Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Research Article

Antinociceptive Effects of Aza-Bicyclic Isoxazoline-Acylhydrazone Derivatives in Different Models of Nociception in Mice

Author(s): Fernanda Virginia Barreto Mota, Felipe Neves Coutinho, Vanessa Mylenna Florêncio de Carvalho, Julyanne Cunha de Assis Correia, Isla Vanessa Gomes Alves Bastos, Pedro Paulo Marcelino-Neto, Rafael Matos Ximenes, Dalci José Brondani, Antônio Rodolfo de Faria, Pascal Marchand and Teresinha Gonçalves da Silva*

Volume 22, Issue 4, 2022

Published on: 31 January, 2022

Page: [247 - 258] Pages: 12

DOI: 10.2174/1568026622666220105102508

Price: $65

Abstract

Background: In a study recently published by our research group, the isoxazoline-acylhydrazone derivatives R-99 and R-123 presented promising antinociceptive activity. However, the mechanism of action of this compound is still unknown.

Objective: This study aimed to assess the mechanisms involved in the antinociceptive activity of these compounds in chemical models of pain.

Methods: Animals were orally pretreated and evaluated in the acetic acid-, formalin-, capsaicin-, carrageenan- and Complete Freund's Adjuvant (CFA)-induced pain models in mice. The effects of the compounds after pretreatment with naloxone, prazosin, yohimbine, atropine, L-arginine, or glibenclamide were studied, using the acetic acid-induced writhing test to verify the possible involvement of opioid, α1-adrenergic, α2-adrenergic or cholinergic receptors, and nitric oxide or potassium channels pathways, respectively.

Results: R-99 and R-123 compounds showed significant antinociceptive activity on pain models induced by acetic acid, formalin, and capsaicin. Both compounds decreased the mechanical hyperalgesia induced by carrageenan or CFA in mice. The antinociceptive effects of R-99 and R-123 on the acetic acid-induced writhing test were significantly attenuated by pretreatment with naloxone, yohimbine or atropine. R-99 also showed an attenuated response after pretreatment with atropine and glibenclamide. However, on the pretreatment with prazosin, there was no change in the animals' response to both compounds.

Conclusion: R-99 and R-123 showed antinociceptive effects related to mechanisms that involve, at least in part, interaction with the opioid and adrenergic systems and TRPV1 pathways. The compound R-99 also interacts with the cholinergic pathways and potassium channels.

Keywords: Pain, Receptors, Hyperalgesia, Opioid, Adrenergic system, Potassium channels.

Next »
Graphical Abstract
[1]
Mogilski, S.; Kubacka, M.; Redzicka, A.; Kazek, G.; Dudek, M.; Malinka, W.; Filipek, B. Antinociceptive, anti-inflammatory and smooth muscle relaxant activities of the pyrrolo[3,4-d]pyridazinone derivatives: Possible mechanisms of action. Pharmacol. Biochem. Behav., 2015, 133, 99-110.
[http://dx.doi.org/10.1016/j.pbb.2015.03.019] [PMID: 25847619]
[2]
Mao, J. Translational pain research: Achievements and challenges. J. Pain, 2009, 10(10), 1001-1011.
[http://dx.doi.org/10.1016/j.jpain.2009.06.002] [PMID: 19628433]
[3]
Wren, A.A.; Ross, A.C.; D’Souza, G.; Almgren, C.; Feinstein, A.; Marshall, A.; Golianu, B. Multidisciplinary pain management for pediatric patients with acute and chronic pain: A foundational treatment approach when prescribing opioids. Children (Basel), 2019, 6(2), 33.
[http://dx.doi.org/10.3390/children6020033] [PMID: 30795645]
[4]
Qaseem, A.; Wilt, T.J.; McLean, R.M.; Forciea, M.A.; Denberg, T.D.; Barry, M.J.; Boyd, C.; Chow, R.D.; Fitterman, N.; Harris, R.P.; Humphrey, L.L.; Vijan, S. Noninvasive treatments for acute, subacute, and chronic low back pain: A clinical practice guideline from the American college of physicians. Ann. Intern. Med., 2017, 166(7), 514-530.
[http://dx.doi.org/10.7326/M16-2367] [PMID: 28192789]
[5]
Gupta, A.; Bah, M. NSAIDs in the treatment of postoperative pain. Curr. Pain Headache Rep., 2016, 20(11), 62.
[http://dx.doi.org/10.1007/s11916-016-0591-7] [PMID: 27841015]
[6]
Bindu, S.; Mazumder, S.; Bandyopadhyay, U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochem. Pharmacol., 2020, 180, 114147.
[http://dx.doi.org/10.1016/j.bcp.2020.114147] [PMID: 32653589]
[7]
O’Brien, T.; Christrup, L.L.; Drewes, A.M.; Fallon, M.T.; Kress, H.G.; McQuay, H.J.; Mikus, G.; Morlion, B.J.; Perez-Cajaraville, J.; Pogatzki-Zahn, E.; Varrassi, G.; Wells, J.C. European pain federation position paper on appropriate opioid use in chronic pain management. Eur. J. Pain, 2017, 21(1), 3-19.
[http://dx.doi.org/10.1002/ejp.970] [PMID: 27991730]
[8]
Ventafridda, V.; Saita, L.; Ripamonti, C.; De Conno, F. WHO guidelines for the use of analgesics in cancer pain. Int. J. Tissue React., 1985, 7(1), 93-96.
[PMID: 2409039]
[9]
Nussmeier, N.A.; Whelton, A.A.; Brown, M.T.; Langford, R.M.; Hoeft, A.; Parlow, J.L.; Boyce, S.W.; Verburg, K.M. Complications of the COX-2 inhibitors parecoxib and valdecoxib after cardiac surgery. N. Engl. J. Med., 2005, 352(11), 1081-1091.
[http://dx.doi.org/10.1056/NEJMoa050330] [PMID: 15713945]
[10]
Argoff, C.E. Recent management advances in acute postoperative pain. Pain Pract., 2014, 14(5), 477-487.
[http://dx.doi.org/10.1111/papr.12108] [PMID: 23945010]
[11]
Labianca, R.; Sarzi-Puttini, P.; Zuccaro, S.M.; Cherubino, P.; Vellucci, R.; Fornasari, D. Adverse effects associated with non-opioid and opioid treatment in patients with chronic pain. Clin. Drug Investig., 2012, 32(1), 53-63.
[http://dx.doi.org/10.2165/11630080-000000000-00000]
[12]
Zaki, Y.H.; Sayed, A.R.; Elroby, S.A. Regioselectivity of 1,3-dipolar cycloadditions and antimicrobial activity of isoxazoline, pyrrolo[3,4-d]isoxazole-4,6-diones, pyrazolo[3,4-d]pyridazines and pyrazolo[1,5-a]pyrimidines. Chem. Cent. J., 2016, 10, 17.
[http://dx.doi.org/10.1186/s13065-016-0163-2] [PMID: 27042207]
[13]
Bano, S.; Alam, M.S.; Javed, K.; Dudeja, M.; Das, A.K.; Dhulap, A. Synthesis, biological evaluation and molecular docking of some substituted pyrazolines and isoxazolines as potential antimicrobial agents. Eur. J. Med. Chem., 2015, 95, 96-103.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.031] [PMID: 25800645]
[14]
Ismail, T.; Shafi, S.; Singh, S.; Sidiq, T.; Khajuria, A.; Rouf, A.; Yadav, M.; Saikam, V.; Singh, P.P.; Alam, M.S.; Islam, N.; Sharma, K.; Kumar, H.M.S. Synthesis and immunopotentiating activity of novel isoxazoline functionalized coumarins. Eur. J. Med. Chem., 2016, 123, 90-104.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.026] [PMID: 27474926]
[15]
Kaur, K.; Kumar, V.; Sharma, A.K.; Gupta, G.K. Isoxazoline containing natural products as anticancer agents: A review. Eur. J. Med. Chem., 2014, 77, 121-133.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.063] [PMID: 24631731]
[16]
Mota, F.V.B.; de Araújo Neta, M.S.; de Souza Franco, E.; Bastos, I.V.G.A.; da Araújo, L.C.C.; da Silva, S.C.; de Oliveira, T.B.; Souza, E.K.; de Almeida, V.M.; Ximenes, R.M.; de Sousa Maia, M.B.; Junior, F.J.B.M.; Marchand, P.; de Faria, A.R.; da Silva, T.G. Evaluation of anti-inflammatory activity and molecular docking study of new aza-bicyclic isoxazoline acylhydrazone derivatives. MedChemComm, 2019, 10(11), 1916-1925.
[http://dx.doi.org/10.1039/C9MD00276F] [PMID: 32133104]
[17]
ElBordiny, H.S.; El-Miligy, M.M.; Kassab, S.E.; Daabees, H.; Mohamed Ali, W.A.; Abdelhamid Mohamed El-Hawash, S. Design, synthesis, biological evaluation and docking studies of new 3-(4,5-dihydro-1H-pyrazol/isoxazol-5-yl)-2-phenyl-1H-indole derivatives as potent antioxidants and 15-lipoxygenase inhibitors. Eur. J. Med. Chem., 2018, 145, 594-605.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.026] [PMID: 29339254]
[18]
Karthikeyan, K.; Veenus Seelan, T.; Lalitha, K.G.; Perumal, P.T. Synthesis and antinociceptive activity of pyrazolyl isoxazolines and pyrazolyl isoxazoles. Bioorg. Med. Chem. Lett., 2009, 19(13), 3370-3373.
[http://dx.doi.org/10.1016/j.bmcl.2009.05.055] [PMID: 19481931]
[19]
Zhu, J.; Mo, J.; Lin, H.Z.; Chen, Y.; Sun, H.P. The recent progress of isoxazole in medicinal chemistry. Bioorg. Med. Chem., 2018, 26(12), 3065-3075.
[http://dx.doi.org/10.1016/j.bmc.2018.05.013] [PMID: 29853341]
[20]
Kumar, P.; Kadyan, K.; Duhan, M.; Sindhu, J.; Singh, V.; Saharan, B.S. Design, synthesis, conformational and molecular docking study of some novel acyl hydrazone based molecular hybrids as antimalarial and antimicrobial agents. Chem. Cent. J., 2017, 11(1), 115.
[http://dx.doi.org/10.1186/s13065-017-0344-7] [PMID: 29138944]
[21]
Cordeiro, N.M.; Freitas, R.H.; Fraga, C.A.; Fernandes, P.D. Discovery of novel orally active tetrahydro-naphthyl-n-acylhydrazones with in vivo anti-TNF-α effect and remarkable anti-inflammatory properties. PLoS One, 2016, 11(5), e0156271.
[http://dx.doi.org/10.1371/journal.pone.0156271] [PMID: 27227468]
[22]
Cordeiro, N.M.; Freitas, R.H.C.N.; Fraga, C.A.M.; Fernandes, P.D. New 2-amino-pyridinyl-N-acylhydrazones: Synthesis and identification of their mechanism of anti-inflammatory action. Biomed. Pharmacother., 2020, 123, 109739.
[http://dx.doi.org/10.1016/j.biopha.2019.109739] [PMID: 31918210]
[23]
Meira, C.S.; Dos Santos Filho, J.M.; Sousa, C.C.; Anjos, P.S.; Cerqueira, J.V.; Dias Neto, H.A.; da Silveira, R.G.; Russo, H.M.; Wolfender, J.L.; Queiroz, E.F.; Moreira, D.R.M.; Soares, M.B.P. Structural design, synthesis and substituent effect of hydrazone-N-acylhydrazones reveal potent immunomodulatory agents. Bioorg. Med. Chem., 2018, 26(8), 1971-1985.
[http://dx.doi.org/10.1016/j.bmc.2018.02.047] [PMID: 29523468]
[24]
Dos Santos, N.M.; Pereira, N.C.; de Albuquerque, A.P.S.; Dias Viegas, F.P.; Veloso, C.; Vilela, F.C.; Giusti-Paiva, A.; da Silva, M.L.; da Silva, J.R.T.; Viegas, C., Jr. 3-Hydroxy-piperidinyl-N-benzyl-acyl-arylhydrazone derivatives reduce neuropathic pain and increase thermal threshold mediated by opioid system. Biomed. Pharmacother., 2018, 99, 492-498.
[http://dx.doi.org/10.1016/j.biopha.2018.01.077] [PMID: 29665651]
[25]
National Research Council. Guide for the Care and Use of Laboratory Animals, 8th ed; The National Academies Press: Washington, DC, 2011.
[http://dx.doi.org/10.17226/12910]
[26]
Guideline for testing of chemicals. Acute Oral Toxicity - Fixed Dose Procedure. OECD 2001.
[27]
Koster, R.; Anderson, M.; De Beer, E.J. Acetic acid for analgesic screening. Fed. Proc., 1959, 18, 412-417.
[28]
Guerra, A.S.; Malta, D.J.; Laranjeira, L.P.; Maia, M.B.; Colaço, N.C.; de Lima, Mdo.C.; Galdino, S.L.; Pitta, Ida.R.; Gonçalves-Silva, T. Anti-inflammatory and antinociceptive activities of indole-imidazolidine derivatives. Int. Immunopharmacol., 2011, 11(11), 1816-1822.
[http://dx.doi.org/10.1016/j.intimp.2011.07.010] [PMID: 21855654]
[29]
Hunskaar, S.; Hole, K. The formalin test in mice: Dissociation between inflammatory and non-inflammatory pain. Pain, 1987, 30(1), 103-114.
[http://dx.doi.org/10.1016/0304-3959(87)90088-1] [PMID: 3614974]
[30]
de Campos, R.O.; Santos, A.R.; Vaz, Z.R.; Pinheiro, T.R.; Pizzolatti, M.G.; Cechinel Filho, V.; Delle Monache, F.; Yunes, R.A.; Calixto, J.B. Antinociceptive properties of the hydroalcoholic extract and preliminary study of a xanthone isolated from Polygala cyparissias (Polygalaceae). Life Sci., 1997, 61(16), 1619-1630.
[http://dx.doi.org/10.1016/S0024-3205(97)00741-8] [PMID: 9353171]
[31]
Cunha, T.M.; Verri, W.A., Jr; Vivancos, G.G.; Moreira, I.F.; Reis, S.; Parada, C.A.; Cunha, F.Q.; Ferreira, S.H. An electronic pressure-meter nociception paw test for mice. Braz. J. Med. Biol. Res., 2004, 37(3), 401-407.
[http://dx.doi.org/10.1590/S0100-879X2004000300018] [PMID: 15060710]
[32]
De Souza, M.M.; Pereira, M.A.; Ardenghi, J.V.; Mora, T.C.; Bresciani, L.F.; Yunes, R.A.; Delle Monache, F.; Cechinel-Filho, V. Filicene obtained from Adiantum cuneatum interacts with the cholinergic, dopaminergic, glutamatergic, GABAergic, and tachykinergic systems to exert antinociceptive effect in mice. Pharmacol. Biochem. Behav., 2009, 93(1), 40-46.
[http://dx.doi.org/10.1016/j.pbb.2009.04.004] [PMID: 19375449]
[33]
Khalid, M.H.; Akhtar, M.N.; Mohamad, A.S.; Perimal, E.K.; Akira, A.; Israf, D.A.; Lajis, N.; Sulaiman, M.R. Antinociceptive effect of the essential oil of Zingiber zerumbet in mice: possible mechanisms. J. Ethnopharmacol., 2011, 137(1), 345-351.
[http://dx.doi.org/10.1016/j.jep.2011.05.043] [PMID: 21664960]
[34]
Ji, R.R.; Xu, Z.Z.; Gao, Y.J. Emerging targets in neuroinflammation-driven chronic pain. Nat. Rev. Drug Discov., 2014, 13(), 533-548.
[http://dx.doi.org/10.1038/nrd4334]
[35]
Ji, R.R.; Xu, Z.Z.; Gao, Y.J. Anti-inflammatory and analgesic potency of carboxyamidotriazole, a tumorostatic agent. J. Pharmacol. Exp. Ther., 2008, 325(1), 10-16.
[http://dx.doi.org/10.1038/nrd4334]
[36]
Stepanovic-Petrovic, R.M.; Tomic, M.A.; Vuckovic, S.M.; Paranos, S.; Ugresic, N.D.; Prostran, M.S.; Milovanovic, S.; Boskovic, B. The antinociceptive effects of anticonvulsants in a mouse visceral pain model. Anesth. Analg., 2008, 106(6), 1897-1903.
[http://dx.doi.org/10.1213/ane.0b013e318172b993] [PMID: 18499629]
[37]
McNamara, C.R.; Mandel-Brehm, J.; Bautista, D.M.; Siemens, J.; Deranian, K.L.; Zhao, M.; Hayward, N.J.; Chong, J.A.; Julius, D.; Moran, M.M.; Fanger, C.M. TRPA1 mediates formalin-induced pain. Proc. Natl. Acad. Sci. USA, 2007, 104(33), 13525-13530.
[http://dx.doi.org/10.1073/pnas.0705924104] [PMID: 17686976]
[38]
Hwang, S.W.; Cho, H.; Kwak, J.; Lee, S.Y.; Kang, C.J.; Jung, J.; Cho, S.; Min, K.H.; Suh, Y.G.; Kim, D.; Oh, U. Direct activation of capsaicin receptors by products of lipoxygenases: Endogenous capsaicin-like substances. Proc. Natl. Acad. Sci. USA, 2000, 97(11), 6155-6160.
[http://dx.doi.org/10.1073/pnas.97.11.6155] [PMID: 10823958]
[39]
Ikeda, Y.; Ueno, A.; Naraba, H.; Oh-ishi, S. Involvement of vanilloid receptor VR1 and prostanoids in the acid-induced writhing responses of mice. Life Sci., 2001, 69(24), 2911-2919.
[http://dx.doi.org/10.1016/S0024-3205(01)01374-1] [PMID: 11720094]
[40]
Szolcsányi, J. Forty years in capsaicin research for sensory pharmacology and physiology. Neuropeptides, 2004, 38(6), 377-384.
[http://dx.doi.org/10.1016/j.npep.2004.07.005] [PMID: 15567473]
[41]
Sawynok, J.; Reid, A.; Meisner, J. Pain behaviors produced by capsaicin: Influence of inflammatory mediators and nerve injury. J. Pain, 2006, 7(2), 134-141.
[http://dx.doi.org/10.1016/j.jpain.2005.09.013] [PMID: 16459279]
[42]
Nah, J.J.; Hahn, J.H.; Chung, S.; Choi, S.; Kim, Y.I.; Nah, S.Y. Effect of ginsenosides, active components of ginseng, on capsaicin-induced pain-related behavior. Neuropharmacology, 2000, 39(11), 2180-2184.
[http://dx.doi.org/10.1016/S0028-3908(00)00048-4] [PMID: 10963761]
[43]
Stubhaug, A.; Breivik, H.; Eide, P.K.; Kreunen, M.; Foss, A. Mapping of punctuate hyperalgesia around a surgical incision demonstrates that ketamine is a powerful suppressor of central sensitization to pain following surgery. Acta Anaesthesiol. Scand., 1997, 41(9), 1124-1132.
[http://dx.doi.org/10.1111/j.1399-6576.1997.tb04854.x] [PMID: 9366932]
[44]
Pedersen, J.L.; Galle, T.S.; Kehlet, H. Peripheral analgesic effects of ketamine in acute inflammatory pain. Anesthesiology, 1998, 89(1), 58-66.
[http://dx.doi.org/10.1097/00000542-199807000-00011] [PMID: 9667294]
[45]
Barrot, M. Tests and models of nociception and pain in rodents. Neuroscience, 2012, 211, 39-50.
[http://dx.doi.org/10.1016/j.neuroscience.2011.12.041] [PMID: 22244975]
[46]
Burstein, S.H.; Karst, M.; Schneider, U.; Zurier, R.B. Ajulemic acid: A novel cannabinoid produces analgesia without a “high”. Life Sci., 2004, 75(12), 1513-1522.
[http://dx.doi.org/10.1016/j.lfs.2004.04.010] [PMID: 15240185]
[47]
Mendell, L.M.; Basbaum, A.I.; Bushnell, C. Neutrophins and pain. In: Science of Pain; Basbaum, A.I.; Bushnell, C., Eds.; Elsevier: Oxford, 2019.
[48]
Watkins, L.R.; Milligan, E.D.; Maier, S.F. Glial activation: A driving force for pathological pain. Trends Neurosci., 2001, 24(8), 450-455.
[http://dx.doi.org/10.1016/S0166-2236(00)01854-3] [PMID: 11476884]
[49]
Benyamin, R.; Trescot, A.M.; Datta, S.; Buenaventura, R.; Adlaka, R.; Sehgal, N.; Glaser, S.E.; Vallejo, R. Opioid complications and side effects. Pain Physician, 2008, 11(2)(Suppl.), S105-S120.
[http://dx.doi.org/10.36076/ppj.2008/11/S105] [PMID: 18443635]
[50]
Butelman, E.R.; Ko, M.C.; Sobczyk-Kojiro, K.; Mosberg, H.I.; Van Bemmel, B.; Zernig, G.; Woods, J.H. kappa-Opioid receptor binding populations in rhesus monkey brain: Relationship to an assay of thermal antinociception. J. Pharmacol. Exp. Ther., 1998, 285(2), 595-601.
[PMID: 9580603]
[51]
Kawasaki, Y.; Kumamoto, E.; Furue, H.; Yoshimura, M. Alpha 2 adrenoceptor-mediated presynaptic inhibition of primary afferent glutamatergic transmission in rat substantia gelatinosa neurons. Anesthesiology, 2003, 98(3), 682-689.
[http://dx.doi.org/10.1097/00000542-200303000-00016] [PMID: 12606912]
[52]
Wess, J.; Duttaroy, A.; Gomeza, J.; Zhang, W.; Yamada, M.; Felder, C.C.; Bernardini, N.; Reeh, P.W. Muscarinic receptor subtypes mediating central and peripheral antinociception studied with muscarinic receptor knockout mice: A review. Life Sci., 2003, 72(18-19), 2047-2054.
[http://dx.doi.org/10.1016/S0024-3205(03)00082-1] [PMID: 12628455]
[53]
Green, P.G.; Kitchen, I. Antinociception opioids and the cholinergic system. Prog. Neurobiol., 1986, 26(2), 119-146.
[http://dx.doi.org/10.1016/0301-0082(86)90002-X] [PMID: 3704168]
[54]
Cury, Y.; Picolo, G.; Gutierrez, V.P.; Ferreira, S.H. Pain and analgesia: The dual effect of nitric oxide in the nociceptive system. Nitric Oxide, 2011, 25(3), 243-254.
[http://dx.doi.org/10.1016/j.niox.2011.06.004] [PMID: 21723953]
[55]
Chen, Y.; Boettger, M.K.; Reif, A.; Schmitt, A.; Uçeyler, N.; Sommer, C. Nitric oxide synthase modulates CFA-induced thermal hyperalgesia through cytokine regulation in mice. Mol. Pain, 2010, 6, 13.
[http://dx.doi.org/10.1186/1744-8069-6-13] [PMID: 20193086]
[56]
Lopes, Lda.S.; Marques, R.B.; Fernandes, H.B.; Pereira, Sda.S.; Ayres, M.C.; Chaves, M.H.; Almeida, F.R. Mechanisms of the antinociceptive action of (-) epicatechin obtained from the hydroalcoholic fraction of Combretum leprosum Mart & Eic in rodents. J. Biomed. Sci., 2012, 19(1), 68.
[http://dx.doi.org/10.1186/1423-0127-19-68] [PMID: 22830928]
[57]
Alves, D.P.; Tatsuo, M.A.; Leite, R.; Duarte, I.D. Diclofenac-induced peripheral antinociception is associated with ATP-sensitive K+ channels activation. Life Sci., 2004, 74(20), 2577-2591.
[http://dx.doi.org/10.1016/j.lfs.2003.10.012] [PMID: 15010267]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy