Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Design, Synthesis, and Molecular Docking Study of Novel 3-Cyanopyridine Derivatives for the Anti-Cancer Drug Target Survivin Protein

Author(s): Jia-Hao Lu, Wu-Ji Lai, Li-He Jiang, Fu-Hou Lei, Li-Qun Shen* and Ai-Qun Wu*

Volume 19, Issue 3, 2023

Published on: 12 October, 2022

Page: [246 - 262] Pages: 17

DOI: 10.2174/1573406418666220829160820

Price: $65

Abstract

Survivin is an important member of the antiapoptotic protein family and controls the cell’s life cycle. Overexpression of survivin in tumor cells leads to inhibition of apoptosis, thus contributing to cancer cell proliferation. The largest binding pocket in the survivin dimer was located in the BIR domain. The key to the efficacy of 3-cyanopyridines was their surface interaction with the survivin amino acid Ile74.

Methods: Through the optimization of the 3-cyanopyridine, 29 new compounds with a 3- Cyanopyridine structure were designed, synthesized, and characterized by NMR, IR, and mass spectrometry. The antitumor activity of the compounds in vitro was detected by the MTT method.

Results: In vitro anti-tumor experiments showed that some compounds exhibited good anti-cancer effects. The IC50 values of the compound 2-amino-6-(2,4-difluorophenyl)-4-(4-hydroxyphenyl) nicotinonitrile (10n) against human liver cancer (Huh7), human glioma (U251), and human melanoma (A375) cells were 5.9, 6.0 and 7.2 μM, respectively. The IC50 values of the compound 6-(2,4-difluorophenyl)- 4-(4-hydroxyphenyl)-2-oxo-1,2-dihydropyridine-3-carbonitrile (9o) against Huh7, U251 and A375 cells were 2.4, 17.5 and 7.2 μM, respectively, which were better than those of 10- hydroxycamptothecin and 5-fluorouracil. Analysis of the results of molecular dynamics simulation established that the BIR domain is the optimal binding site on the survivin protein, and the fingerprints of the eight most active compounds and the molecular docking to the survivin protein are analyzed.

Conclusion: 3-Cyanopyridine is an excellent backbone for antitumor lead compounds, 10n and 9o, as derivatives of 3-Cyanopyridine are excellent survivin protein-targeting inhibitors worthy of further study. The key factor in inhibiting survivin protein through the action of amino acid Ile74.

Keywords: Design and synthesis, antitumor in vitro, molecular docking, molecular dynamics, disease, drugs.

Graphical Abstract
[1]
Zhang, E.; Wang, M.; Xu, S.; Wang, S.; Zhao, D.; Bai, P.; Cui, D.; Hua, Y.; Wang, Y.n.; Qin, S.; Liu, H. Synthesis and antibiotic activity study of pyridine chalcone derivatives against methicillin-resistant Staphylococcus aureus. Youji Huaxue, 2017, 37(4), 959-966.
[http://dx.doi.org/10.6023/cjoc201610016]
[2]
Beghein, E.; Van Audenhove, I.; Zwaenepoel, O.; Verhelle, A.; De Ganck, A.; Gettemans, J. A new survivin tracer tracks, delocalizes and captures endogenous survivin at different subcellular locations and in distinct organelles. Sci. Rep., 2016, 6(1), 31177.
[http://dx.doi.org/10.1038/srep31177] [PMID: 27514728]
[3]
Branco, P.C.; Pontes, C.A.; Rezende-Teixeira, P.; Amengual-Rigo, P.; Alves-Fernandes, D.K.; Maria-Engler, S.S.; da Silva, A.B.; Pessoa, O.D.L.; Jimenez, P.C.; Mollasalehi, N.; Chapman, E.; Guallar, V.; Machado-Neto, J.A.; Costa-Lotufo, L.V. Survivin modulation in the antimelanoma activity of prodiginines. Eur. J. Pharmacol., 2020, 888, 173465.
[http://dx.doi.org/10.1016/j.ejphar.2020.173465] [PMID: 32814079]
[4]
Braný, D.; Dvorská, D.; Slávik, P.; Školka, R.; Adamkov, M. Survivin and gynaecological tumours. Pathol. Res. Pract., 2017, 213(4), 295-300.
[http://dx.doi.org/10.1016/j.prp.2017.02.009] [PMID: 28285964]
[5]
Foroughi, K.; Jahanbani, S.; Nazarnezhad, S.; Khastar, H.; Jafarisani, M.; Tashakori, M.; Kazemi, S.S. Survivin as a target for anti-cancer phytochemicals according to the molecular docking analysis. Int. J. Pept. Res. Ther., 2019, 26(2), 1115-1126.
[http://dx.doi.org/10.1007/s10989-019-09914-3]
[6]
Gravina, G.; Wasén, C.; Garcia-Bonete, M.J.; Turkkila, M.; Erlandsson, M.C.; Töyrä Silfverswärd, S.; Brisslert, M.; Pullerits, R.; Andersson, K.M.; Katona, G.; Bokarewa, M.I. Survivin in autoimmune diseases. Autoimmun. Rev., 2017, 16(8), 845-855.
[http://dx.doi.org/10.1016/j.autrev.2017.05.016] [PMID: 28564620]
[7]
Shojaei, F.; Yazdani-Nafchi, F.; Banitalebi-Dehkordi, M.; Chehelgerdi, M.; Khorramian-Ghahfarokhi, M. Trace of survivin in cancer. Eur. J. Cancer Prev., 2019, 28(4), 365-372.
[http://dx.doi.org/10.1097/CEJ.0000000000000453] [PMID: 29847456]
[8]
Jeyaprakash, A.A.; Basquin, C.; Jayachandran, U.; Conti, E. Structural basis for the recognition of phosphorylated histone h3 by the survivin subunit of the chromosomal passenger complex. Structure, 2011, 19(11), 1625-1634.
[http://dx.doi.org/10.1016/j.str.2011.09.002] [PMID: 22032967]
[9]
Jeyaprakash, A.A.; Klein, U.R.; Lindner, D.; Ebert, J.; Nigg, E.A.; Conti, E. Structure of a Survivin-Borealin-INCENP core complex reveals how chromosomal passengers travel together. Cell, 2007, 131(2), 271-285.
[http://dx.doi.org/10.1016/j.cell.2007.07.045] [PMID: 17956729]
[10]
O’Connor, D.S.; Grossman, D.; Plescia, J.; Li, F.; Zhang, H.; Villa, A.; Tognin, S.; Marchisio, P.C.; Altieri, D.C. Regulation of apoptosis at cell division by p34cdc2 phosphorylation of survivin. Proc. Natl. Acad. Sci. USA, 2000, 97(24), 13103-13107.
[http://dx.doi.org/10.1073/pnas.240390697] [PMID: 11069302]
[11]
Kuo, H.H.; Ahmad, R.; Lee, G.Q.; Gao, C.; Chen, H.R.; Ouyang, Z.; Szucs, M.J.; Kim, D.; Tsibris, A.; Chun, T.W.; Battivelli, E.; Verdin, E.; Rosenberg, E.S.; Carr, S.A.; Yu, X.G.; Lichterfeld, M. Anti-apoptotic protein BIRC5 maintains survival of HIV-1-infected CD4+ T cells. Immunity, 2018, 48(6), 1183-1194.e5.
[http://dx.doi.org/10.1016/j.immuni.2018.04.004] [PMID: 29802019]
[12]
Li, F.; Ambrosini, G.; Chu, E.Y.; Plescia, J.; Tognin, S.; Marchisio, P.C.; Altieri, D.C. Control of apoptosis and mitotic spindle checkpoint by survivin. Nature, 1998, 396(6711), 580-584.
[http://dx.doi.org/10.1038/25141] [PMID: 9859993]
[13]
Park, S.H.; Shin, I.; Park, S.H.; Kim, N.D.; Shin, I. An inhibitor of the interaction of survivin with Smac in mitochondria promotes apoptosis. Chem. Asian J., 2019, 14(22), 4035-4041.
[http://dx.doi.org/10.1002/asia.201900587] [PMID: 31251464]
[14]
Miliaraki, M.; Briassoulis, P.; Ilia, S.; Polonifi, A.; Mantzourani, M.; Briassouli, E.; Vardas, K.; Nanas, S.; Pistiki, A.; Theodorakopoulou, M.; Tavladaki, T.; Spanaki, A.M.; Kondili, E.; Dimitriou, H.; Tsiodras, S.; Georgopoulos, D.; Armaganidis, A.; Daikos, G.; Briassoulis, G. Survivin and caspases serum protein levels and survivin variants mRNA expression in sepsis. Sci. Rep., 2021, 11(1), 1049.
[http://dx.doi.org/10.1038/s41598-020-78208-2] [PMID: 33441606]
[15]
Sarvagalla, S.; Lin, T.Y.; Kondapuram, S.K.; Cheung, C.H.A.; Coumar, M.S. Survivin - caspase protein-protein interaction: Experimental evidence and computational investigations to decipher the hotspot residues for drug targeting. J. Mol. Struct., 2021, 1229.
[http://dx.doi.org/10.1016/j.molstruc.2020.129619]
[16]
Martínez-García, D.; Manero-Rupérez, N.; Quesada, R.; Korrodi-Gregório, L.; Soto-Cerrato, V. Therapeutic strategies involving survivin inhibition in cancer. Med. Res. Rev., 2019, 39(3), 887-909.
[http://dx.doi.org/10.1002/med.21547] [PMID: 30421440]
[17]
Miyamoto, R.; Tani, H.; Ikeda, T.; Saima, H.; Tamura, K.; Bonkobara, M. Commitment toward cell death by activation of autophagy with survivin inhibitor YM155 in two canine squamous cell carcinoma cell lines with high expression of survivin. Res. Vet. Sci., 2021, 135, 412-415.
[http://dx.doi.org/10.1016/j.rvsc.2020.10.025] [PMID: 33160684]
[18]
Peery, R.C.; Liu, J.Y.; Zhang, J.T. Targeting survivin for therapeutic discovery: Past, present, and future promises. Drug Discov. Today, 2017, 22(10), 1466-1477.
[http://dx.doi.org/10.1016/j.drudis.2017.05.009] [PMID: 28577912]
[19]
Qi, J.; Dong, Z.; Liu, J.; Peery, R.C.; Zhang, S.; Liu, J.Y.; Zhang, J.T. Effective targeting of the survivin dimerization interface with small-molecule inhibitors. Cancer Res., 2016, 76(2), 453-462.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-1874] [PMID: 26744521]
[20]
Sabour, R.; Harras, M.F.; Mehany, A.B.M. Design, synthesis, cytotoxicity screening and molecular docking of new 3-cyanopyridines as survivin inhibitors and apoptosis inducers. Bioorg. Chem., 2020, 94, 103358.
[http://dx.doi.org/10.1016/j.bioorg.2019.103358] [PMID: 31679838]
[21]
Sabour, R.; Harras, M.F.; Mohamed Al Kamaly, O.; Altwaijry, N. Discovery of novel 3-cyanopyridines as survivin modulators and apoptosis inducers. Molecules, 2020, 25(21), E4892.
[http://dx.doi.org/10.3390/molecules25214892] [PMID: 33105831]
[22]
Vallet, C.; Aschmann, D.; Beuck, C.; Killa, M.; Meiners, A.; Mertel, M.; Ehlers, M.; Bayer, P.; Schmuck, C.; Giese, M.; Knauer, S.K. Functional disruption of the cancer-relevant interaction between survivin and histone H3 with a guanidiniocarbonyl pyrrole ligand. Angew. Chem. Int. Ed. Engl., 2020, 59(14), 5567-5571.
[http://dx.doi.org/10.1002/anie.201915400] [PMID: 31916356]
[23]
Zhou, J.F.; Gong, G.X.; Zhu, F.X.; Zhi, S.J. Microwave promoted one-pot synthesis of 3-(2-amino-3-cyano-4-arylpyrid-6-yl) coumarins. Chin. Chem. Lett., 2009, 20(1), 37-39.
[http://dx.doi.org/10.1016/j.cclet.2008.10.006]
[24]
Marwen, N.; Sathesh, B.; Kathryn, N.R.; Sheldon, D.; Shafinaz, F.C.; Imran, S.; Piotr, D.; Traian, S.; Christopher, I.B.; Araz, J.; Enrico, O. Purisima. J. Chem. Inf. Model., 2007, 47(1), 122-133.
[PMID: 17238257]
[25]
Tang, J.; Wang, L.; Yao, Y.; Zhang, L.; Wang, W. One-pot synthesis of 2-amino-3-cyanopyridine derivatives catalyzed by ytterbium perfluorooctanoate. Tetrahedron Lett., 2011, 52(4), 509-511. [Yb(PFO)3]
[http://dx.doi.org/10.1016/j.tetlet.2010.11.102]
[26]
Ghorbani-Vaghei, R.; Toghraei-Semiromi, Z.; Karimi-Nami, R. One-pot synthesis of 2-amino-3-cyanopyridine derivatives under solvent-free conditions. C. R. Chim., 2013, 16(12), 1111-1117.
[http://dx.doi.org/10.1016/j.crci.2013.06.006]
[27]
Khaksar, S.; Yaghoobi, M. A concise and versatile synthesis of 2-amino-3-cyanopyridine derivatives in 2,2,2-trifluoroethanol. J. Fluor. Chem., 2012, 142, 41-44.
[http://dx.doi.org/10.1016/j.jfluchem.2012.06.009]
[28]
Xu, L.; Shi, L.; Qiu, S.; Chen, S.; Lin, M.; Xiang, Y.; Zhao, C.; Zhu, J.; Shen, L.; Zuo, Z. Design, synthesis, and evaluation of cyanopyridines as anti-colorectal cancer agents via inhibiting STAT3 pathway. Drug Des. Devel. Ther., 2019, 13, 3369-3381.
[http://dx.doi.org/10.2147/DDDT.S217800] [PMID: 31576111]
[29]
Xu, L.; Qiu, S.; Yang, L.; Xu, H.; Liu, X.; Fan, S.; Cui, R.; Fu, W.; Zhao, C.; Shen, L.; Wang, L.; Huang, X. Aminocyanopyridines as anti-lung cancer agents by inhibiting the STAT3 pathway. Mol. Carcinog., 2019, 58(8), 1512-1525.
[http://dx.doi.org/10.1002/mc.23038] [PMID: 31069881]
[30]
Quispe, P.A.; Lavecchia, M.J.; León, I.E. On the discovery of a potential survivin inhibitor combining computational tools and cytotoxicity studies. Heliyon, 2019, 5(8), e02238.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02238] [PMID: 31440594]
[31]
Song, Y.L.; Tian, C.P.; Wu, Y.; Jiang, L.H.; Shen, L.Q. Design, synthesis and antitumor activity of steroidal pyridine derivatives based on molecular docking. Steroids, 2019, 143, 53-61.
[http://dx.doi.org/10.1016/j.steroids.2018.12.007] [PMID: 30590064]
[32]
Wu, C.; Mao, L.; Huang, X.; Fu, W.; Cai, X.; Cai, Y.; Shen, L.; Ye, X. Theoretical study of the intermolecular recognition mechanism between Survivin and substrate based on conserved binding mode analysis. J. Mol. Graph. Model., 2018, 83, 53-63.
[http://dx.doi.org/10.1016/j.jmgm.2018.05.001] [PMID: 29772403]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy