Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

The Role of Water Network Chemistry in Proteins: A Structural Bioinformatics Perspective in Drug Discovery and Development

Author(s): Masilamani Elizabeth Sobhia*, Ketan Ghosh, Gajjala Siva Kumar, Srikanth Sivangula, Kapil Laddha, Sonia Kumari and Harish Kumar

Volume 22, Issue 20, 2022

Published on: 27 August, 2022

Page: [1636 - 1653] Pages: 18

DOI: 10.2174/1568026622666220726114407

Price: $65

Abstract

Background: Although water is regarded as a simple molecule, its ability to create hydrogen bonds makes it a highly complex molecule that is crucial to molecular biology. Water molecules are extremely small and are made up of two different types of atoms, each of which plays a particular role in biological processes. Despite substantial research, understanding the hydration chemistry of protein-ligand complexes remains difficult. Researchers are working on harnessing water molecules to solve unsolved challenges due to the development of computer technologies.

Objectives: The goal of this review is to highlight the relevance of water molecules in protein environments, as well as to demonstrate how the lack of well-resolved crystal structures of proteins functions as a bottleneck in developing molecules that target critical therapeutic targets. In addition, the purpose of this article is to provide a common platform for researchers to consider numerous aspects connected to water molecules.

Conclusion: Considering structure-based drug design, this review will make readers aware of the different aspects related to water molecules. It will provide an amalgamation of information related to the protein environment, linking the thermodynamic fingerprints of water with key therapeutic targets. It also demonstrates that a large number of computational tools are available to study the water network chemistry with the surrounding protein environment. It also emphasizes the need for computational methods in addressing gaps left by a poorly resolved crystallized protein structure.

Keywords: Thermodynamics, Water network, Bioinformatics, Drug discovery, Directionality, Molecular Dynamics, water map.

Graphical Abstract
[1]
Ball, P. Water as an active constituent in cell biology. Chem. Rev., 2008, 108(1), 74-108.
[http://dx.doi.org/10.1021/cr068037a] [PMID: 18095715]
[2]
Levitt, M.; Park, B.H. Water: Now you see it, now you don’t. Structure, 1993, 1(4), 223-226.
[http://dx.doi.org/10.1016/0969-2126(93)90011-5] [PMID: 8081736]
[3]
Karplus, P.A.; Faerman, C. Ordered water in macromolecular structure. Curr. Opin. Struct. Biol., 1994, 4(5), 770-776.
[http://dx.doi.org/10.1016/S0959-440X(94)90178-3]
[4]
Cozzini, P.; Fornabaio, M.; Marabotti, A.; Abraham, D.J.; Kellogg, G.E.; Mozzarelli, A. Free energy of ligand binding to protein: Evaluation of the contribution of water molecules by computational methods. Curr. Med. Chem., 2004, 11(23), 3093-3118.
[http://dx.doi.org/10.2174/0929867043363929] [PMID: 15579003]
[5]
Nittinger, E.; Schneider, N.; Lange, G.; Rarey, M. Evidence of water molecules--a statistical evaluation of water molecules based on electron density. J. Chem. Inf. Model., 2015, 55(4), 771-783.
[http://dx.doi.org/10.1021/ci500662d] [PMID: 25742501]
[6]
Jeszenői, N.; Bálint, M.; Horváth, I.; van der Spoel, D.; Hetényi, C. Exploration of interfacial hydration networks of target-ligand complexes. J. Chem. Inf. Model., 2016, 56(1), 148-158.
[http://dx.doi.org/10.1021/acs.jcim.5b00638] [PMID: 26704050]
[7]
Ladbury, J.E. Just add water! The effect of water on the specificity of protein-ligand binding sites and its potential application to drug design. Chem. Biol., 1996, 3(12), 973-980.
[http://dx.doi.org/10.1016/S1074-5521(96)90164-7] [PMID: 9000013]
[8]
Biela, A.; Khayat, M.; Tan, H.; Kong, J.; Heine, A.; Hangauer, D.; Klebe, G. Impact of ligand and protein desolvation on ligand binding to the S1 pocket of thrombin. J. Mol. Biol., 2012, 418(5), 350-366.
[http://dx.doi.org/10.1016/j.jmb.2012.01.054] [PMID: 22366545]
[9]
Kauzmann, W. Some factors in the interpretation of protein denaturation. Adv. Protein Chem., 1959, 14, 1-63.
[http://dx.doi.org/10.1016/S0065-3233(08)60608-7] [PMID: 14404936]
[10]
Stickle, D.F.; Presta, L.G.; Dill, K.A.; Rose, G.D. Hydrogen bonding in globular proteins. J. Mol. Biol., 1992, 226(4), 1143-1159.
[http://dx.doi.org/10.1016/0022-2836(92)91058-W] [PMID: 1518048]
[11]
Rose, G.D.; Wolfenden, R. Hydrogen bonding, hydrophobicity, packing, and protein folding. Annu. Rev. Biophys. Biomol. Struct., 1993, 22(1), 381-415.
[http://dx.doi.org/10.1146/annurev.bb.22.060193.002121] [PMID: 8347995]
[12]
Aznauryan, M.; Nettels, D.; Holla, A.; Hofmann, H.; Schuler, B. Single-molecule spectroscopy of cold denaturation and the temperature-induced collapse of unfolded proteins. J. Am. Chem. Soc., 2013, 135(38), 14040-14043.
[http://dx.doi.org/10.1021/ja407009w] [PMID: 24010673]
[13]
Mancera, R.L. Molecular modeling of hydration in drug design. Curr. Opin. Drug Discov. Devel., 2007, 10(3), 275-280.
[PMID: 17554853]
[14]
de Beer, S.B.; Vermeulen, N.P.; Oostenbrink, C. The role of water molecules in computational drug design. Curr. Top. Med. Chem., 2010, 10(1), 55-66.
[http://dx.doi.org/10.2174/156802610790232288] [PMID: 19929830]
[15]
Wong, S.E.; Lightstone, F.C. Accounting for water molecules in drug design. Expert Opin. Drug Discov., 2011, 6(1), 65-74.
[http://dx.doi.org/10.1517/17460441.2011.534452] [PMID: 22646827]
[16]
Cappel, D.; Sherman, W.; Beuming, T. Calculating water thermodynamics in the binding site of proteins-applications of WaterMap to drug discovery. Curr. Top. Med. Chem., 2017, 17(23), 2586-2598.
[http://dx.doi.org/10.2174/1568026617666170414141452] [PMID: 28413953]
[17]
Geschwindner, S.; Ulander, J. The current impact of water thermodynamics for small-molecule drug discovery. Expert Opin. Drug Discov., 2019, 14(12), 1221-1225.
[http://dx.doi.org/10.1080/17460441.2019.1664468] [PMID: 31502891]
[18]
Grewal, B.K.; Bhat, J.; Sobhia, M.E. Molecular dynamics approach to probe PKCβII-ligand interactions and influence of crystal water molecules on these interactions. Expert Opin. Ther. Targets, 2015, 19(1), 13-23.
[http://dx.doi.org/10.1517/14728222.2014.975795] [PMID: 25363346]
[19]
Rossato, G.; Ernst, B.; Vedani, A.; Smiesko, M. AcquaAlta: A directional approach to the solvation of ligand-protein complexes. J. Chem. Inf. Model., 2011, 51(8), 1867-1881.
[http://dx.doi.org/10.1021/ci200150p] [PMID: 21714532]
[20]
García-Sosa, A.T. Hydration properties of ligands and drugs in protein binding sites: Tightly-bound, bridging water molecules and their effects and consequences on molecular design strategies. J. Chem. Inf. Model., 2013, 53(6), 1388-1405.
[http://dx.doi.org/10.1021/ci3005786] [PMID: 23662606]
[21]
Johnson, T.O.; Ermolieff, J.; Jirousek, M.R. Protein tyrosine phosphatase 1B inhibitors for diabetes. Nat. Rev. Drug Discov., 2002, 1(9), 696-709.
[http://dx.doi.org/10.1038/nrd895] [PMID: 12209150]
[22]
Cheng, T.; Li, Q.; Zhou, Z.; Wang, Y.; Bryant, S.H. Structure-based virtual screening for drug discovery: A problem-centric review. AAPS J., 2012, 14(1), 133-141.
[http://dx.doi.org/10.1208/s12248-012-9322-0] [PMID: 22281989]
[23]
Wlodawer, A.; Minor, W.; Dauter, Z.; Jaskolski, M. Protein crystallography for non-crystallographers, or how to get the best (but not more) from published macromolecular structures. FEBS J., 2008, 275(1), 1-21.
[http://dx.doi.org/10.1111/j.1742-4658.2007.06178.x] [PMID: 18034855]
[24]
Creighton, T.E. Proteins: Structures and molecular properties; Macmillan: New York, 1993.
[25]
Lenselink, E.B.; Beuming, T.; Sherman, W.; van Vlijmen, H.W.; IJzerman, A.P. Selecting an optimal number of binding site waters to improve virtual screening enrichments against the adenosine A2A receptor. J. Chem. Inf. Model., 2014, 54(6), 1737-1746.
[http://dx.doi.org/10.1021/ci5000455] [PMID: 24835542]
[26]
Carugo, O.; Bordo, D. How many water molecules can be detected by protein crystallography? Acta Crystallogr. D Biol. Crystallogr., 1999, 55(Pt 2), 479-483.
[http://dx.doi.org/10.1107/S0907444998012086] [PMID: 10089359]
[27]
Olivella García, M. HomolWat: A web server tool to incorporate «homologous» water molecules into GPCR structures. Nucleic Acids Res., 2020, 48(1), 54-59.
[28]
Helms, V. Protein dynamics tightly connected to the dynamics of surrounding and internal water molecules. ChemPhysChem, 2007, 8(1), 23-33.
[http://dx.doi.org/10.1002/cphc.200600298] [PMID: 17131430]
[29]
Hubbard, S.J.; Argos, P. Cavities and packing at protein interfaces. Protein Sci., 1994, 3(12), 2194-2206.
[http://dx.doi.org/10.1002/pro.5560031205] [PMID: 7756979]
[30]
Park, S.; Saven, J.G. Statistical and molecular dynamics studies of buried waters in globular proteins. Proteins, 2005, 60(3), 450-463.
[http://dx.doi.org/10.1002/prot.20511] [PMID: 15937899]
[31]
Priestle, J.P.; Schär, H.P.; Grütter, M.G. Crystallographic refinement of interleukin 1 beta at 2.0 A resolution. Proc. Natl. Acad. Sci. USA, 1989, 86(24), 9667-9671.
[http://dx.doi.org/10.1073/pnas.86.24.9667] [PMID: 2602367]
[32]
Ernst, J.A.; Clubb, R.T.; Zhou, H-X.; Gronenborn, A.M.; Clore, G.M. Demonstration of positionally disordered water within a protein hydrophobic cavity by NMR. Science, 1995, 267(5205), 1813-1817.
[http://dx.doi.org/10.1126/science.7892604] [PMID: 7892604]
[33]
Yu, B.; Blaber, M.; Gronenborn, A.M.; Clore, G.M.; Caspar, D.L. Disordered water within a hydrophobic protein cavity visualized by X-ray crystallography. Proc. Natl. Acad. Sci. USA, 1999, 96(1), 103-108.
[http://dx.doi.org/10.1073/pnas.96.1.103] [PMID: 9874779]
[34]
Hermans, J.; Shankar, S. The free energy of xenon binding to myoglobin from molecular dynamics simulation. Isr. J. Chem., 1986, 27(2), 225-227.
[http://dx.doi.org/10.1002/ijch.198600032]
[35]
Roux, B.; Nina, M.; Pomès, R.; Smith, J.C. Thermodynamic stability of water molecules in the bacteriorhodopsin proton channel: A molecular dynamics free energy perturbation study. Biophys. J., 1996, 71(2), 670-681.
[http://dx.doi.org/10.1016/S0006-3495(96)79267-6] [PMID: 8842206]
[36]
Zhang, L.; Hermans, J. Hydrophilicity of cavities in proteins. Proteins, 1996, 24(4), 433-438.
[http://dx.doi.org/10.1002/(SICI)1097-0134(199604)24:4<433::AID-PROT3>3.0.CO;2-F] [PMID: 9162944]
[37]
Richards, F.M. Areas, volumes, packing and protein structure. Annu. Rev. Biophys. Bioeng., 1977, 6(1), 151-176.
[http://dx.doi.org/10.1146/annurev.bb.06.060177.001055] [PMID: 326146]
[38]
Rashin, A.A.; Iofin, M.; Honig, B. Internal cavities and buried waters in globular proteins. Biochemistry, 1986, 25(12), 3619-3625.
[http://dx.doi.org/10.1021/bi00360a021] [PMID: 3718947]
[39]
Eriksson, A.E.; Baase, W.A.; Zhang, X-J.; Heinz, D.W.; Blaber, M.; Baldwin, E.P.; Matthews, B.W. Response of a protein structure to cavity-creating mutations and its relation to the hydrophobic effect. Science, 1992, 255(5041), 178-183.
[http://dx.doi.org/10.1126/science.1553543] [PMID: 1553543]
[40]
Buckle, A.M.; Cramer, P.; Fersht, A.R. Structural and energetic responses to cavity-creating mutations in hydrophobic cores: Observation of a buried water molecule and the hydrophilic nature of such hydrophobic cavities. Biochemistry, 1996, 35(14), 4298-4305.
[http://dx.doi.org/10.1021/bi9524676] [PMID: 8605178]
[41]
Kossiakoff, A.A.; Sintchak, M.D.; Shpungin, J.; Presta, L.G. Analysis of solvent structure in proteins using neutron D2O-H2O solvent maps: Pattern of primary and secondary hydration of trypsin. Proteins, 1992, 12(3), 223-236.
[http://dx.doi.org/10.1002/prot.340120303] [PMID: 1557350]
[42]
Fitzgerald, M.M.; Churchill, M.J.; McRee, D.E.; Goodin, D.B. Small molecule binding to an artificially created cavity at the active site of cytochrome c peroxidase. Biochemistry, 1994, 33(13), 3807-3818.
[http://dx.doi.org/10.1021/bi00179a004] [PMID: 8142383]
[43]
Pedersen, J.T.; Olsen, O.H.; Betzel, C.; Eschenburg, S.; Branner, S.; Hastrup, S. Cavity mutants of Savinase. Crystal structures and differential scanning calorimetry experiments give hints of the function of the buried water molecules in subtilisins. J. Mol. Biol., 1994, 242(3), 193-202.
[http://dx.doi.org/10.1006/jmbi.1994.1572] [PMID: 8089841]
[44]
Takano, K.; Ogasahara, K.; Kaneda, H.; Yamagata, Y.; Fujii, S.; Kanaya, E.; Kikuchi, M.; Oobatake, M.; Yutani, K. Contribution of hydrophobic residues to the stability of human lysozyme: Calorimetric studies and X-ray structural analysis of the five isoleucine to valine mutants. J. Mol. Biol., 1995, 254(1), 62-76.
[http://dx.doi.org/10.1006/jmbi.1995.0599] [PMID: 7473760]
[45]
Matthews, B.W. Structural and genetic analysis of the folding and function of T4 lysozyme. FASEB J., 1996, 10(1), 35-41.
[http://dx.doi.org/10.1096/fasebj.10.1.8566545] [PMID: 8566545]
[46]
Das, G.; Hickey, D.R.; McLendon, D.; McLendon, G.; Sherman, F. Dramatic thermostabilization of yeast iso-1-cytochrome c by an asparagine----isoleucine replacement at position 57. Proc. Natl. Acad. Sci. USA, 1989, 86(2), 496-499.
[http://dx.doi.org/10.1073/pnas.86.2.496] [PMID: 2536164]
[47]
Hickey, D.R.; Berghuis, A.M.; Lafond, G.; Jaeger, J.A.; Cardillo, T.S.; McLendon, D.; Das, G.; Sherman, F.; Brayer, G.D.; McLendon, G. Enhanced thermodynamic stabilities of yeast iso-1-cytochromes c with amino acid replacements at positions 52 and 102. J. Biol. Chem., 1991, 266(18), 11686-11694.
[http://dx.doi.org/10.1016/S0021-9258(18)99011-3] [PMID: 1646814]
[48]
Lett, C.M.; Berghuis, A.M.; Frey, H.E.; Lepock, J.R.; Guillemette, J.G. The role of a conserved water molecule in the redox-dependent thermal stability of iso-1-cytochrome c. J. Biol. Chem., 1996, 271(46), 29088-29093.
[http://dx.doi.org/10.1074/jbc.271.46.29088] [PMID: 8910563]
[49]
Vriend, G.; Berendsen, H.J.; van der Zee, J.R.; van den Burg, B.; Venema, G.; Eijsink, V.G. Stabilization of the neutral protease of Bacillus stearothermophilus by removal of a buried water molecule. Protein Eng., 1991, 4(8), 941-945.
[http://dx.doi.org/10.1093/protein/4.8.941] [PMID: 1817257]
[50]
Berndt, K.D.; Beunink, J.; Schröder, W.; Wüthrich, K. Designed replacement of an internal hydration water molecule in BPTI: Structural and functional implications of a glycine-to-serine mutation. Biochemistry, 1993, 32(17), 4564-4570.
[http://dx.doi.org/10.1021/bi00068a012] [PMID: 7683491]
[51]
Takano, K.; Yamagata, Y.; Fujii, S.; Yutani, K. Contribution of the hydrophobic effect to the stability of human lysozyme: Calorimetric studies and X-ray structural analyses of the nine valine to alanine mutants. Biochemistry, 1997, 36(4), 688-698.
[http://dx.doi.org/10.1021/bi9621829] [PMID: 9020766]
[52]
Shahi, A.; Arunan, E. Why are hydrogen bonds directional? J. Chem. Sci., 2016, 128(10), 1571-1577.
[http://dx.doi.org/10.1007/s12039-016-1156-3]
[53]
Goswami, M.; Arunan, E. The hydrogen bond: A molecular beam microwave spectroscopist’s view with a universal appeal. Phys. Chem. Chem. Phys., 2009, 11(40), 8974-8983.
[http://dx.doi.org/10.1039/b907708a] [PMID: 19812815]
[54]
Wood, P.A.; Allen, F.H.; Pidcock, E. Hydrogen-bond directionality at the donor H atom—analysis of interaction energies and database statistics. CrystEngComm, 2009, 11(8), 1563-1571.
[http://dx.doi.org/10.1039/b902330e]
[55]
Lu, S.Y.; Jiang, Y.J.; Lv, J.; Zou, J.W.; Wu, T.X. Role of bridging water molecules in GSK3β-inhibitor complexes: Insights from QM/MM, MD, and molecular docking studies. J. Comput. Chem., 2011, 32(9), 1907-1918.
[http://dx.doi.org/10.1002/jcc.21775] [PMID: 21469159]
[56]
Preiss, L.; Langer, J.D.; Yildiz, Ö.; Eckhardt-Strelau, L.; Guillemont, J.E.; Koul, A.; Meier, T. Structure of the mycobacterial ATP synthase Fo rotor ring in complex with the anti-TB drug bedaquiline. Sci. Adv., 2015, 1(4), e1500106.
[http://dx.doi.org/10.1126/sciadv.1500106] [PMID: 26601184]
[57]
Raghunathan, S.; El Hage, K.; Desmond, J.L.; Zhang, L.; Meuwly, M. The role of water in the stability of wild-type and mutant insulin dimers. J. Phys. Chem. B, 2018, 122(28), 7038-7048.
[http://dx.doi.org/10.1021/acs.jpcb.8b04448] [PMID: 29916244]
[58]
Krimmer, S.G.; Cramer, J.; Betz, M.; Fridh, V.; Karlsson, R.; Heine, A.; Klebe, G. Rational design of thermodynamic and kinetic binding profiles by optimizing surface water networks coating protein-bound ligands. J. Med. Chem., 2016, 59(23), 10530-10548.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00998] [PMID: 27933956]
[59]
Lie, M.A.; Thomsen, R.; Pedersen, C.N.; Schiøtt, B.; Christensen, M.H. Molecular docking with ligand attached water molecules. J. Chem. Inf. Model., 2011, 51(4), 909-917.
[http://dx.doi.org/10.1021/ci100510m] [PMID: 21452852]
[60]
Petrone, P.M.; Garcia, A.E. MHC-peptide binding is assisted by bound water molecules. J. Mol. Biol., 2004, 338(2), 419-435.
[http://dx.doi.org/10.1016/j.jmb.2004.02.039] [PMID: 15066441]
[61]
Pavlovicz, R.E.; Park, H.; DiMaio, F. Efficient consideration of coordinated water molecules improves computational protein-protein and protein-ligand docking discrimination. PLOS Comput. Biol., 2020, 16(9), e1008103.
[http://dx.doi.org/10.1371/journal.pcbi.1008103] [PMID: 32956350]
[62]
Zsidó, B.Z.; Hetényi, C. The role of water in ligand binding. Curr. Opin. Struct. Biol., 2021, 67, 1-8.
[http://dx.doi.org/10.1016/j.sbi.2020.08.002] [PMID: 32942197]
[63]
Lukac, I.; Wyatt, P.G.; Gilbert, I.H.; Zuccotto, F. Ligand binding: Evaluating the contribution of the water molecules network using the Fragment Molecular Orbital method. J. Comput. Aided Mol. Des., 2021, 35(10), 1025-1036.
[http://dx.doi.org/10.1007/s10822-021-00416-3] [PMID: 34458939]
[64]
Wahl, J.; Smieško, M. Thermodynamic insight into the effects of water displacement and rearrangement upon ligand modifications using molecular dynamics simulations. ChemMedChem, 2018, 13(13), 1325-1335.
[http://dx.doi.org/10.1002/cmdc.201800093] [PMID: 29726604]
[65]
Schiebel, J.; Gaspari, R.; Wulsdorf, T.; Ngo, K.; Sohn, C.; Schrader, T.E.; Cavalli, A.; Ostermann, A.; Heine, A.; Klebe, G. Intriguing role of water in protein-ligand binding studied by neutron crystallography on trypsin complexes. Nat. Commun., 2018, 9(1), 3559.
[http://dx.doi.org/10.1038/s41467-018-05769-2] [PMID: 30177695]
[66]
Roberts, B.C.; Mancera, R.L. Ligand-protein docking with water molecules. J. Chem. Inf. Model., 2008, 48(2), 397-408.
[http://dx.doi.org/10.1021/ci700285e] [PMID: 18211049]
[67]
Piotto, S.; Di Biasi, L.; Fino, R.; Parisi, R.; Sessa, L.; Concilio, S. Yada: A novel tool for molecular docking calculations. J. Comput. Aided Mol. Des., 2016, 30(9), 753-759.
[http://dx.doi.org/10.1007/s10822-016-9953-9] [PMID: 27565794]
[68]
Kuno, M.; Palangsuntikul, R.; Hannongbua, S. Investigation on an orientation and interaction energy of the water molecule in the HIV-1 reverse transcriptase active site by quantum chemical calculations. J. Chem. Inf. Comput. Sci., 2003, 43(5), 1584-1590.
[http://dx.doi.org/10.1021/ci0203850] [PMID: 14502493]
[69]
Blower, T.R.; Williamson, B.H.; Kerns, R.J.; Berger, J.M. Crystal structure and stability of gyrase-fluoroquinolone cleaved complexes from Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA, 2016, 113(7), 1706-1713.
[http://dx.doi.org/10.1073/pnas.1525047113] [PMID: 26792525]
[70]
Putignano, V.; Rosato, A.; Banci, L.; Andreini, C. MetalPDB in 2018: A database of metal sites in biological macromolecular structures. Nucleic Acids Res., 2018, 46(D1), D459-D464.
[http://dx.doi.org/10.1093/nar/gkx989] [PMID: 29077942]
[71]
Dubey, K.D.; Shaik, S. Cytochrome P450—the wonderful nanomachine revealed through dynamic simulations of the catalytic cycle. Acc. Chem. Res., 2019, 52(2), 389-399.
[http://dx.doi.org/10.1021/acs.accounts.8b00467] [PMID: 30633519]
[72]
Bertini, G.; Gray, H.B.; Gray, H.; Valentine, J.S.; Stiefel, E.I.; Stiefel, E. Biological inorganic chemistry: Structure and reactivity; Scion Publishing: UK, 2007.
[73]
Da Silva, J.F.; Williams, R.J.P. The biological chemistry of the elements: The inorganic chemistry of life; Oxford University Press: Oxford, UK, 2001.
[74]
Berg, J.M. Principles of bioinorganic chemistry; Scion Publishing: UK, 1994.
[75]
Sgrignani, J.; Magistrato, A. The structural role of Mg2+ ions in a class I RNA polymerase ribozyme: A molecular simulation study. J. Phys. Chem. B, 2012, 116(7), 2259-2268.
[http://dx.doi.org/10.1021/jp206475d] [PMID: 22268599]
[76]
Casalino, L.; Magistrato, A. Structural, dynamical and catalytic interplay between Mg2+ ions and RNA. Vices and virtues of atomistic simulations. Inorg. Chim. Acta, 2016, 452, 73-81.
[http://dx.doi.org/10.1016/j.ica.2016.02.011]
[77]
Lutsenko, S. Human copper homeostasis: A network of interconnected pathways. Curr. Opin. Chem. Biol., 2010, 14(2), 211-217.
[http://dx.doi.org/10.1016/j.cbpa.2010.01.003] [PMID: 20117961]
[78]
Rosner, K.E.; Guo, Z.; Orth, P.; Shipps, G.W., Jr; Belanger, D.B.; Chan, T.Y.; Curran, P.J.; Dai, C.; Deng, Y.; Girijavallabhan, V.M.; Hong, L.; Lavey, B.J.; Lee, J.F.; Li, D.; Liu, Z.; Popovici-Muller, J.; Ting, P.C.; Vaccaro, H.; Wang, L.; Wang, T.; Yu, W.; Zhou, G.; Niu, X.; Sun, J.; Kozlowski, J.A.; Lundell, D.J.; Madison, V.; McKittrick, B.; Piwinski, J.J.; Shih, N.Y.; Arshad Siddiqui, M.; Strickland, C.O. The discovery of novel tartrate-based TNF-α converting enzyme (TACE) inhibitors. Bioorg. Med. Chem. Lett., 2010, 20(3), 1189-1193.
[http://dx.doi.org/10.1016/j.bmcl.2009.12.004] [PMID: 20022498]
[79]
Burley, S.K.; Berman, H.M.; Bhikadiya, C.; Bi, C.; Chen, L.; Costanzo, L.D.; Christie, C.; Duarte, J.M.; Dutta, S.; Feng, Z.; Ghosh, S.; Goodsell, D.S.; Green, R.K.; Guranovic, V.; Guzenko, D.; Hudson, B.P.; Liang, Y.; Lowe, R.; Peisach, E.; Periskova, I.; Randle, C.; Rose, A.; Sekharan, M.; Shao, C.; Tao, Y-P.; Valasatava, Y.; Voigt, M.; Westbrook, J.; Young, J.; Zardecki, C.; Zhuravleva, M.; Kurisu, G.; Nakamura, H.; Kengaku, Y.; Cho, H.; Sato, J.; Kim, J.Y.; Ikegawa, Y.; Nakagawa, A.; Yamashita, R.; Kudou, T.; Bekker, G-J.; Suzuki, H.; Iwata, T.; Yokochi, M.; Kobayashi, N.; Fujiwara, T.; Velankar, S.; Kleywegt, G.J.; Anyango, S.; Armstrong, D.R.; Berrisford, J.M.; Conroy, M.J.; Dana, J.M.; Deshpande, M.; Gane, P.; Gáborová, R.; Gupta, D.; Gutmanas, A.; Koča, J.; Mak, L.; Mir, S.; Mukhopadhyay, A.; Nadzirin, N.; Nair, S.; Patwardhan, A.; Paysan-Lafosse, T.; Pravda, L.; Salih, O.; Sehnal, D.; Varadi, M.; Vařeková, R.; Markley, J.L.; Hoch, J.C.; Romero, P.R.; Baskaran, K.; Maziuk, D.; Ulrich, E.L.; Wedell, J.R.; Yao, H.; Livny, M.; Ioannidis, Y.E. Protein Data Bank: The single global archive for 3D macromolecular structure data. Nucleic Acids Res., 2019, 47(D1), D520-D528.
[http://dx.doi.org/10.1093/nar/gky949] [PMID: 30357364]
[80]
Sobhia, M.E.; Kumar, G.S.; Sivangula, S.; Ghosh, K.; Singh, H.; Haokip, T.; Gibson, J. Rapid structure-based identification of potential SARS-CoV-2 main protease inhibitors. Future Med. Chem., 2021, 13(17), 1435-1450.
[http://dx.doi.org/10.4155/fmc-2020-0264] [PMID: 34169728]
[81]
Tripathi, T. Calculation of thermodynamic parameters of protein unfolding using far-ultraviolet circular dichroism. J. Proteins Proteom., 2013, 4(2), 85-91.
[82]
Rhee, Y.M.; Sorin, E.J.; Jayachandran, G.; Lindahl, E.; Pande, V.S. Simulations of the role of water in the protein-folding mechanism. Proc. Natl. Acad. Sci. USA, 2004, 101(17), 6456-6461.
[http://dx.doi.org/10.1073/pnas.0307898101] [PMID: 15090647]
[83]
Covalt, J.C., Jr; Roy, M.; Jennings, P.A. Core and surface mutations affect folding kinetics, stability and cooperativity in IL-1 β: Does alteration in buried water play a role? J. Mol. Biol., 2001, 307(2), 657-669.
[http://dx.doi.org/10.1006/jmbi.2001.4482] [PMID: 11254388]
[84]
Biswal, J.; Jayaprakash, P.; Rangaswamy, R.; Jeyakanthan, J. Synergistic Effects of Hydration Sites in Protein Stability: A Theoretical Water Thermodynamics Approach. In: Frontiers in Protein Structure, Function, and Dynamics; Springer, 2020; pp. 187-212.
[http://dx.doi.org/10.1007/978-981-15-5530-5_8]
[85]
Lu, Y.; Wang, R.; Yang, C-Y.; Wang, S. Analysis of ligand-bound water molecules in high-resolution crystal structures of protein-ligand complexes. J. Chem. Inf. Model., 2007, 47(2), 668-675.
[http://dx.doi.org/10.1021/ci6003527] [PMID: 17266298]
[86]
Ahluwalia, D.; Kumar, A.; Warkar, S.G.; Deshmukh, M.M. Effect of substitutions on the geometry and intramolecular hydrogen bond strength in meta-benziporphodimethenes: A new porphyrin analogue. J. Mol. Struct., 2020, 1220, 128773.
[http://dx.doi.org/10.1016/j.molstruc.2020.128773]
[87]
Imai, T.; Harano, Y.; Kinoshita, M.; Kovalenko, A.; Hirata, F. A theoretical analysis on hydration thermodynamics of proteins. J. Chem. Phys., 2006, 125(2), 24911.
[http://dx.doi.org/10.1063/1.2213980] [PMID: 16848615]
[88]
Darby, J.F.; Hopkins, A.P.; Shimizu, S.; Roberts, S.M.; Brannigan, J.A.; Turkenburg, J.P.; Thomas, G.H.; Hubbard, R.E.; Fischer, M. Water networks can determine the affinity of ligand binding to proteins. J. Am. Chem. Soc., 2019, 141(40), 15818-15826.
[http://dx.doi.org/10.1021/jacs.9b06275] [PMID: 31518131]
[89]
Sun, Z.; Liu, Q.; Qu, G.; Feng, Y.; Reetz, M.T. Utility of B-factors in protein science: Interpreting rigidity, flexibility, and internal motion and engineering thermostability. Chem. Rev., 2019, 119(3), 1626-1665.
[http://dx.doi.org/10.1021/acs.chemrev.8b00290] [PMID: 30698416]
[90]
Biela, A.; Nasief, N.N.; Betz, M.; Heine, A.; Hangauer, D.; Klebe, G. Dissecting the hydrophobic effect on the molecular level: The role of water, enthalpy, and entropy in ligand binding to thermolysin. Angew. Chem. Int. Ed. Engl., 2013, 52(6), 1822-1828.
[http://dx.doi.org/10.1002/anie.201208561] [PMID: 23283700]
[91]
Islam, M.M.; Kobayashi, K.; Kidokoro, S.I.; Kuroda, Y. Hydrophobic surface residues can stabilize a protein through improved water-protein interactions. FEBS J., 2019, 286(20), 4122-4134.
[http://dx.doi.org/10.1111/febs.14941] [PMID: 31175706]
[92]
Abel, R.; Young, T.; Farid, R.; Berne, B.J.; Friesner, R.A. Role of the active-site solvent in the thermodynamics of factor Xa ligand binding. J. Am. Chem. Soc., 2008, 130(9), 2817-2831.
[http://dx.doi.org/10.1021/ja0771033] [PMID: 18266362]
[93]
SZMAP 1.6.3.0. OpenEye Scientific Software, Santa Fe, NM. 2013. Available from: http://www.eyesopen.com
[94]
Hüfner-Wulsdorf, T.; Klebe, G. Protein-ligand complex solvation thermodynamics: Development, parameterization, and testing of gist-based solvent functionals. J. Chem. Inf. Model., 2020, 60(3), 1409-1423.
[http://dx.doi.org/10.1021/acs.jcim.9b01109] [PMID: 31922753]
[95]
Mahmoud, A.H.; Masters, M.R.; Yang, Y.; Lill, M.A. Elucidating the multiple roles of hydration for accurate protein-ligand binding prediction via deep learning. Commun. Chem., 2020, 3(1), 1-13.
[http://dx.doi.org/10.1038/s42004-020-0261-x]
[96]
Hüfner-Wulsdorf, T.; Klebe, G. Advancing GIST-based solvent functionals through multiobjective optimization of solvent enthalpy and entropy scoring terms. J. Chem. Inf. Model., 2020, 60(12), 6654-6665.
[http://dx.doi.org/10.1021/acs.jcim.0c01133] [PMID: 33264016]
[97]
Huggins, D.J. Quantifying the entropy of binding for water molecules in protein cavities by computing correlations. Biophys. J., 2015, 108(4), 928-936.
[http://dx.doi.org/10.1016/j.bpj.2014.12.035] [PMID: 25692597]
[98]
Finkelstein, A.V.; Janin, J. The price of lost freedom: Entropy of bimolecular complex formation. Protein Eng., 1989, 3(1), 1-3.
[http://dx.doi.org/10.1093/protein/3.1.1] [PMID: 2813338]
[99]
Salaniwal, S.; Manas, E.S.; Alvarez, J.C.; Unwalla, R.J. Critical evaluation of methods to incorporate entropy loss upon binding in high-throughput docking. Proteins, 2007, 66(2), 422-435.
[http://dx.doi.org/10.1002/prot.21180] [PMID: 17068803]
[100]
Persson, F.; Halle, B. Transient access to the protein interior: Simulation versus NMR. J. Am. Chem. Soc., 2013, 135(23), 8735-8748.
[http://dx.doi.org/10.1021/ja403405d] [PMID: 23675835]
[101]
Morozenko, A.; Leontyev, I.V.; Stuchebrukhov, A.A. Dipole moment and binding energy of water in proteins from crystallographic analysis. J. Chem. Theory Comput., 2014, 10(10), 4618-4623.
[http://dx.doi.org/10.1021/ct500358r] [PMID: 25328496]
[102]
Morozenko, A.; Stuchebrukhov, A.A. Dowser++, a new method of hydrating protein structures. Proteins, 2016, 84(10), 1347-1357.
[http://dx.doi.org/10.1002/prot.25081] [PMID: 27273373]
[103]
Ross, G.A.; Morris, G.M.; Biggin, P.C. Rapid and accurate prediction and scoring of water molecules in protein binding sites. PLoS One, 2012, 7(3), e32036.
[http://dx.doi.org/10.1371/journal.pone.0032036] [PMID: 22396746]
[104]
Sridhar, A.; Ross, G.A.; Biggin, P.C. Waterdock 2.0: Water placement prediction for Holo-structures with a pymol plugin. PLoS One, 2017, 12(2), e0172743.
[http://dx.doi.org/10.1371/journal.pone.0172743] [PMID: 28235019]
[105]
Sindhikara, D.J.; Hirata, F. Analysis of biomolecular solvation sites by 3D-RISM theory. J. Phys. Chem. B, 2013, 117(22), 6718-6723.
[http://dx.doi.org/10.1021/jp4046116] [PMID: 23675899]
[106]
Fusani, L.; Wall, I.; Palmer, D.; Cortes, A. Optimal water networks in protein cavities with GAsol and 3D-RISM. Bioinformatics, 2018, 34(11), 1947-1948.
[http://dx.doi.org/10.1093/bioinformatics/bty024] [PMID: 29346514]
[107]
Sindhikara, D.J.; Yoshida, N.; Hirata, F. Placevent: An algorithm for prediction of explicit solvent atom distribution-application to HIV-1 protease and F-ATP synthase. J. Comput. Chem., 2012, 33(18), 1536-1543.
[http://dx.doi.org/10.1002/jcc.22984] [PMID: 22522665]
[108]
Jukič, M.; Konc, J.; Gobec, S.; Janežič, D. Identification of conserved water sites in protein structures for drug design. J. Chem. Inf. Model., 2017, 57(12), 3094-3103.
[http://dx.doi.org/10.1021/acs.jcim.7b00443] [PMID: 29155577]
[109]
Patel, H.; Grüning, B.A.; Günther, S.; Merfort, I. PyWATER: A PyMOL plug-in to find conserved water molecules in proteins by clustering. Bioinformatics, 2014, 30(20), 2978-2980.
[http://dx.doi.org/10.1093/bioinformatics/btu424] [PMID: 24990608]
[110]
Baroni, M.; Cruciani, G.; Sciabola, S.; Perruccio, F.; Mason, J.S. A common reference framework for analyzing/comparing proteins and ligands. Fingerprints for Ligands and Proteins (FLAP): Theory and application. J. Chem. Inf. Model., 2007, 47(2), 279-294.
[http://dx.doi.org/10.1021/ci600253e] [PMID: 17381166]
[111]
Michel, J.; Tirado-Rives, J.; Jorgensen, W.L. Prediction of the water content in protein binding sites. J. Phys. Chem. B, 2009, 113(40), 13337-13346.
[http://dx.doi.org/10.1021/jp9047456] [PMID: 19754086]
[112]
Bayden, A.S.; Moustakas, D.T.; Joseph-McCarthy, D.; Lamb, M.L. Evaluating free energies of binding and conservation of crystallographic waters using SZMAP. J. Chem. Inf. Model., 2015, 55(8), 1552-1565.
[http://dx.doi.org/10.1021/ci500746d] [PMID: 26176600]
[113]
Mason, J.S.; Bortolato, A.; Weiss, D.R.; Deflorian, F.; Tehan, B.; Marshall, F.H. High end GPCR design: Crafted ligand design and druggability analysis using protein structure, lipophilic hotspots and explicit water networks. In Silico Pharmacol., 2013, 1(1), 1-12.
[http://dx.doi.org/10.1186/2193-9616-1-23]
[114]
García-Sosa, A.T.; Mancera, R.L.; Dean, P.M. WaterScore: A novel method for distinguishing between bound and displaceable water molecules in the crystal structure of the binding site of protein-ligand complexes. J. Mol. Model., 2003, 9(3), 172-182.
[http://dx.doi.org/10.1007/s00894-003-0129-x] [PMID: 12756610]
[115]
Bui, H.H.; Schiewe, A.J.; Haworth, I.S. WATGEN: An algorithm for modeling water networks at protein-protein interfaces. J. Comput. Chem., 2007, 28(14), 2241-2251.
[http://dx.doi.org/10.1002/jcc.20751] [PMID: 17471455]
[116]
Hu, B.; Lill, M.A. WATsite: Hydration site prediction program with PyMOL interface; Wiley Online Library, 2014.
[117]
Fraser, C.M.; Fernández, A.; Scott, L.R.; Fraser, C. Wrappa: A screening tool for candidate dehydron identification; University of Chicago: IL, USA, 2011.
[118]
Murphy, R.B.; Repasky, M.P.; Greenwood, J.R.; Tubert-Brohman, I.; Jerome, S.; Annabhimoju, R.; Boyles, N.A.; Schmitz, C.D.; Abel, R.; Farid, R.; Friesner, R.A. WScore: A flexible and accurate treatment of explicit water molecules in ligand-receptor docking. J. Med. Chem., 2016, 59(9), 4364-4384.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00131] [PMID: 27054459]
[119]
Magdziarz, T.; Mitusińska, K.; Gołdowska, S.; Płuciennik, A.; Stolarczyk, M.; Ługowska, M.; Góra, A. AQUA-DUCT: A ligands tracking tool. Bioinformatics, 2017, 33(13), 2045-2046.
[http://dx.doi.org/10.1093/bioinformatics/btx125] [PMID: 28334160]
[120]
Magdziarz, T.; Mitusińska, K.; Bzówka, M.; Raczyńska, A.; Stańczak, A.; Banas, M.; Bagrowska, W.; Góra, A. AQUA-DUCT 1.0: Structural and functional analysis of macromolecules from an intramolecular voids perspective. Bioinformatics, 2020, 36(8), 2599-2601.
[http://dx.doi.org/10.1093/bioinformatics/btz946] [PMID: 31860077]
[121]
Cuzzolin, A.; Deganutti, G.; Salmaso, V.; Sturlese, M.; Moro, S. AquaMMapS: An alternative tool to monitor the role of water molecules during protein-ligand association. ChemMedChem, 2018, 13(6), 522-531.
[http://dx.doi.org/10.1002/cmdc.201700564] [PMID: 29193885]
[122]
Ramsey, S.; Nguyen, C.; Salomon‐Ferrer, R.; Walker, R.C.; Gilson, M.K.; Kurtzman, T. Solvation thermodynamic mapping of molecular surfaces in AmberTools: GIST; Wiley Online Library, 2016.
[http://dx.doi.org/10.1002/jcc.24417]
[123]
Haider, K.; Cruz, A.; Ramsey, S.; Gilson, M.K.; Kurtzman, T. Solvation structure and thermodynamic mapping (SSTMap): An open-source, flexible package for the analysis of water in molecular dynamics trajectories. J. Chem. Theory Comput., 2018, 14(1), 418-425.
[http://dx.doi.org/10.1021/acs.jctc.7b00592] [PMID: 29161510]
[124]
Cui, G.; Swails, J.M.; Manas, E.S. SPAM: A simple approach for profiling bound water molecules. J. Chem. Theory Comput., 2013, 9(12), 5539-5549.
[http://dx.doi.org/10.1021/ct400711g] [PMID: 26592287]
[125]
Li, Z.; Lazaridis, T. Computing the thermodynamic contributions of interfacial water. In: Computational Drug Discovery and Design; Springer, 2012; pp. 393-404.
[http://dx.doi.org/10.1007/978-1-61779-465-0_24]
[126]
López, E.D.; Arcon, J.P.; Gauto, D.F.; Petruk, A.A.; Modenutti, C.P.; Dumas, V.G.; Marti, M.A.; Turjanski, A.G. WATCLUST: A tool for improving the design of drugs based on protein-water interactions. Bioinformatics, 2015, 31(22), 3697-3699.
[http://dx.doi.org/10.1093/bioinformatics/btv411] [PMID: 26198103]
[127]
Woods, C. J.; Malaisree, M.; Hannongbua, S.; Mulholland, A. J. A water-swap reaction coordinate for the calculation of absolute protein-ligand binding free energies. J. Chem. Phys., 2011, 134(5), 02B611.
[http://dx.doi.org/10.1063/1.3519057]
[128]
Yang, Y.; Lightstone, F.C.; Wong, S.E. Approaches to efficiently estimate solvation and explicit water energetics in ligand binding: The use of WaterMap. Expert Opin. Drug Discov., 2013, 8(3), 277-287.
[http://dx.doi.org/10.1517/17460441.2013.749853] [PMID: 23286874]
[129]
Velez-Vega, C.; McKay, D.J.; Aravamuthan, V.; Pearlstein, R.; Duca, J.S. Time-averaged distributions of solute and solvent motions: Exploring proton wires of GFP and PfM2DH. J. Chem. Inf. Model., 2014, 54(12), 3344-3361.
[http://dx.doi.org/10.1021/ci500571h] [PMID: 25405925]
[130]
Benson, S.P.; Pleiss, J. Solvent flux method (SFM): A case study of water access to Candida antarctica lipase B. J. Chem. Theory Comput., 2014, 10(11), 5206-5214.
[http://dx.doi.org/10.1021/ct500791e] [PMID: 26584392]
[131]
Vassiliev, S.; Comte, P.; Mahboob, A.; Bruce, D. Tracking the flow of water through photosystem II using molecular dynamics and streamline tracing. Biochemistry, 2010, 49(9), 1873-1881.
[http://dx.doi.org/10.1021/bi901900s] [PMID: 20121111]
[132]
Paramo, T.; East, A.; Garzón, D.; Ulmschneider, M.B.; Bond, P.J. Efficient characterization of protein cavities within molecular simulation trajectories: Trj_cavity. J. Chem. Theory Comput., 2014, 10(5), 2151-2164.
[http://dx.doi.org/10.1021/ct401098b] [PMID: 26580540]
[133]
Bidmon, K.; Grottel, S.; Bös, F.; Pleiss, J.; Ertl, T. In Visual abstractions of solvent pathlines near protein cavities, Computer Graphics Forum; Wiley Online Library, 2008, pp. 935-942.
[134]
Vad, V. In Watergate: Visual Exploration of Water Trajectories in Protein Dynamics; Vcbm, 2017, pp. 33-42.
[135]
Brezovsky, J.; Chovancova, E.; Gora, A.; Pavelka, A.; Biedermannova, L.; Damborsky, J. Software tools for identification, visualization and analysis of protein tunnels and channels. Biotechnol. Adv., 2013, 31(1), 38-49.
[http://dx.doi.org/10.1016/j.biotechadv.2012.02.002] [PMID: 22349130]
[136]
Sehnal, D.; Svobodová Vařeková, R.; Berka, K.; Pravda, L.; Navrátilová, V.; Banáš, P.; Ionescu, C-M.; Otyepka, M.; Koča, J. MOLE 2.0: Advanced approach for analysis of biomacromolecular channels. J. Cheminform., 2013, 5(1), 39.
[http://dx.doi.org/10.1186/1758-2946-5-39] [PMID: 23953065]
[137]
Chovancova, E.; Pavelka, A.; Benes, P.; Strnad, O.; Brezovsky, J.; Kozlikova, B.; Gora, A.; Sustr, V.; Klvana, M.; Medek, P. CAVER 3.0: A tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput. Biol., 2012, 8(10), e1002708.
[138]
Kozlikova, B.; Sebestova, E.; Sustr, V.; Brezovsky, J.; Strnad, O.; Daniel, L.; Bednar, D.; Pavelka, A.; Manak, M.; Bezdeka, M.; Benes, P.; Kotry, M.; Gora, A.; Damborsky, J.; Sochor, J. CAVER Analyst 1.0: Graphic tool for interactive visualization and analysis of tunnels and channels in protein structures. Bioinformatics, 2014, 30(18), 2684-2685.
[http://dx.doi.org/10.1093/bioinformatics/btu364] [PMID: 24876375]
[139]
Jurcik, A.; Bednar, D.; Byska, J.; Marques, S.M.; Furmanova, K.; Daniel, L.; Kokkonen, P.; Brezovsky, J.; Strnad, O.; Stourac, J.; Pavelka, A.; Manak, M.; Damborsky, J.; Kozlikova, B. CAVER Analyst 2.0: Analysis and visualization of channels and tunnels in protein structures and molecular dynamics trajectories. Bioinformatics, 2018, 34(20), 3586-3588.
[http://dx.doi.org/10.1093/bioinformatics/bty386] [PMID: 29741570]
[140]
Benkaidali, L.; André, F.; Maouche, B.; Siregar, P.; Benyettou, M.; Maurel, F.; Petitjean, M. Computing cavities, channels, pores and pockets in proteins from non-spherical ligands models. Bioinformatics, 2014, 30(6), 792-800.
[http://dx.doi.org/10.1093/bioinformatics/btt644] [PMID: 24202541]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy