Generic placeholder image

Current Indian Science

Editor-in-Chief

ISSN (Print): 2210-299X
ISSN (Online): 2210-3007

Mini-Review Article

Bioactive Furanocoumarin ‘Alloimperatorin’: Therapeutic Importance and Pharmacological Activities in Medicine

Author(s): Dinesh Kumar Patel*

Volume 1, 2023

Published on: 03 February, 2023

Article ID: e240123213083 Pages: 6

DOI: 10.2174/2210299X01666230124105950

open_access

Abstract

Background: Plants and their derived phytochemicals commonly called secondary metabolites have been used in medicine as a good source of medicine for the treatment of numerous kinds of human disorders and associated complications. Herbal medicines have been used in modern medicine for the treatment of some chronic disorders, including cancer. Coumarins class phytochemicals are important in medicine and mainly derived from plant sources, including Angiosperms. Coumarins have numerous biological activities including antimicrobial, antibacterial, antifungal, antioxidant, antitumor, anti-HIV, antihypertension, anticoagulant, anticancer, antiviral, anti-inflammatory, analgesics, antidiabetic, and anti-depressive.

Methods: Here in the present work, numerous scientific data were collected from different scientific databases and analyzed in order to know the biological potential of alloimperatorin in medicine. Google, Google Scholar, PubMed, and Scopus databases were searched and analyzed to know the medicinal properties and therapeutic potential of alloimperatorin. Therapeutic potential of alloimperatorin was investigated in the present work through scientific data analysis of different scientific research work. Pharmacological activities of alloimperatorin were analyzed in the present work to know the beneficial health aspects of alloimperatorin against various forms of human disorders.

Results: Scientific data analysis of different research work revealed the therapeutic potential of alloimperatorin in medicine. Alloimperatorin is a coumarin class phytochemical found in the Angelica dahurica. Alloimperatorin revealed significant therapeutic potential in medicine mainly due to its antioxidative, anti-inflammatory, anti-apoptotic potential, however its biological potential in breast cancer and their photosensitization effect were also discussed in the present work. Analytical data signified the presence of alloimperatorin in different medicinal plants.

Conclusion: Present work signified the biological importance and therapeutic potential of alloimperatorin in medicine.

Keywords: Angelica dahurica, Alloimperatorin, Anti-oxidative, Anti-inflammatory, Anti-apoptotic, Breast cancer, Photosensitization.

[1]
Patel, K.; Patel, D.K. Secoiridoid amarogentin from ‘gentianaceae’ with their health promotion, disease prevention and modern analytical aspects. Curr. Bioact. Compd., 2020, 16(3), 191-200.
[http://dx.doi.org/10.2174/1573407214666181023115355]
[2]
Patel, K.; Kumar, V.; Verma, A.; Rahman, M.; Patel, D.K. Amarogentin as topical anticancer and anti-infective potential: Scope of lipid based vesicular in its effective delivery. Recent Patents Anti-Infect. Drug Disc., 2019, 14(1), 7-15.
[http://dx.doi.org/10.2174/1574891X13666180913154355] [PMID: 30210007]
[3]
Patel, K.; Patel, D.K. Health benefits of ipecac and cephaeline: Their potential in health promotion and disease prevention. Curr. Bioact. Compd., 2021, 17(3), 206-213.
[http://dx.doi.org/10.2174/1573407216999200609130841]
[4]
Oteiza, P.I.; Fraga, C.G.; Galleano, M. Linking biomarkers of oxidative stress and disease with flavonoid consumption: From experimental models to humans. Redox Biol., 2021, 42, 101914.
[http://dx.doi.org/10.1016/j.redox.2021.101914] [PMID: 33750648]
[5]
Patel, D.K. Medicinal importance of flavonoid “eupatorin” in the health sectors: Therapeutic benefit and pharmacological activities through scientific data analysis. Curr. Chin. Sci., 2021, 1(6), 629-638.
[http://dx.doi.org/10.2174/2210298101666210804141644]
[6]
Patel, D.K. Pharmacological activities and therapeutic potential of kaempferitrin in medicine for the treatment of human disorders: A review of medicinal importance and health benefits. Cardiovasc. Hematol. Disord. Drug Targets, 2021, 21(2), 104-114.
[http://dx.doi.org/10.2174/1871529X21666210812111931] [PMID: 34387174]
[7]
Al-Hadhrami, R.M.S.; Hossain, M.A. Evaluation of antioxidant, antimicrobial and cytotoxic activities of seed crude extracts of Ammi majus grown in Oman. Egypt. J. Basic ppl. sci., 2016, 3(4), 329-334.
[http://dx.doi.org/10.1016/j.ejbas.2016.08.001]
[8]
Bronikowska, J.; Szliszka, E.; Jaworska, D.; Czuba, Z.P.; Krol, W. The coumarin psoralidin enhances anticancer effect of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Molecules, 2012, 17(6), 6449-6464.
[http://dx.doi.org/10.3390/molecules17066449] [PMID: 22643355]
[9]
Patel, D.K.; Patel, K.; Duraiswamy, B.; Dhanabal, S.P. Phytochemical analysis and standardization of Strychnos nux-vomica extract through HPTLC techniques. Asian Pac. J. Trop. Dis., 2012, 2, S56-S60.
[http://dx.doi.org/10.1016/S2222-1808(12)60124-8]
[10]
Patel, D.K.; Patel, K.; Dhanabal, S.P. Development of quality control parameters for the standardization of gymnema sylvestre. J. Acute Dis., 2012, 1(2), 141-143.
[http://dx.doi.org/10.1016/S2221-6189(13)60032-3]
[11]
Patel, K.; Patel, D.K. Medicinal importance, pharmacological activities, and analytical aspects of hispidulin: A concise report. J. Tradit. Complement. Med., 2017, 7(3), 360-366.
[http://dx.doi.org/10.1016/j.jtcme.2016.11.003] [PMID: 28725632]
[12]
Raheja, S.; Girdhar, A.; Kamboj, A.; Lather, V.; Pandita, D. Aegle marmelos leaf extract ameliorates the cognitive impairment and oxidative stress induced by intracerebroventricular streptozotocin in male rats. Life Sci., 2019, 221, 196-203.
[http://dx.doi.org/10.1016/j.lfs.2019.02.032] [PMID: 30771313]
[13]
Wandji, N.T.; Bitchagno, G.T.M.; Tchamgoue, J.; Stammler, H.G.; Frese, M.; Lenta, B.N.; Sewald, N.; Fogue, K.S. Furanocoumarins from the twigs of Ficus chlamydocarpa (Moraceae). Phytochem. Lett., 2022, 47, 38-41.
[http://dx.doi.org/10.1016/j.phytol.2021.11.002]
[14]
Bhattarai, N.; Kumbhar, A.A.; Pokharel, Y.R.; Yadav, P.N. Anticancer potential of coumarin and its derivatives. Mini Rev Med Chem, 2021, 21(19), 2996-3029.
[http://dx.doi.org/10.2174/1389557521666210405160323] [PMID: 33820507]
[15]
Li, G.J.; Wu, H.J.; Wang, Y.; Hung, W.L.; Rouseff, R.L. Determination of citrus juice coumarins, furanocoumarins and methoxylated flavones using solid phase extraction and HPLC with photodiode array and fluorescence detection. Food Chem., 2019, 271, 29-38.
[http://dx.doi.org/10.1016/j.foodchem.2018.07.130] [PMID: 30236679]
[16]
Patel, K.; Kumar, V.; Verma, A.; Rahman, M.; Kumar Patel, D. Health benefits of furanocoumarins ‘psoralidin’ an active phytochemical of psoralea corylifolia: The present, past and future scenario. Curr. Bioact. Compd., 2019, 15(4), 369-376.
[http://dx.doi.org/10.2174/1573407214666180511153438]
[17]
Sumorek-Wiadro, J.; Zając, A.; Maciejczyk, A.; Jakubowicz-Gil, J. Furanocoumarins in anticancer therapy – for and against. Fitoterapia, 2020, 142, 104492.
[http://dx.doi.org/10.1016/j.fitote.2020.104492] [PMID: 32032635]
[18]
Heinke, R.; Franke, K.; Porzel, A.; Wessjohann, L.A.; Awadh Ali, N.A.; Schmidt, J. Furanocoumarins from dorstenia foetida. Phytochemistry, 2011, 72(9), 929-934.
[http://dx.doi.org/10.1016/j.phytochem.2011.03.008] [PMID: 21492886]
[19]
Dresler, S.; Bogucka-Kocka, A.; Kováčik, J.; Kubrak, T.; Strzemski, M.; Wójciak-Kosior, M.; Rysiak, A.; Sowa, I. Separation and determination of coumarins including furanocoumarins using micellar electrokinetic capillary chromatography. Talanta, 2018, 187, 120-124.
[http://dx.doi.org/10.1016/j.talanta.2018.05.024] [PMID: 29853023]
[20]
Xu, J.; Ma, L.; Jiang, D.; Zhu, S.; Yan, F.; Xie, Y.; Xie, Z.; Guo, W.; Deng, X. Content evaluation of 4 furanocoumarin monomers in various citrus germplasms. Food Chem., 2015, 187, 75-81.
[http://dx.doi.org/10.1016/j.foodchem.2015.04.007] [PMID: 25977000]
[21]
Gordon, R.M.; Washington, T.L.; Sims, C.A.; Goodrich-Schneider, R.; Baker, S.M.; Yagiz, Y.; Gu, L. Performance of macroporous resins for debittering HLB-affected grapefruit juice and its impacts on furanocoumarin and consumer sensory acceptability. Food Chem., 2021, 352, 129367.
[http://dx.doi.org/10.1016/j.foodchem.2021.129367] [PMID: 33684718]
[22]
Chen, L.; Yang, H.; Yu, C.; Yuan, M.; Li, H. High hepatic exposure of furanocoumarins in Radix Angelica dahuricae is associated with transporter mediated active uptake. J. Ethnopharmacol., 2018, 212, 74-85.
[http://dx.doi.org/10.1016/j.jep.2017.10.014] [PMID: 29055720]
[23]
Hung, W-L.; Suh, J.H.; Wang, Y. Chemistry and health effects of furanocoumarins in grapefruit. Yao Wu Shi Pin Fen Xi, 2017, 25(1), 71-83.
[PMID: 28911545]
[24]
Attia, G.I.E.A.; Abou-El-seoud, K.A.; Ibrahim, A.R.S. Biotransformation of furanocoumarins by Cunninghamella elegans. Bull. Fac. Pharm. Cairo Univ., 2015, 53(1), 1-4.
[http://dx.doi.org/10.1016/j.bfopcu.2014.09.001]
[25]
Raju, R.; Singh, A.; Reddell, P.; Münch, G. Anti-inflammatory activity of prenyl and geranyloxy furanocoumarins from Citrus garrawayi (Rutaceae). Phytochem. Lett., 2018, 27, 197-202.
[http://dx.doi.org/10.1016/j.phytol.2018.07.030]
[26]
Gomes, A.R.; Varela, C.L.; Tavares-da-Silva, E.J.; Roleira, F.M.F. Epoxide containing molecules: A good or a bad drug design approach. Eur. J. Med. Chem., 2020, 201, 112327.
[http://dx.doi.org/10.1016/j.ejmech.2020.112327] [PMID: 32526552]
[27]
Bai, Y.; Yang, L.; Zhang, C.; Yang, Y. Studies on the mechanism of alloimperatorin on the proliferation and apoptosis of hela cells. J. Oncol., 2021, 2021, 1-12.
[http://dx.doi.org/10.1155/2021/6617312] [PMID: 33897778]
[28]
Yang, W.Q.; Song, Y.L.; Zhu, Z.X.; Su, C.; Zhang, X.; Wang, J.; Shi, S.P.; Tu, P.F. Anti-inflammatory dimeric furanocoumarins from the roots of Angelica dahurica. Fitoterapia, 2015, 105, 187-193.
[http://dx.doi.org/10.1016/j.fitote.2015.07.006] [PMID: 26183116]
[29]
Abd-Alla, H.I.; Ibrahim Fouad, G.; Ahmed, K.A.; Shaker, K. Alloimperatorin from Ammi majus fruits mitigates Piroxicam-provoked gastric ulcer and hepatorenal toxicity in rats via suppressing oxidative stress and apoptosis. Biomarkers, 2022, 27(8), 727-742.
[http://dx.doi.org/10.1080/1354750X.2022.2102213] [PMID: 35837760]
[30]
Zhang, J.; Gao, R.; Li, J.; Yu, K.; Bi, K. Alloimperatorin activates apoptosis, ferroptosis, and oxeiptosis to inhibit the growth and invasion of breast cancer cells in vitro. Biochem. Cell Biol., 2022, 100(3), 213-222.
[http://dx.doi.org/10.1139/bcb-2021-0399] [PMID: 35263194]
[31]
Kyagova, A.; Potapenko, A.; Möller, M.; Stopper, H.; Adam, W. Photohemolysis sensitized by the furocoumarin derivative alloimperatorin and its hydroperoxide photooxidation product. Photochem. Photobiol., 2014, 90(1), 162-170.
[http://dx.doi.org/10.1111/php.12184] [PMID: 24117477]
[32]
Deng, G-G.; Yang, X-W.; Zhang, Y-B.; Xu, W.; Wei, W.; Li, Z-G. [Chemical constituents from lipophilic parts in roots of Angelica dahurica cv.Yubaizhi]. Zhongguo Zhongyao Zazhi, 2017, 42(11), 2102-2109.
[PMID: 28822155]
[33]
Liu, L.; Zhang, W.J.; Yin, Q.M.; Zhang, Y.; Ji, N.; Zhang, Y.T.; Hu, R. Chemical constituents from goodyera schlechtendaliana. Zhong Yao Cai, 2015, 38(12), 2547-2549.
[PMID: 27352537]
[34]
Deng, G-G.; Yang, X-W.; Zhang, Y-B.; Xu, W.; Wei, W.; Chen, T-L. [Chemical constituents from lipophilic parts in roots of Angelica dahurica var. formosana cv. Chuanbaizhi]. Zhongguo Zhongyao Zazhi, 2015, 40(11), 2148-2156.
[PMID: 26552172]
[35]
Zhao, A.; Yang, X.; Yang, X.; Liu, J.; Wang, Q.; Wang, W. A new natural product from root of Angelica dahurica cv. Qibaizhi. Zhongguo Zhongyao Zazhi, 2012, 37(16), 2400-2407.
[PMID: 23234138]
[36]
El-Gogary, S.R. Photoionization of psoralen derivatives in micelles: Imperatorin and alloimperatorin. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2010, 77(4), 811-815.
[http://dx.doi.org/10.1016/j.saa.2010.08.009] [PMID: 20832354]
[37]
Elgendy, E.M.; Ramadan, A.A.; Fadaly, W.; Hammouda, M. Photosynthesis of furocoumarin- and furochromone-types potential intercalative alkylating and oxidizing agents of DNA through photooxidations using gamma-ray. Boll. Chim. Farm., 2002, 141(6), 434-437.
[PMID: 12577512]
[38]
Chen, Q.; Li, P.; He, J.; Zhang, Z.; Liu, J. Supercritical fluid extraction for identification and determination of volatile metabolites from Angelica dahurica by GC-MS. J. Sep. Sci., 2008, 31(18), 3218-3224.
[http://dx.doi.org/10.1002/jssc.200800325] [PMID: 18705001]
[39]
Lv, Y.; Li, C.; Wang, Z.; Wang, Q.; Li, G.; Dang, J. Preparative isolation of antioxidative furanocoumarins from Dracocephalum heterophyllum and their potential action target. J. Sep. Sci., 2022, 45(24), 4375-4387.
[http://dx.doi.org/10.1002/jssc.202200309] [PMID: 36222230]
[40]
Shahab, S.; Sheikhi, M.; Khaleghian, M.; Kumar, R.; Murashko, M. DFT study of physisorption effect of CO and CO2 on furanocoumarins for air purification. J. Environ. Chem. Eng., 2018, 6(4), 4784-4796.
[http://dx.doi.org/10.1016/j.jece.2018.07.019]
[41]
Cook, D.W.; Burnham, M.L.; Harmes, D.C.; Stoll, D.R.; Rutan, S.C. Comparison of multivariate curve resolution strategies in quantitative LCxLC: Application to the quantification of furanocoumarins in apiaceous vegetables. Anal. Chim. Acta, 2017, 961, 49-58.
[http://dx.doi.org/10.1016/j.aca.2017.01.047] [PMID: 28224908]
[42]
Kulikov, O.A.; Ageev, V.P.; Brodovskaya, E.P.; Shlyapkina, V.I.; Petrov, P.S.; Zharkov, M.N.; Yakobson, D.E.; Maev, I.V.; Sukhorukov, G.B.; Pyataev, N.A. Evaluation of photocytotoxicity liposomal form of furanocoumarins Sosnowsky’s hogweed. Chem. Biol. Interact., 2022, 357, 109880.
[http://dx.doi.org/10.1016/j.cbi.2022.109880] [PMID: 35271822]

© 2024 Bentham Science Publishers | Privacy Policy