Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

AGAP2-AS1: An Indispensable lncRNA in Tumors

Author(s): Jinlan Chen and Bei Wang*

Volume 23, Issue 3, 2023

Published on: 16 September, 2022

Page: [336 - 342] Pages: 7

DOI: 10.2174/1389557522666220615154227

Price: $65

Abstract

Background: LncRNA has been found to participate in a variety of biological processes and play an important role in the occurrence and development of tumors. Therefore, it is of vital clinical value to study the relationship between lncRNA and tumor. It has been confirmed that lncRNA affects tumor progression through sponge mRNA, regulation of signal pathways and activity of oncogenes. Recent studies have shown that LncRNA AGAP2-AS1 is closely related to tumor, because this review focuses on the molecular mechanism of LncRNA AGAP2-AS1 affecting tumor progression.

Methods: The role of LncRNAAGAP2-AS1 in tumor was summarized by searching the literature related to LncRNAAGAP2-AS1 from PubMed in recent years.

Results: LncRNA AGAP2-AS1 is abnormally expressed as an oncogene in tumors, which participates in biological processes such as tumor proliferation, migration, invasion and autophagy. LncRNA AGAP2-AS1 plays an important role in tumorigenesis and development by binding to mRNA, regulating signal pathway and affecting protein activity, which suggests that AGAP2- AS1 may play a great potential value in the treatment of human cancer.

Conclusion: The abnormal expression of LncRNAAGAP2-AS1 plays an important role in the progression of tumor and has a promising value in the treatment of tumor. Exploring the molecular mechanism of lncRNA AGAP2-AS1 is of indispensable significance for tumor treatment.

Keywords: Long noncoding RNA, AGAP2-AS1, tumorigenesis biomarker, potential therapeutic target, LncRNAAGAP2-AS1, human cancer.

Graphical Abstract
[1]
Bridges, M.C.; Daulagala, A.C.; Kourtidis, A. LNCcation: LncRNA localization and function. J. Cell Biol., 2021, 220(2), 220.
[http://dx.doi.org/10.1083/jcb.202009045] [PMID: 33464299]
[2]
Zhou, Y.; Sun, W.; Qin, Z.; Guo, S.; Kang, Y.; Zeng, S.; Yu, L. LncRNA regulation: New frontiers in epigenetic solutions to drug chemoresistance. Biochem. Pharmacol., 2021, 189, 114228.
[http://dx.doi.org/10.1016/j.bcp.2020.114228] [PMID: 32976832]
[3]
Wang, X.; Hu, X.; Song, W.; Xu, H.; Xiao, Z.; Huang, R.; Bai, Q.; Zhang, F.; Chen, Y.; Liu, Y.; Fang, J.; Li, X.; Shen, Q.; Zhao, H.; Yang, X. Mutual dependency between lncRNA LETN and protein NPM1 in controlling the nucleolar structure and functions sustaining cell proliferation. Cell Res., 2021, 31(6), 664-683.
[http://dx.doi.org/10.1038/s41422-020-00458-6] [PMID: 33432115]
[4]
Wang, W.; Yang, F.; Zhang, L.; Chen, J.; Zhao, Z.; Wang, H.; Wu, F.; Liang, T.; Yan, X.; Li, J.; Lan, Q.; Wang, J.; Zhao, J. LncRNA profile study reveals four-lncRNA signature associated with the prognosis of patients with anaplastic gliomas. Oncotarget, 2016, 7(47), 77225-77236.
[http://dx.doi.org/10.18632/oncotarget.12624] [PMID: 27764782]
[5]
Uysal, A.; Unal, E.; Karaosmanoglu, A.D.; Arellano, R.; Ciftci, T.T.; Akinci, D.; Akhan, O. The role of interventional radiology in the treatment of patients with pancreatic cancer. Br. J. Radiol., 2021, 94(1118), 20200702.
[http://dx.doi.org/10.1259/bjr.20200702] [PMID: 33156695]
[6]
Chu, L.C.; Park, S.; Kawamoto, S.; Yuille, A.L.; Hruban, R.H.; Fishman, E.K. Pancreatic cancer imaging: A new look at an old problem. Curr. Probl. Diagn. Radiol., 2021, 50(4), 540-550.
[http://dx.doi.org/10.1067/j.cpradiol.2020.08.002] [PMID: 32988674]
[7]
Hui, B.; Ji, H.; Xu, Y.; Wang, J.; Ma, Z.; Zhang, C.; Wang, K.; Zhou, Y. RREB1-induced upregulation of the lncRNA AGAP2-AS1 regulates the proliferation and migration of pancreatic cancer partly through suppressing ANKRD1 and ANGPTL4. Cell Death Dis., 2019, 10(3), 207.
[http://dx.doi.org/10.1038/s41419-019-1384-9] [PMID: 30814490]
[8]
Erthal, L.C.S.; Gobbo, O.L.; Ruiz-Hernandez, E. Biocompatible copolymer formulations to treat glioblastoma multiforme. Acta Biomater., 2021, 121, 89-102.
[http://dx.doi.org/10.1016/j.actbio.2020.11.030] [PMID: 33227487]
[9]
Tian, Y.; Zheng, Y.; Dong, X. AGAP2-AS1 serves as an oncogenic lncRNA and prognostic biomarker in glioblastoma multiforme. J. Cell. Biochem., 2019, 120(6), 9056-9062.
[http://dx.doi.org/10.1002/jcb.28180] [PMID: 30525219]
[10]
Luo, W.; Li, X.; Song, Z.; Zhu, X.; Zhao, S. Long non-coding RNA AGAP2-AS1 exerts oncogenic properties in glioblastoma by epigenetically silencing TFPI2 through EZH2 and LSD1. Aging (Albany NY), 2019, 11(11), 3811-3823.
[http://dx.doi.org/10.18632/aging.102018] [PMID: 31186379]
[11]
Luo, X.; Tu, T.; Zhong, Y.; Xu, S.; Chen, X.; Chen, L.; Yang, F. AGAP2-AS1 may promote the occurrence and development of glioblastoma by sponging miR-9-5p: Evidence from a ceRNA network. Front. Oncol., 2021, 11, 607989.
[http://dx.doi.org/10.3389/fonc.2021.607989] [PMID: 33889541]
[12]
Maruei-Milan, R.; Heidari, Z.; Aryan, A.; Asadi-Tarani, M.; Salimi, S. Long non-coding RNA ANRIL polymorphisms in papillary thyroid cancer and its severity. Br. J. Biomed. Sci., 2021, 78(2), 58-62.
[http://dx.doi.org/10.1080/09674845.2020.1829853] [PMID: 33186076]
[13]
Shao, L.; Sun, W.; Zhang, H.; Zhang, P.; Wang, Z.; Dong, W.; He, L.; Zhang, T.; Qin, Y. Long non-coding RNA AGAP2-AS1 increases the invasiveness of papillary thyroid cancer. Aging (Albany NY), 2020, 12(18), 18019-18032.
[http://dx.doi.org/10.18632/aging.103570] [PMID: 32960785]
[14]
Zhang, N.; Hu, X.; Du, Y.; Du, J. The role of miRNAs in colorectal cancer progression and chemoradiotherapy. Biomed. Pharmacother., 2021, 134, 111099.
[15]
Hong, S.; Yan, Z.; Song, Y.; Bi, M.; Li, S. LncRNA AGAP2-AS1 augments cell viability and mobility, and confers gemcitabine resistance by inhibiting miR-497 in colorectal cancer. Aging (Albany NY), 2020, 12(6), 5183-5194.
[http://dx.doi.org/10.18632/aging.102940] [PMID: 32202509]
[16]
Ghasemi, T.; Khalaj-Kondori, M.; Hosseinpour Feizi, M.A.; Asadi, P. Long non-coding RNA AGAP2-AS1 is up regulated in colorectal cancer. Nucleosides Nucleotides Nucleic Acids, 2021, 40(8), 829-844.
[http://dx.doi.org/10.1080/15257770.2021.1956530] [PMID: 34308771]
[17]
Jonasch, E.; Walker, C.L.; Rathmell, W.K. Clear cell renal cell carcinoma ontogeny and mechanisms of lethality. Nat. Rev. Nephrol., 2021, 17(4), 245-261.
[http://dx.doi.org/10.1038/s41581-020-00359-2] [PMID: 33144689]
[18]
Gao, L.; Zhao, A.; Wang, X. Upregulation of lncRNA AGAP2-AS1 is an independent predictor of poor survival in patients with clear cell renal carcinoma. Oncol. Lett., 2020, 19(6), 3993-4001.
[http://dx.doi.org/10.3892/ol.2020.11484] [PMID: 32382344]
[19]
Iwase, T.; Wang, X.; Shrimanker, T.V.; Kolonin, M.G.; Ueno, N.T. Body composition and breast cancer risk and treatment: Mechanisms and impact. Breast Cancer Res. Treat., 2021, 186(2), 273-283.
[http://dx.doi.org/10.1007/s10549-020-06092-5] [PMID: 33475878]
[20]
Mehraj, U.; Dar, A.H.; Wani, N.A.; Mir, M.A. Tumor microenvironment promotes breast cancer chemoresistance. Cancer Chemother. Pharmacol., 2021, 87(2), 147-158.
[http://dx.doi.org/10.1007/s00280-020-04222-w] [PMID: 33420940]
[21]
Mohebi, M.; Ghafouri-Fard, S.; Modarressi, M.H.; Dashti, S.; Zekri, A.; Kholghi-Oskooei, V.; Taheri, M. Expression analysis of vimentin and the related lncRNA network in breast cancer. Exp. Mol. Pathol., 2020, 115, 104439.
[http://dx.doi.org/10.1016/j.yexmp.2020.104439] [PMID: 32283061]
[22]
Zheng, Z.; Chen, M.; Xing, P.; Yan, X.; Xie, B. Increased expression of exosomal AGAP2-AS1 (AGAP2 Antisense RNA 1) in breast cancer cells inhibits trastuzumab-induced cell cytotoxicity. Med. Sci. Monit., 2019, 25, 2211-2220.
[http://dx.doi.org/10.12659/MSM.915419] [PMID: 30910994]
[23]
Dong, H.; Wang, W.; Mo, S.; Chen, R.; Zou, K.; Han, J.; Zhang, F.; Hu, J. SP1-induced lncRNA AGAP2-AS1 expression promotes chemoresistance of breast cancer by epigenetic regulation of MyD88. J. Exp. Clin. Cancer Res., 2018, 37(1), 202.
[http://dx.doi.org/10.1186/s13046-018-0875-3] [PMID: 30157918]
[24]
Cho, H.; Yamada, M.; Sekine, S.; Tanabe, N.; Ushiama, M.; Hirata, M.; Ogawa, G.; Gotoh, M.; Yoshida, T.; Yoshikawa, T.; Saito, Y.; Kuchiba, A.; Oda, I.; Sugano, K. Gastric cancer is highly prevalent in Lynch syndrome patients with atrophic gastritis. Gastric Cancer, 2021, 24, 283-291.
[25]
Qi, F.; Liu, X.; Wu, H.; Yu, X.; Wei, C.; Huang, X.; Ji, G.; Nie, F.; Wang, K. Long noncoding AGAP2-AS1 is activated by SP1 and promotes cell proliferation and invasion in gastric cancer. J. Hematol. Oncol., 2017, 10(1), 48.
[http://dx.doi.org/10.1186/s13045-017-0420-4] [PMID: 28209205]
[26]
Tao, Y.; Tang, Y.; Yang, Z.; Wu, F.; Wang, L.; Yang, L.; Lei, L.; Jing, Y.; Jiang, X.; Jin, H.; Bai, Y.; Zhang, L. Exploration of serum exosomal LncRNA TBILA and AGAP2-AS1 as promising biomarkers for diagnosis of non-small cell lung cancer. Int. J. Biol. Sci., 2020, 16(3), 471-482.
[http://dx.doi.org/10.7150/ijbs.39123] [PMID: 32015683]
[27]
Poulet, C.; Njock, M.S.; Moermans, C.; Louis, E.; Louis, R.; Malaise, M.; Guiot, J. Exosomal long non-coding RNAs in lung diseases. Int. J. Mol. Sci., 2020, 21(10), 21.
[http://dx.doi.org/10.3390/ijms21103580] [PMID: 32438606]
[28]
Wu, F.; Yin, Z.; Yang, L.; Fan, J.; Xu, J.; Jin, Y.; Yu, J.; Zhang, D.; Yang, G. Smoking induced extracellular vesicles release and their distinct properties in non-small cell lung cancer. J. Cancer, 2019, 10(15), 3435-3443.
[http://dx.doi.org/10.7150/jca.30425] [PMID: 31293647]
[29]
Zhang, F.; Sang, Y.; Chen, D.; Wu, X.; Wang, X.; Yang, W.; Chen, Y. M2 macrophage-derived exosomal long non-coding RNA AGAP2-AS1 enhances radiotherapy immunity in lung cancer by reducing microRNA-296 and elevating NOTCH2. Cell Death Dis., 2021, 12(5), 467.
[http://dx.doi.org/10.1038/s41419-021-03700-0] [PMID: 33972506]
[30]
Myojin, Y.; Hikita, H.; Sugiyama, M.; Sasaki, Y.; Fukumoto, K.; Sakane, S.; Makino, Y.; Takemura, N.; Yamada, R.; Shigekawa, M.; Kodama, T.; Sakamori, R.; Kobayashi, S.; Tatsumi, T.; Suemizu, H.; Eguchi, H.; Kokudo, N.; Mizokami, M.; Takehara, T. Hepatic stellate cells in hepatocellular carcinoma promote tumor growth via growth differentiation factor 15 production. Gastroenterology, 2021, 160, 1741-1754.
[31]
Liu, Z.; Wang, Y.; Wang, L.; Yao, B.; Sun, L.; Liu, R.; Chen, T.; Niu, Y.; Tu, K.; Liu, Q. Long non-coding RNA AGAP2-AS1, functioning as a competitive endogenous RNA, upregulates ANXA11 expression by sponging miR-16-5p and promotes proliferation and metastasis in hepatocellular carcinoma. J. Exp. Clin. Cancer Res., 2019, 38(1), 194.
[http://dx.doi.org/10.1186/s13046-019-1188-x] [PMID: 31088485]
[32]
Barani, M.; Bilal, M.; Sabir, F.; Rahdar, A.; Kyzas, G.Z. Nanotechnology in ovarian cancer: Diagnosis and treatment. Life Sci., 2021, 266, 118914.
[http://dx.doi.org/10.1016/j.lfs.2020.118914] [PMID: 33340527]
[33]
Chen, J.; Peng, X.; Dai, Y. The long non-coding RNA (lncRNA) AGAP2-AS1 is upregulated in ovarian carcinoma and negatively regulates lncRNA MEG3. Med. Sci. Monit., 2019, 25, 4699-4704.
[http://dx.doi.org/10.12659/MSM.914766] [PMID: 31233485]
[34]
Tingting, Z.; Xiaojing, L.; Xiaoyan, T.; Keqin, H.; Junjun, Q. The antisense long noncoding RNA AGAP2-AS1 regulates cell proliferation and metastasis in epithelial ovarian cancer. J. Cancer, 2020, 11(18), 5318-5328.
[http://dx.doi.org/10.7150/jca.36636] [PMID: 32742478]
[35]
Choi, E.J.; Xu, P.; El-Khatib, F.M.; Huynh, L.M.; Yafi, F.A. Hypogonadism and its treatment among prostate cancer survivors. Int. J. Impot. Res., 2021, 33(4), 480-487.
[http://dx.doi.org/10.1038/s41443-020-00387-3] [PMID: 33311575]
[36]
Zhao, X.; Liu, Y.; Luo, C.; Zuo, Y. AGAP2-AS1/miR-628-5p/FOXP2 feedback loop facilitates the growth of prostate cancer via activating WNT pathway. Carcinogenesis, 2021, 42(10), 1270-1280.
[http://dx.doi.org/10.1093/carcin/bgab062] [PMID: 34255057]
[37]
Wang, Q.; Xiong, Y.; Chen, J.; Shao, Q. Cystic angiocentric glioma: a case report and literature review., 2021, 37, 2701-2705.
[38]
Sun, Y.; Shen, Y.; Li, X. Knockdown of long non-coding RNA AGAP2-AS1 suppresses the proliferation and metastasis of glioma by targeting microRNA-497-5p. Bioengineered, 2021. [Online ahead of print
[http://dx.doi.org/10.1080/21655979.2021.1995573] [PMID: 34709983]
[39]
Lannagan, T.R.; Jackstadt, R.; Leedham, S.J.; Sansom, O.J. Advances in colon cancer research: In vitro and animal models. Curr. Opin. Genet. Dev., 2021, 66, 50-56.
[http://dx.doi.org/10.1016/j.gde.2020.12.003] [PMID: 33422950]
[40]
Ji, L.; Chen, S.; Gu, L.; Wang, J.; Zhang, X. LncRNA AGAP2-AS1 promotes cancer cell proliferation, migration and invasion in colon cancer by forming a negative feedback loop with LINC-PINT. Cancer Manag. Res., 2021, 13, 2153-2161.
[http://dx.doi.org/10.2147/CMAR.S260371] [PMID: 33688258]
[41]
Yang, C.S.; Chen, X.L. Research on esophageal cancer: With personal perspectives from studies in China and Kenya. Int. J. Cancer, 2021, 149(2), 264-276.
[http://dx.doi.org/10.1002/ijc.33421] [PMID: 33270917]
[42]
Shen, S.; Li, K.; Liu, Y.; Liu, X.; Liu, B.; Ba, Y.; Xing, W. Silencing lncRNA AGAP2-AS1 upregulates miR-195-5p to repress migration and invasion of EC cells via the decrease of FOSL1 expression. Mol. Ther. Nucleic Acids, 2020, 20, 331-344.
[http://dx.doi.org/10.1016/j.omtn.2019.12.036] [PMID: 32199129]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy