. J. Neuroimmunol., 2009, 206(1-2), 91-99.
[http://dx.doi.org/10.1016/j.jneuroim.2008.10.007] [PMID: 19028400]
[19]
Joshi, B.S.; Ravindranath, K.R.; Viswanathan, N. Structure and stereochemistry of attenuol, a new lignan from Knema attenuata (Wall.) Warb. Specialia - Experiential, 1978, 422-423.
[20]
Alen, Y.; Nakajima, S.; Nitoda, T.; Baba, N.; Kanzaki, H.; Kawazu, K. Two antinematodal phenolics from Knema hookeriana, a Sumatran rainforest plant. Z. Naturforsch. C J. Biosci., 2000, 55(3-4), 300-304.
[http://dx.doi.org/10.1515/znc-2000-3-426] [PMID: 10817224]
[21]
Ismail, N.; Akhtar, M.N.; Ismail, M.; Zareen, S.; Shah, S.A.A.; Lajis, N.H.; Tajuddin, S.N. Neuroprotective effect from stem bark extracts of Knema laurina against H2O2 - and Aβ1–42 -induced cell death in human SH-SY5Y cells. Nat. Prod. Res., 2015, 29(16), 1571-1574.
[http://dx.doi.org/10.1080/14786419.2014.985676] [PMID: 25471591]
[22]
Kijjoa, A.; Gonzalez, M.J.; Pinto, M.; Monanondra, I.O.; Herz, W. Constituents of Knema laurina and Knema tenuinervia ssp. setosa. Planta Med., 1991, 57(6), 575-577.
[http://dx.doi.org/10.1055/s-2006-960210] [PMID: 17226206]
[23]
Gonzaléz, M.J.T.G.; Pinto, M.M.M.; Kijjoa, A.; Anantachoke, C.; Herz, W. Stilbenes and other constituents of Knema austrosiamensis. Phytochemistry, 1993, 32(2), 433-438.
[http://dx.doi.org/10.1016/S0031-9422(00)95010-6]
[24]
Gonzalez, M.J.G.; DeOliveira, C.J.C.; Fernandes, J.; Kijjoa, A.; Herz, W. Further alkyl and alkenylphenols of Knema laurina and knema austrosiamensis: Location of the double bond in the alkenyl side chains. Phytochemistry, 1996, 43(6), 1333-1337.
[http://dx.doi.org/10.1016/S0031-9422(96)00413-X]
[25]
Pham, T.V.; Bach, H.K.T.; Ho, D.V.; Nguyen, B.C. Chemical constituents from the Knema globularia fruits and their in vitro cytotoxicity. Nat. Pro. Res, 2020, 1-7.
[http://dx.doi.org/10.1080/14786419.2020.1777416]
[26]
Pinto, M.M.M.; Kijjoa, A.; Mondranondra, I.; Gutiérrez, A.B.; Herz, W. Lignans and other constituents of Knema furfuracea. Phytochemistry, 1990, 29(6), 1985-1988.
[http://dx.doi.org/10.1016/0031-9422(90)85052-H]
[27]
Rangkaew, N.; Suttisri, R.; Moriyasu, M.; Kawanishi, K. A new acyclic diterpene acid and bioactive compounds from Knema glauca. Arch. Pharm. Res., 2009, 32(5), 685-692.
[http://dx.doi.org/10.1007/s12272-009-1506-5] [PMID: 19471882]
[28]
Rangkaew, N.; Suttisri, R.; Moriyasu, M.; Kawanishi, K. A new arylnaphthalene lignan from Knema furfuracea. Fitoterapia, 2009, 80(6), 377-379.
[http://dx.doi.org/10.1016/j.fitote.2009.05.005] [PMID: 19446610]
[29]
Spencer, G.F.; Tjarks, L.W.; Kleiman, R. Alkyl and phenylalkyl anacardic acids from Knema elegans seed oil. J. Nat. Prod., 1980, 43(6), 724-730.
[http://dx.doi.org/10.1021/np50012a005] [PMID: 20707395]
[30]
Sriphana, U.; Yenjai, C.; Koatthada, M. Cytotoxicity of chemical constituents from the roots of Knema globularia. Phytochem. Lett., 2016, 16, 129-133.
[http://dx.doi.org/10.1016/j.phytol.2016.03.010]
[31]
Zahir, A.; Jossang, A.; Bodo, B.; Hadi, H.A.; Schaller, H.; Sevenet, T. Knerachelins A and B, antibacterial phenylacylphenols from Knema furfuracea. J. Nat. Prod., 1993, 56(9), 1634-1637.
[http://dx.doi.org/10.1021/np50099a031] [PMID: 8254357]
[32]
Sriphana, U.; Yenjai, C.; Suthiwong, J.; Poopasit, K. A new diarylhexane and two new diarylpropanols from the roots of Knema globularia. Nat. Prod. Res., 2020, 2020, 1-8.
[http://dx.doi.org/10.1080/14786419.2020.1815736] [PMID: 33930992]
[33]
Deng, J.Z.; Starck, S.R.; Li, S.; Hecht, S.M. (+)-Myristinins A and D from Knema elegans, which inhibit DNA polymerase β and cleave DNA. J. Nat. Prod., 2005, 68(11), 1625-1628.
[http://dx.doi.org/10.1021/np058064g] [PMID: 16309311]
[34]
Wenli, M.; Wei, N.; Yan, H. Flavonoids from Knema globularia. Nat. Prod. Res. Dev., 2002, 14(5), 26-28.
[35]
Wenli, M.; Yong, Y.; Wei, N. Flavonoids from Knema globularia. Plant Divers., 2000, 22(3), 358-360.
[36]
Lu, Z.; Wu, W.C.; Wang, M.; Zhang, J.Q.; Chen, Y.G.; Zhan, R.; Shao, L.D. Flavonoids from the leaves and twigs of Knema elegans. Biochem. Syst. Ecol., 2020, 88103991
[http://dx.doi.org/10.1016/j.bse.2019.103991]
[37]
Taher, M.; Amiroudine, M.Z.A.M.; Jaffri, J.M.; Amri, M.S.; Susanti, D.; Abd Hamid, S.; Rezali, M.F.; Hassan, C.M.; Read, R.W.; Ahmed, Q.; Ahmad, F. A lignan with glucose uptake activity in 3T3-L1 adipocytes from the stem bark of Knema patentinervia. Pak. J. Pharm. Sci., 2017, 30(4), 1335-1339.
[PMID: 29039334]
[38]
Chinworrungsee, M.; Wiyakrutta, S.; Sriubolmas, N.; Chuailua, P.; Suksamrarn, A. Cytotoxic activities of trichothecenes isolated from an endophytic fungus belonging to order hypocreales. Arch. Pharm. Res., 2008, 31(5), 611-616.
[http://dx.doi.org/10.1007/s12272-001-1201-x] [PMID: 18481017]
[39]
Son, N.T.; Elshamy, A.I. Flavonoids and other non-alkaloidal constituents of genus Erythrina: Phytochemical review. Comb. Chem. High Throughput Screen., 2021, 24(1), 20-58.
[http://dx.doi.org/10.2174/1386207323666200609141517] [PMID: 32516097]
[40]
Son, N.T.; Manh Ha, N. Siamese, Indian, and Brazilian rosewoods: A review on phytochemistry, applications, and pharmacology. Nat. Prod. Commun., 2022, 17(4), 1934578X2210969.
[http://dx.doi.org/10.1177/1934578X221096962]
[41]
Linh, N.T.T.; Son, N.T.; Ha, N.T.T.; Tra, N.T.; Tu Anh, L.T.; Chen, S.; Van Tuyen, N. Biologically active constituents from plants of the genus Xanthium. Prog. Chem. Org. Nat. Prod., 2021, 116, 135-209.
[http://dx.doi.org/10.1007/978-3-030-80560-9_4] [PMID: 34698947]
[42]
Son, N.T. The genus walsura: A rich resource of bioactive limonoids, triterpenoids, and other types of compounds. Prog. Chem. Org. Nat. Prod., 2022, 118, 131-177.
[http://dx.doi.org/10.1007/978-3-030-92030-2_4] [PMID: 35416519]
[43]
The, Son N. Secondary metabolites of genus Pandanus-An aspect of phytochemistry. Mini Rev. Org. Chem., 2019, 16(7), 689-710.
[http://dx.doi.org/10.2174/1570193X16666181206102740]
[44]
Huang, C.; Da, S.; Li, Y.; Li, Y. Syntheses of Knerachlin A and Knerachlin B. J. Nat. Prod., 1997, 60(3), 277-278.
[http://dx.doi.org/10.1021/np960248v]
[45]
Sudha, K.G.; Ali, S.; Karunakaran, G.; Kowsalya, M.; Kolesnikov, E.; Mikhail, V.; Gorshenkov, M.V.; Velmurugan, T.; Rajeshkumar, M.P. An eco-friendly production of ZnO NRs using Knema andamanica (Warb) extracts for photocatalytic and anticancer applications. Inorg. Chem. Commun., 2021, 134, 1090.
[http://dx.doi.org/10.1016/j.inoche.2021.10903]
[46]
Phadungkit, M.; Rattarom, R.; Rattana, S. Phytochemical screening, antioxidant, antibacterial and cytotoxic activities of Knema angustifolia extracts. J. Med. Plants Res., 2010, 4(13), 1269-1272.
[http://dx.doi.org/10.5897/JMPR09.388]
[47]
Vinayachandra; Chandrashekar, K.R. Vinayachandra; Chandrashekar, K. R. Phenolic contents of Knema attenuata fruits and their bioactive potentials. J. Herbs Spices Med. Plants, 2014, 20(2), 183-195.
[http://dx.doi.org/10.1080/10496475.2013.848390]
[48]
Wiart, C.; Mogana, S.; Khalifah, S.; Mahan, M.; Ismail, S.; Buckle, M.; Narayana, A.K.; Sulaiman, M. Antimicrobial screening of plants used for traditional medicine in the state of Perak, Peninsular Malaysia. Fitoterapia, 2004, 75(1), 68-73.
[http://dx.doi.org/10.1016/j.fitote.2003.07.013] [PMID: 14693223]
[49]
Alen, Y.; Nakajima, S.; Nitoda, T.; Baba, N.; Kanzaki, H.; Kawazu, K. Antinematodal activity of some tropical rainforest plants against the pinewood nematode, Bursaphelenchus xylophilus. Z. Naturforsch. C J. Biosci., 2000, 55(3-4), 295-299.
[http://dx.doi.org/10.1515/znc-2000-3-425] [PMID: 10817223]
[50]
Vinayachandra; Shwetha, R.; Chandrashekar, K.R. Larvicidal activities of Knema attenuata (Hook. f. & Thomson) Warb. (Myristicaceae) extracts against Aedes albopictus Skuse and Anopheles stephensi Liston. Parasitol. Res., 2011, 109(6), 1671-1676.
[http://dx.doi.org/10.1007/s00436-011-2440-2] [PMID: 21559763]
[51]
Anh, L.T.T.; Son, N.T.; Van Tuyen, N.; Thuy, P.T.; Quan, P.M.; Ha, N.T.T.; Tra, N.T. Antioxidative and α-glucosidase inhibitory constituents of Polyscias guilfoylei: experimental and computational assessments. Mol. Divers., 2022, 26(1), 229-243.
[http://dx.doi.org/10.1007/s11030-021-10206-6] [PMID: 33765238]
[52]
Barbosa Filho, J.M.; Medeiros, K.C.P.; Diniz, M.F.F.M.; Batista, L.M.; Athayde-Filho, P.F.; Silva, M.S.; Cunha, E.V.L.; Almeida, J.R.G.S.; Quintans-Júnior, L.J. Natural products inhibitors of the enzyme acetylcholinesterase. Rev. Bras. Farmacogn., 2006, 16(2), 258-285.
[http://dx.doi.org/10.1590/S0102-695X2006000200021]
[53]
Jokinen, E.; Koivunen, J.P. Bcl-xl and Mcl-1 are the major determinants of the apoptotic response to dual PI3K and MEK blockage. Int. J. Oncol., 2015, 47(3), 1103-1110.
[http://dx.doi.org/10.3892/ijo.2015.3071] [PMID: 26135106]
[54]
Milhem, M.M.; Al-Hiyasat, A.S.; Darmani, H. Toxicity testing of restorative dental materials using brine shrimp larvae (Artemia salina). J. Appl. Oral Sci., 2008, 16(4), 297-301.
[http://dx.doi.org/10.1590/S1678-77572008000400013] [PMID: 19089264]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy