Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Dietary Intake of Hydrolyzable Tannins and Condensed Tannins to Regulate Lipid Metabolism

Author(s): Yuanyang Li, Leiqi Zhu, Chong Guo, Mengzhen Xue, Fangqi Xia, Yaqi Wang, Dengke Jia, Luoying Li, Yan Gao, Yue Shi, Yuming He* and Chengfu Yuan*

Volume 22, Issue 13, 2022

Published on: 10 February, 2022

Page: [1789 - 1802] Pages: 14

DOI: 10.2174/1389557522666211229112223

Price: $65

Abstract

Lipid metabolism disorder is a multifactor issue, which contributes to several serious health consequences, such as obesity, hyperlipidemia, atherosclerosis diabetes, non-alcoholic fatty liver, etc. Tannins, applied as naturally derived plants, are commonly used in the study of lipid metabolism disease with excellent safety and effectiveness while producing less toxic and side effects. Meanwhile, recognition of the significance of dietary tannins in lipid metabolism disease prevention has increased. As suggested by existing evidence, dietary tannins can reduce lipid accumulation, block adipocyte differentiation, enhance antioxidant capacity, increase the content of short-chain fatty acids, and lower blood lipid levels, thus alleviating lipid metabolism disorder. This study is purposed to sum up and analyze plenty of documents on tannins, so as to provide the information required to assess the lipid metabolism of tannins.

Keywords: Tannins, lipid metabolism, obesity, hyperlipidemia, diabetes, non-alcoholic fatty liver.

Graphical Abstract
[1]
O’Rahilly, S. Human genetics illuminates the paths to metabolic disease. Nature, 2009, 462(7271), 307-314.
[http://dx.doi.org/10.1038/nature08532] [PMID: 19924209]
[2]
Popkin, B.M.; Kim, S.; Rusev, E.R.; Du, S.; Zizza, C. Measuring the full economic costs of diet, physical activity and obesity-related chro-nic diseases. Obes. Rev., 2006, 7(3), 271-293.
[http://dx.doi.org/10.1111/j.1467-789X.2006.00230.x] [PMID: 16866975]
[3]
Chen, L.; Magliano, D.J.; Zimmet, P.Z. The worldwide epidemiology of type 2 diabetes mellitus-present and future perspectives. Nat. Rev. Endocrinol., 2011, 8(4), 228-236.
[http://dx.doi.org/10.1038/nrendo.2011.183] [PMID: 22064493]
[4]
Després, J. P.; Lemieux, I. Abdominal obesity and metabolic syndrome. , 1476-4687.
[5]
Li, Y.Q.; Kitaoka, M.; Takayoshi, J.; Wang, Y.F.; Matsuo, Y.; Saito, Y.; Huang, Y.L.; Li, D.P.; Nonaka, G.I.; Jiang, Z.H.; Tanaka, T. Ellagi-tannins and oligomeric proanthocyanidins of three polygonaceous plants. Molecules, 2021, 26(2), E337.
[http://dx.doi.org/10.3390/molecules26020337] [PMID: 33440779]
[6]
Manzoor, F.; Nisa, M.U.; Hussain, H.A.; Ahmad, N.; Umbreen, H. Effect of different levels of hydrolysable tannin intake on the repro-ductive hormones and serum biochemical indices in healthy female rats. Sci. Rep., 2020, 10, 20600.
[7]
Mele, L.; Mena, P.; Piemontese, A.; Marino, V.; López-Gutiérrez, N.; Bernini, F.; Brighenti, F.; Zanotti, I.; Del Rio, D. Antiatherogenic effects of ellagic acid and urolithins in vitro. Arch. Biochem. Biophys., 2016, 599, 42-50.
[http://dx.doi.org/10.1016/j.abb.2016.02.017] [PMID: 26891591]
[8]
Ajebli, M.; El Ouady, F.; Eddouks, M. Study of antihyperglycemic, antihyperlipidemic and antioxidant activities of tannins extracted from Warionia saharae Benth. &. Coss. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(2), 189-198.
[http://dx.doi.org/10.2174/1871530318666181029160539] [PMID: 30370866]
[9]
Fujii, K.; Ota, Y.; Nishiyama, K.; Kunitake, H.; Yamasaki, Y.; Tari, H.; Araki, K.; Arakawa, T.; Yamasaki, M. Blueberry leaf polyphenols prevent body fat accumulation in mice fed high-fat, high-sucrose diet. J. Oleo Sci., 2019, 68(5), 471-479.
[http://dx.doi.org/10.5650/jos.ess18226] [PMID: 30971641]
[10]
Peng, J.; Jia, Y.; Hu, T.; Du, J.; Wang, Y.; Cheng, B.; Li, K.GC -(4→8)-GCG, A proanthocyanidin dimer from Camellia ptilophylla, modu-lates obesity and adipose tissue inflammation in high-fat diet induced obese mice. Mol. Nutr. Food Res., 2019, 63(11), e1900082.
[http://dx.doi.org/10.1002/mnfr.201900082] [PMID: 30893514]
[11]
Zhang, Y.; DeWitt, D.L.; Murugesan, S.; Nair, M.G. Novel lipid-peroxidation- and cyclooxygenase-inhibitory tannins from Picrorhiza kurroa seeds. Chem. Biodivers., 2004, 1(3), 426-441.
[http://dx.doi.org/10.1002/cbdv.200490036] [PMID: 17191857]
[12]
Justino, A.B.; Franco, R.R.; Silva, H.C.G.; Saraiva, A.L.; Sousa, R.M.F.; Espindola, F.S. B procyanidins of Annona crassiflora fruit peel inhibited glycation, lipid peroxidation and protein-bound carbonyls, with protective effects on glycated catalase. Sci. Rep., 2019, 9(1), 19183.
[http://dx.doi.org/10.1038/s41598-019-55779-3] [PMID: 31844118]
[13]
Fotschki, B.; Juśkiewicz, J.; Sójka, M.; Jurgoński, A.; Zduńczyk, Z. Ellagitannins and flavan-3-ols from raspberry pomace modulate caecal fermentation processes and plasma lipid parameters in rats. Molecules, 2015, 20(12), 22848-22862.
[http://dx.doi.org/10.3390/molecules201219878] [PMID: 26703543]
[14]
Liu, X.; Cao, K.; Lv, W.; Feng, Z.; Liu, J.; Gao, J.; Li, H.; Zang, W.; Liu, J. Punicalagin attenuates endothelial dysfunction by activating FoxO1, a pivotal regulating switch of mitochondrial biogenesis. Free Radic. Biol. Med., 2019, 135, 251-260.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.03.011] [PMID: 30878647]
[15]
Kang, B.; Kim, C.Y.; Hwang, J.; Jo, K.; Kim, S.; Suh, H.J.; Choi, H-S. PPunicalagin, a pomegranate-derived ellagitannin, suppresses obesity and obesity-induced inflammatory responses via the Nrf2/Keap1 signaling pathway. Mol. Nutr. Food Res., 2019, 63(22), e1900574.
[http://dx.doi.org/10.1002/mnfr.201900574] [PMID: 31444955]
[16]
Bansode, R.R.; Randolph, P.; Hurley, S.; Ahmedna, M. Evaluation of hypolipidemic effects of peanut skin-derived polyphenols in rats on Western-diet. Food Chem., 2012, 135(3), 1659-1666.
[http://dx.doi.org/10.1016/j.foodchem.2012.06.034] [PMID: 22953907]
[17]
Shimada, T.; Tokuhara, D.; Tsubata, M.; Kamiya, T.; Kamiya-Sameshima, M.; Nagamine, R.; Takagaki, K.; Sai, Y.; Miyamoto, K.; Abura-da, M. Flavangenol (pine bark extract) and its major component procyanidin B1 enhance fatty acid oxidation in fat-loaded models. Eur. J. Pharmacol., 2012, 677(1-3), 147-153.
[http://dx.doi.org/10.1016/j.ejphar.2011.12.034] [PMID: 22227333]
[18]
Guerrero, L.; Margalef, M.; Pons, Z.; Quiñones, M.; Arola, L.; Arola-Arnal, A.; Muguerza, B. Serum metabolites of proanthocyanidin-administered rats decrease lipid synthesis in HepG2 cells. J. Nutr. Biochem., 2013, 24(12), 2092-2099.
[http://dx.doi.org/10.1016/j.jnutbio.2013.08.001] [PMID: 24231101]
[19]
Rebollo-Hernanz, M.; Zhang, Q.; Aguilera, Y.; Martín-Cabrejas, M.A.; de Mejia, E.G. shell aqueous phenolic extract preserves mitochon-drial function and insulin sensitivity by attenuating inflammation between macrophages and adipocytes in vitro. Mol. Nutr. Food Res., 2019, 63(10), e1801413.
[http://dx.doi.org/10.1002/mnfr.201801413] [PMID: 31018035]
[20]
Harnafi, M.; Bekkouch, O.; Touiss, I.; Khatib, S.; Mokhtari, I.; Milenkovic, D.; Harnafi, H.; Amrani, S. Phenolic-rich extract from almond (Prunus dulcis) hulls improves lipid metabolism in triton WR-1339 and high-fat diet-induced hyperlipidemic mice and prevents lipopro-tein oxidation: A comparison with fenofibrate and butylated hydroxyanisole. Prev. Nutr. Food Sci., 2020, 25(3), 254-262.
[http://dx.doi.org/10.3746/pnf.2020.25.3.254] [PMID: 33083374]
[21]
Zhen, J.; Guo, Y.; Villani, T.; Carr, S.; Brendler, T.; Mumbengegwi, D.R.; Kong, A-N.T.; Simon, J.E.; Wu, Q. Phytochemical analysis and anti-inflammatory activity of the extracts of the African medicinal plant Ximenia caffra. J. Anal. Methods Chem., 2015, 2015, 948262.
[http://dx.doi.org/10.1155/2015/948262] [PMID: 25785232]
[22]
Sobeh, M.; Mahmoud, M.F.; Abdelfattah, M.A.O.; El-Beshbishy, H.A.; El-Shazly, A.M.; Wink, M. Hepatoprotective and hypoglycemic effects of a tannin rich extract from Ximenia americana var. caffra root. Phytomedicine, 2017, 33, 36-42.
[23]
Rong, S.; Zhao, S.; Kai, X.; Zhang, L.; Zhao, Y.; Xiao, X.; Bao, W.; Liu, L. Procyanidins extracted from the litchi pericarp attenuate athe-rosclerosis and hyperlipidemia associated with consumption of a high fat diet in apolipoprotein-E knockout mice. Biomed. Pharmacother., 2018, 97, 1639-1644.
[http://dx.doi.org/10.1016/j.biopha.2017.10.139] [PMID: 29793326]
[24]
Zhang, J.; Liang, R.; Wang, L.; Yan, R.; Hou, R.; Gao, S.; Yang, B. Effects of an aqueous extract of Crataegus pinnatifida Bge. var. major N.E.Br. fruit on experimental atherosclerosis in rats. J. Ethnopharmacol., 2013, 148(2), 563-569.
[http://dx.doi.org/10.1016/j.jep.2013.04.053] [PMID: 23685195]
[25]
Wu, Q.; Li, S.; Li, X.; Sui, Y.; Yang, Y.; Dong, L.; Xie, B.; Sun, Z. Inhibition of advanced glycation endproduct formation by lotus seedpod oligomeric procyanidins through RAGE-MAPK signaling and NF-κB activation in high-fat-diet rats. J. Agric. Food Chem., 2015, 63(31), 6989-6998.
[http://dx.doi.org/10.1021/acs.jafc.5b01082] [PMID: 26207852]
[26]
Jian, T.; Lü, H.; Ding, X.; Wu, Y.; Zuo, Y.; Li, J.; Chen, J.; Gu, H. Polyphenol-rich pericarp extract ameliorates high-fat diet induced non-alcoholic fatty liver disease by regulating lipid metabolism and insulin resistance in mice. PeerJ, 2019, 7, e8165.
[http://dx.doi.org/10.7717/peerj.8165] [PMID: 31803542]
[27]
Tie, F.; Wang, J.; Liang, Y.; Zhu, S.; Wang, Z.; Li, G.; Wang, H. Proanthocyanidins ameliorated deficits of lipid metabolism in type 2 dia-betes mellitus via inhibiting adipogenesis and improving mitochondrial function. Int. J. Mol. Sci., 2020, 21(6), E2029.
[http://dx.doi.org/10.3390/ijms21062029] [PMID: 32188147]
[28]
Sudjaroen, Y.; Hull, W.E.; Erben, G.; Würtele, G.; Changbumrung, S.; Ulrich, C.M.; Owen, R.W. Isolation and characterization of ellagi-tannins as the major polyphenolic components of Longan (Dimocarpus longan Lour) seeds. Phytochemistry, 2012, 77, 226-237.
[http://dx.doi.org/10.1016/j.phytochem.2011.12.008] [PMID: 22277734]
[29]
Ishihara, T.; Kaidzu, S.; Kimura, H.; Koyama, Y.; Matsuoka, Y.; Ohira, A. Protective effect of highly polymeric a-type proanthocyanidins from seed shells of Japanese horse chestnut (BLUME) against light-induced oxidative damage in rat retina. Nutrients, 2018, 10(5)
[http://dx.doi.org/10.3390/nu10050593] [PMID: 29748512]
[30]
Vidal, R.; Hernandez-Vallejo, S.; Pauquai, T.; Texier, O.; Rousset, M.; Chambaz, J.; Demignot, S.; Lacorte, J-M. Apple procyanidins de-crease cholesterol esterification and lipoprotein secretion in Caco-2/TC7 enterocytes. J. Lipid Res., 2005, 46(2), 258-268.
[http://dx.doi.org/10.1194/jlr.M400209-JLR200] [PMID: 15576849]
[31]
Li, D.; Liu, F.; Wang, X.; Li, X. Polyphenol extract alleviates high-fat-diet-induced hepatic steatosis in male C57BL/6 mice by targeting LKB1/AMPK pathway. J. Agric. Food Chem., 2019, 67(44), 12208-12218.
[http://dx.doi.org/10.1021/acs.jafc.9b05495] [PMID: 31608624]
[32]
Noorolahi, Z.; Sahari, M.A.; Barzegar, M.; Ahmadi Gavlighi, H. Tannin fraction of pistachio green hull extract with pancreatic lipase inhi-bitory and antioxidant activity. J. Food Biochem., 2020, 44(6), e13208.
[http://dx.doi.org/10.1111/jfbc.13208] [PMID: 32189358]
[33]
Raitanen, J.E.; Järvenpää, E.; Korpinen, R.; Mäkinen, S.; Hellström, J.; Kilpeläinen, P.; Liimatainen, J.; Ora, A.; Tupasela, T.; Jyske, T. Tannins of conifer bark as nordic piquancy-sustainable preservative and aroma? Molecules, 2020, 25(3), E567.
[http://dx.doi.org/10.3390/molecules25030567] [PMID: 32012956]
[34]
Muthusamy, V.S.; Anand, S.; Sangeetha, K.N.; Sujatha, S.; Arun, B.; Lakshmi, B.S. Tannins present in Cichorium intybus enhance glucose uptake and inhibit adipogenesis in 3T3-L1 adipocytes through PTP1B inhibition. Chem. Biol. Interact., 2008, 174(1), 69-78.
[http://dx.doi.org/10.1016/j.cbi.2008.04.016] [PMID: 18534569]
[35]
Zou, B.; Ge, Z.; Zhu, W.; Xu, Z.; Li, C. Persimmon tannin represses 3T3-L1 preadipocyte differentiation via up-regulating expression of miR-27 and down-regulating expression of peroxisome proliferator-activated receptor-γ in the early phase of adipogenesis. Eur. J. Nutr., 2015, 54(8), 1333-1343.
[http://dx.doi.org/10.1007/s00394-014-0814-9] [PMID: 25510894]
[36]
Peng, J.; Li, K.; Zhu, W.; Nie, R.; Wang, R.; Li, C. Penta-O-galloyl-β-d-glucose, a hydrolysable tannin from Radix Paeoniae Alba, inhibits adipogenesis and TNF-α-mediated inflammation in 3T3-L1 cells. Chem. Biol. Interact., 2019, 302, 156-163.
[http://dx.doi.org/10.1016/j.cbi.2019.01.037] [PMID: 30721698]
[37]
Hengpratom, T.; Lowe, G.M.; Thumanu, K.; Suknasang, S.; Tiamyom, K.; Eumkeb, G. Oroxylum indicum (L.) Kurz extract inhibits adipo-genesis and lipase activity in vitro. BMC Complement. Altern. Med., 2018, 18(1), 177.
[http://dx.doi.org/10.1186/s12906-018-2244-3] [PMID: 29884167]
[38]
Perera, A.; Ton, S.H.; Moorthy, M.; Palanisamy, U.D. The insulin-sensitising properties of the ellagitannin geraniin and its metabolites from rind in 3T3-L1 cells. Int. J. Food Sci. Nutr., 2020, 71(8), 940-953.
[http://dx.doi.org/10.1080/09637486.2020.1754348] [PMID: 32319838]
[39]
Cheng, H.S.; Goh, B.H.; Phang, S.C.W.; Amanullah, M.M.; Ton, S.H.; Palanisamy, U.D.; Abdul Kadir, K.; Tan, J.B.L. Pleiotropic ameliora-tive effects of ellagitannin geraniin against metabolic syndrome induced by high-fat diet in rats. Nutrition, 2020, 79-80, 110973.
[http://dx.doi.org/10.1016/j.nut.2020.110973] [PMID: 32916379]
[40]
Zhang, X.; Li, W.; Tang, Y.; Lin, C.; Cao, Y.; Chen, Y. Mechanism of pentagalloyl glucose in alleviating fat accumulation in Caenorhabdi-tis elegans. J. Agric. Food Chem., 2019, 67(51), 14110-14120.
[http://dx.doi.org/10.1021/acs.jafc.9b06167] [PMID: 31789033]
[41]
Pae, H-O.; Oh, G-S.; Jeong, S-O.; Jeong, G-S.; Lee, B-S.; Choi, B-M.; Lee, H-S.; Chung, H-T. 1,2,3,4,6-Penta-O-galloyl-beta-D-glucose up-regulates heme oxygenase-1 expression by stimulating Nrf2 nuclear translocation in an extracellular signal-regulated kinase-dependent manner in HepG2 cells. World J. Gastroenterol., 2006, 12(2), 214-221.
[http://dx.doi.org/10.3748/wjg.v12.i2.214] [PMID: 16482620]
[42]
Krenek, K.A.; Barnes, R.C.; Talcott, S.T. Phytochemical composition and effects of commercial enzymes on the hydrolysis of gallic acid glycosides in mango (Mangifera indica L. cv. ‘Keitt’) pulp. J. Agric. Food Chem., 2014, 62(39), 9515-9521.
[http://dx.doi.org/10.1021/jf5031554] [PMID: 25185991]
[43]
Fang, C.; Kim, H.; Barnes, R.C.; Talcott, S.T.; Mertens-Talcott, S.U. Obesity-associated diseases biomarkers are differently modulated in lean and obese individuals and inversely correlated to plasma polyphenolic metabolites after 6 weeks of mango (Mangifera indica L.) consumption. Mol. Nutr. Food Res., 2018., e1800129.
[http://dx.doi.org/10.1002/mnfr.201800129] [PMID: 29797702]
[44]
Dinh, T.C.; Thi Phuong, T.N.; Minh, L.B.; Minh Thuc, V.T.; Bac, N.D.; Van Tien, N.; Pham, V.H.; Show, P.L.; Tao, Y.; Nhu Ngoc, V.T.; Bich Ngoc, N.T.; Jurgoński, A.; Thimiri Govinda Raj, D.B.; Van Tu, P.; Ha, V.N.; Czarzasta, J.; Chu, D-T. The effects of green tea on lipid metabolism and its potential applications for obesity and related metabolic disorders - An existing update. Diabetes Metab. Syndr., 2019, 13(2), 1667-1673.
[http://dx.doi.org/10.1016/j.dsx.2019.03.021] [PMID: 31336539]
[45]
Kang, M.C.; Kang, N.; Ko, S.C.; Kim, Y.B.; Jeon, Y.J. Anti-obesity effects of seaweeds of Jeju Island on the differentiation of 3T3-L1 preadipocytes and obese mice fed a high-fat diet. Food Chem. Toxicol., 2016, 90, 36-44.
[46]
Downing, L.E.; Edgar, D.; Ellison, P.A.; Ricketts, M.L. Mechanistic insight into nuclear receptor-mediated regulation of bile acid metabo-lism and lipid homeostasis by grape seed procyanidin extract (GSPE). Cell Biochem. Funct., 2017, 35(1), 12-32.
[http://dx.doi.org/10.1002/cbf.3247] [PMID: 28083965]
[47]
Adisakwattana, S.; Chanathong, B. Alpha-glucosidase inhibitory activity and lipid-lowering mechanisms of Moringa oleifera leaf extract. Eur. Rev. Med. Pharmacol. Sci., 2011, 15(7), 803-808.
[PMID: 21780550]
[48]
Yoshikawa, M.; Shimoda, H.; Nishida, N.; Takada, M.; Matsuda, H. Salacia reticulata and its polyphenolic constituents with lipase inhibi-tory and lipolytic activities have mild antiobesity effects in rats. J. Nutr., 2002, 132(7), 1819-1824.
[http://dx.doi.org/10.1093/jn/132.7.1819] [PMID: 12097653]
[49]
Praud, D.; Parpinel, M.; Guercio, V.; Bosetti, C.; Serraino, D.; Facchini, G.; Montella, M.; La Vecchia, C.; Rossi, M. Proanthocyanidins and the risk of prostate cancer in Italy. Cancer Causes Control, 2018, 29(2), 261-268.
[http://dx.doi.org/10.1007/s10552-018-1002-7] [PMID: 29350310]
[50]
Raina, K.; Singh, R.P.; Agarwal, R.; Agarwal, C. Oral grape seed extract inhibits prostate tumor growth and progression in TRAMP mice. Cancer Res., 2007, 67(12), 5976-5982.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0295] [PMID: 17575168]
[51]
Seeram, N.P.; Adams, L.S.; Henning, S.M.; Niu, Y.; Zhang, Y.; Nair, M.G.; Heber, D. In vitro antiproliferative, apoptotic and antioxidant activities of punicalagin, ellagic acid and a total pomegranate tannin extract are enhanced in combination with other polyphenols as found in pomegranate juice. J. Nutr. Biochem., 2005, 16(6), 360-367.
[http://dx.doi.org/10.1016/j.jnutbio.2005.01.006] [PMID: 15936648]
[52]
Kim, N.D.; Mehta, R.; Yu, W.; Neeman, I.; Livney, T.; Amichay, A.; Poirier, D.; Nicholls, P.; Kirby, A.; Jiang, W.; Mansel, R.; Ramachan-dran, C.; Rabi, T.; Kaplan, B.; Lansky, E. Chemopreventive and adjuvant therapeutic potential of pomegranate (Punica granatum) for hu-man breast cancer. Breast Cancer Res. Treat., 2002, 71(3), 203-217.
[http://dx.doi.org/10.1023/A:1014405730585] [PMID: 12002340]
[53]
Shao, Z-H.; Becker, L.B.; Vanden Hoek, T.L.; Schumacker, P.T.; Li, C-Q.; Zhao, D.; Wojcik, K.; Anderson, T.; Qin, Y.; Dey, L.; Yuan, C-S. Grape seed proanthocyanidin extract attenuates oxidant injury in cardiomyocytes. Pharmacol. Res., 2003, 47(6), 463-469.
[http://dx.doi.org/10.1016/S1043-6618(03)00041-0] [PMID: 12741998]
[54]
Engler, M.B.; Engler, M.M. The emerging role of flavonoid-rich cocoa and chocolate in cardiovascular health and disease. Nutr. Rev., 2006, 64(3), 109-118.
[http://dx.doi.org/10.1111/j.1753-4887.2006.tb00194.x] [PMID: 16572598]
[55]
BenSaad, L.A.; Kim, K.H.; Quah, C.C.; Kim, W.R.; Shahimi, M. Anti-inflammatory potential of ellagic acid, gallic acid and punicalagin A&B isolated from Punica granatum. BMC Complement. Altern. Med., 2017, 17(1), 47.
[http://dx.doi.org/10.1186/s12906-017-1555-0] [PMID: 28088220]
[56]
Han, S.; Gao, H.; Chen, S.; Wang, Q.; Li, X.; Du, L.J.; Li, J.; Luo, Y.Y.; Li, J.X.; Zhao, L.C.; Feng, J.; Yang, S. Procyanidin A1 alleviates inflammatory response induced by LPS through NF-κB, MAPK, and Nrf2/HO-1 pathways in RAW264.7 cells. Sci. Rep., 2019, 9(1), 15087.
[http://dx.doi.org/10.1038/s41598-019-51614-x] [PMID: 31636354]
[57]
Pan, C.; Wang, C.; Zhang, L.; Song, L.; Chen, Y.; Liu, B.; Liu, W-T.; Hu, L.; Pan, Y. Procyanidins attenuate neuropathic pain by suppres-sing matrix metalloproteinase-9/2. J. Neuroinflammation, 2018, 15(1), 187.
[http://dx.doi.org/10.1186/s12974-018-1182-9] [PMID: 29929563]
[58]
Quosdorf, S.; Schuetz, A.; Kolodziej, H. Different inhibitory potencies of oseltamivir carboxylate, zanamivir, and several tannins on bac-terial and viral neuraminidases as assessed in a cell-free fluorescence-based enzyme inhibition assay. Molecules, 2017, 22(11), E1989.
[http://dx.doi.org/10.3390/molecules22111989] [PMID: 29149072]
[59]
Gopal, J.; Muthu, M.; Paul, D.; Kim, D.H.; Chun, S. Bactericidal activity of green tea extracts: The importance of catechin containing nano particles. Sci. Rep., 2016, 6, 19710.
[http://dx.doi.org/10.1038/srep19710] [PMID: 26818408]
[60]
van Herpen, N.A.; Schrauwen-Hinderling, V.B. Lipid accumulation in non-adipose tissue and lipotoxicity. Physiol. Behav., 2008, 94(2), 231-241.
[http://dx.doi.org/10.1016/j.physbeh.2007.11.049] [PMID: 18222498]
[61]
Fan, H.; Wu, D.; Tian, W.; Ma, X. Inhibitory effects of tannic acid on fatty acid synthase and 3T3-L1 preadipocyte. Biochim. Biophys. Acta, 2013, 1831(7), 1260-1266.
[http://dx.doi.org/10.1016/j.bbalip.2013.04.003] [PMID: 24046866]
[62]
Yao, J.; Chen, P.; Apraku, A.; Zhang, G.; Huang, Z.; Hua, X. Hydrolysable tannin supplementation alters digestibility and utilization of dietary protein, lipid, and carbohydrate in grass carp (Ctenopharyngodon idellus). Front. Nutr., 2019, 6, 183.
[http://dx.doi.org/10.3389/fnut.2019.00183] [PMID: 31921876]
[63]
Su, H.; Li, Y.; Hu, D.; Xie, L.; Ke, H.; Zheng, X.; Chen, W. Procyanidin B2 ameliorates free fatty acids-induced hepatic steatosis through regulating TFEB-mediated lysosomal pathway and redox state. Free Radic. Biol. Med., 2018, 126, 269-286.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.08.024] [PMID: 30142454]
[64]
Hardie, D.G. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev., 2011, 25(18), 1895-1908.
[http://dx.doi.org/10.1101/gad.17420111] [PMID: 21937710]
[65]
Yin, M.; Zhang, P.; Yu, F.; Zhang, Z.; Cai, Q.; Lu, W.; Li, B.; Qin, W.; Cheng, M.; Wang, H.; Gao, H. Grape seed procyanidin B2 ameliora-tes hepatic lipid metabolism disorders in db/db mice. Mol. Med. Rep., 2017, 16(3), 2844-2850.
[http://dx.doi.org/10.3892/mmr.2017.6900] [PMID: 28677803]
[66]
Zou, B.; Ge, Z.Z.; Zhang, Y.; Du, J.; Xu, Z.; Li, C.M. Persimmon tannin accounts for hypolipidemic effects of persimmon through activa-ting of AMPK and suppressing NF-κB activation and inflammatory responses in high-fat diet rats. Food Funct., 2014, 5(7), 1536-1546.
[http://dx.doi.org/10.1039/C3FO60635J] [PMID: 24841999]
[67]
Li, X.; Chen, Y.; Li, S.; Chen, M.; Xiao, J.; Xie, B.; Sun, Z. Oligomer procyanidins from lotus seedpod regulate lipid homeostasis partially by modifying fat emulsification and digestion. J. Agric. Food Chem., 2019, 67(16), 4524-4534.
[http://dx.doi.org/10.1021/acs.jafc.9b01469] [PMID: 30945544]
[68]
Singh, R.; Kaushik, S.; Wang, Y.; Xiang, Y.; Novak, I.; Komatsu, M.; Tanaka, K.; Cuervo, A.M.; Czaja, M.J. Autophagy regulates lipid metabolism. Nature, 2009, 458(7242), 1131-1135.
[http://dx.doi.org/10.1038/nature07976] [PMID: 19339967]
[69]
Cao, P.; Zhang, Y.; Huang, Z.; Sullivan, M.A.; He, Z.; Wang, J.; Chen, Z.; Hu, H.; Wang, K. The preventative effects of procyanidin on binge ethanol-induced lipid accumulation and ROS overproduction via the promotion of hepatic autophagy. Mol. Nutr. Food Res., 2019, 63(18), e1801255.
[http://dx.doi.org/10.1002/mnfr.201801255] [PMID: 31336037]
[70]
Chung, M.Y.; Song, J.H.; Lee, J.; Shin, E.J.; Park, J.H.; Lee, S.H.; Hwang, J.T.; Choi, H.K. Tannic acid, a novel histone acetyltransferase inhibitor, prevents non-alcoholic fatty liver disease both in vivo and in vitro model. Mol. Metab., 2019, 19, 34-48.
[http://dx.doi.org/10.1016/j.molmet.2018.11.001] [PMID: 30473486]
[71]
Kim, Y.; Choi, Y.; Lee, J.; Park, Y. Downregulated lipid metabolism in differentiated murine adipocytes by procyanidins from defatted grape seed meal. Biosci. Biotechnol. Biochem., 2013, 77(7), 1420-1423.
[http://dx.doi.org/10.1271/bbb.130048] [PMID: 23832332]
[72]
Jian, T.; Lü, H.; Ding, X.; Wu, Y.; Zuo, Y.; Li, J.; Chen, J.; Gu, H. Polyphenol-rich Trapa quadrispinosa pericarp extract ameliorates high-fat diet induced non-alcoholic fatty liver disease by regulating lipid metabolism and insulin resistance in mice. PeerJ, 2019, 7, e8165.
[http://dx.doi.org/10.7717/peerj.8165] [PMID: 31803542]
[73]
Lee, Y.; Yang, H.; Hur, G.; Yu, J.; Park, S.; Kim, J.H.; Yoon Park, J.H.; Shin, H.S.; Kim, J.E.; Lee, K.W. 5-(3′,4′-Dihydroxyphenyl)-γ-valerolactone, a metabolite of procyanidins in cacao, suppresses MDI-induced adipogenesis by regulating cell cycle progression through direct inhibition of CDK2/cyclin O. Food Funct., 2019, 10(5), 2958-2969.
[http://dx.doi.org/10.1039/C9FO00334G] [PMID: 31073569]
[74]
Cristancho, A.G.; Lazar, M.A. Forming functional fat: A growing understanding of adipocyte differentiation. Nat. Rev. Mol. Cell Biol., 2011, 12(11), 722-734.
[http://dx.doi.org/10.1038/nrm3198] [PMID: 21952300]
[75]
Nie, F.; Liang, Y.; Xun, H.; Sun, J.; He, F.; Ma, X. Inhibitory effects of tannic acid in the early stage of 3T3-L1 preadipocytes differentia-tion by down-regulating PPARγ expression. Food Funct., 2015, 6(3), 894-901.
[http://dx.doi.org/10.1039/C4FO00871E] [PMID: 25623997]
[76]
Nagesh, P.K.B.; Chowdhury, P.; Hatami, E.; Jain, S.; Dan, N.; Kashyap, V.K.; Chauhan, S.C.; Jaggi, M.; Yallapu, M.M. Tannic acid inhibits lipid metabolism and induce ROS in prostate cancer cells. Sci. Rep., 2020, 10(1), 980.
[http://dx.doi.org/10.1038/s41598-020-57932-9] [PMID: 31969643]
[77]
Lee, C.J.; Chen, L.G.; Liang, W.L.; Wang, C.C. Multiple activities of Punica granatum Linne against acne vulgaris. Int. J. Mol. Sci., 2017, 18(1), E141.
[http://dx.doi.org/10.3390/ijms18010141] [PMID: 28085116]
[78]
Les, F.; Arbonés-Mainar, J.M.; Valero, M.S.; López, V. Pomegranate polyphenols and urolithin A inhibit α-glucosidase, dipeptidyl pepti-dase-4, lipase, triglyceride accumulation and adipogenesis related genes in 3T3-L1 adipocyte-like cells. J. Ethnopharmacol., 2018, 220, 67-74.
[http://dx.doi.org/10.1016/j.jep.2018.03.029] [PMID: 29604377]
[79]
Liu, X.; Zhao, H.; Jin, Q.; You, W.; Cheng, H.; Liu, Y.; Song, E.; Liu, G.; Tan, X.; Zhang, X.; Wan, F. Resveratrol induces apoptosis and inhibits adipogenesis by stimulating the SIRT1-AMPKα-FOXO1 signalling pathway in bovine intramuscular adipocytes. Mol. Cell. Biochem., 2018, 439(1-2), 213-223.
[http://dx.doi.org/10.1007/s11010-017-3149-z] [PMID: 28819881]
[80]
Jin, Q.; Liu, G.; Tan, X.; Zhang, X.; Liu, X.; Wei, C. Gallic acid as a key substance to inhibit proliferation and adipogenesis in bovine sub-cutaneous adipocyte. Anim. Biotechnol., 2020, 1-7.
[http://dx.doi.org/10.1080/10495398.2020.1822370] [PMID: 32945731]
[81]
Fang, C.; Kim, H.; Yanagisawa, L.; Bennett, W.; Sirven, M.A.; Alaniz, R.C.; Talcott, S.T.; Mertens-Talcott, S.U. Gallotannins and Lactoba-cillus plantarum WCFS1 mitigate high-fat diet-induced inflammation and induce biomarkers for thermogenesis in adipose tissue in gnoto-biotic mice. Mol. Nutr. Food Res., 2019, 63(9), e1800937.
[http://dx.doi.org/10.1002/mnfr.201800937] [PMID: 30908878]
[82]
Matsui, T.; Ebuchi, S.; Fukui, K.; Matsugano, K.; Terahara, N.; Matsumoto, K. Caffeoylsophorose, a new natural alpha-glucosidase inhibi-tor, from red vinegar by fermented purple-fleshed sweet potato. Biosci. Biotechnol. Biochem., 2004, 68(11), 2239-2246.
[http://dx.doi.org/10.1271/bbb.68.2239] [PMID: 15564660]
[83]
Fotschki, B.; Juśkiewicz, J.; Jurgoński, A.; Kosmala, M.; Milala, J.; Zduńczyk, Z.; Markowski, J. Grinding levels of raspberry pomace affect intestinal microbial activity, lipid and glucose metabolism in Wistar rats. Food research international (Ottawa, Ont.), 2019, 120, 399-406.
[http://dx.doi.org/10.1016/j.foodres.2019.03.014] [PMID: 31000255]
[84]
Anhê, F.F.; Roy, D.; Pilon, G.; Dudonné, S.; Matamoros, S.; Varin, T.V.; Garofalo, C.; Moine, Q.; Desjardins, Y.; Levy, E.; Marette, A. A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with in-creased Akkermansia spp. population in the gut microbiota of mice. Gut, 2015, 64(6), 872-883.
[http://dx.doi.org/10.1136/gutjnl-2014-307142] [PMID: 25080446]
[85]
Wu, Y.; Ma, N.; Song, P.; He, T.; Levesque, C.; Bai, Y.; Zhang, A.; Ma, X. Grape seed proanthocyanidin affects lipid metabolism via changing gut microflora and enhancing propionate production in weaned pigs. J. Nutr., 2019, 149(9), 1523-1532.
[http://dx.doi.org/10.1093/jn/nxz102] [PMID: 31175811]
[86]
Crescenti, A.; del Bas, J.M.; Arola-Arnal, A.; Oms-Oliu, G.; Arola, L.; Caimari, A. Grape seed procyanidins administered at physiological doses to rats during pregnancy and lactation promote lipid oxidation and up-regulate AMPK in the muscle of male offspring in adulthood. J. Nutr. Biochem., 2015, 26(9), 912-920.
[http://dx.doi.org/10.1016/j.jnutbio.2015.03.003] [PMID: 26007288]
[87]
Caimari, A.; Mariné-Casadó, R.; Boqué, N.; Crescenti, A.; Arola, L.; Del Bas, J.M. Maternal intake of grape seed procyanidins during lacta-tion induces insulin resistance and an adiponectin resistance-like phenotype in rat offspring. Sci. Rep., 2017, 7(1), 12573.
[http://dx.doi.org/10.1038/s41598-017-12597-9] [PMID: 28974704]
[88]
Mašek, T.; Starčević, K. Lipogenesis and lipid peroxidation in rat testes after long-term treatment with sucrose and tannic acid in drinking water. Andrologia, 2017, 49(4)
[http://dx.doi.org/10.1111/and.12632] [PMID: 27362617]
[89]
Figueroa-Espinoza, M.C.; Zafimahova, A.; Alvarado, P.G.; Dubreucq, E.; Poncet-Legrand, C. Grape seed and apple tannins: Emulsifying and antioxidant properties. Food Chem., 2015, 178, 38-44.
[http://dx.doi.org/10.1016/j.foodchem.2015.01.056] [PMID: 25704681]
[90]
Fushimi, S.; Myazawa, F.; Nakagawa, K.; Burdeos, G.C.; Miyazawa, T. Young persimmon ingestion suppresses lipid oxidation in rats. J. Nutr. Sci. Vitaminol. (Tokyo), 2015, 61(1), 90-95.
[http://dx.doi.org/10.3177/jnsv.61.90] [PMID: 25994144]
[91]
Do, G.M.; Kwon, E.Y.; Ha, T.Y.; Park, Y.B.; Kim, H.J.; Jeon, S.M.; Lee, M.K.; Choi, M.S. Tannic acid is more effective than clofibrate for the elevation of hepatic β-oxidation and the inhibition of 3-hydroxy-3-methyl-glutaryl-CoA reductase and aortic lesion formation in apo E-deficient mice. Br. J. Nutr., 2011, 106(12), 1855-1863.
[http://dx.doi.org/10.1017/S000711451100256X] [PMID: 21736774]
[92]
Downing, L.E.; Ferguson, B.S.; Rodriguez, K.; Ricketts, M-L. A grape seed procyanidin extract inhibits HDAC activity leading to increased Pparα phosphorylation and target-gene expression. Mol. Nutr. Food Res., 2017, 61(2)
[PMID: 27624175]
[93]
Taguchi, K.; Motohashi, H.; Yamamoto, M. Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution. Genes Cells, 2011, 16(2), 123-140.
[94]
Quesada, H.; Díaz, S.; Pajuelo, D.; Fernández-Iglesias, A.; Garcia-Vallvé, S.; Pujadas, G.; Salvadó, M.J.; Arola, L.; Bladé, C. The lipid-lowering effect of dietary proanthocyanidins in rats involves both chylomicron-rich and VLDL-rich fractions. Br. J. Nutr., 2012, 108(2), 208-217.
[http://dx.doi.org/10.1017/S0007114511005472] [PMID: 22011563]
[95]
Lu, R-H.; Qin, C-B.; Yang, F.; Zhang, W-Y.; Zhang, Y-R.; Yang, G-K.; Yang, L-P.; Meng, X-L.; Yan, X.; Nie, G-X. Grape seed proant-hocyanidin extract ameliorates hepatic lipid accumulation and inflammation in grass carp (Ctenopharyngodon idella). Fish Physiol. Biochem., 2020, 46(5), 1665-1677.
[http://dx.doi.org/10.1007/s10695-020-00819-3] [PMID: 32447624]
[96]
Del Bas, J.M.; Fernández-Larrea, J.; Blay, M.; Ardèvol, A.; Salvadó, M.J.; Arola, L.; Bladé, C. Grape seed procyanidins improve atheros-clerotic risk index and induce liver CYP7A1 and SHP expression in healthy rats. FASEB J., 2005, 19(3), 479-481.
[http://dx.doi.org/10.1096/fj.04-3095fje] [PMID: 15637110]
[97]
Del Bas, J.M.; Ricketts, M.L.; Baiges, I.; Quesada, H.; Ardevol, A.; Salvadó, M.J.; Pujadas, G.; Blay, M.; Arola, L.; Bladé, C.; Moore, D.D.; Fernandez-Larrea, J. Dietary procyanidins lower triglyceride levels signaling through the nuclear receptor small heterodimer partner. Mol. Nutr. Food Res., 2008, 52(10), 1172-1181.
[http://dx.doi.org/10.1002/mnfr.200800054] [PMID: 18720348]
[98]
Jeon, T.I.; Esquejo, R.M.; Roqueta-Rivera, M.; Phelan, P.E.; Moon, Y.A.; Govindarajan, S.S.; Esau, C.C.; Osborne, T.F. An SREBP-responsive microRNA operon contributes to a regulatory loop for intracellular lipid homeostasis. Cell Metab., 2013, 18(1), 51-61.
[http://dx.doi.org/10.1016/j.cmet.2013.06.010] [PMID: 23823476]
[99]
Shi, Y.; Jia, M.; Xu, L.; Fang, Z.; Wu, W.; Zhang, Q.; Chung, P.; Lin, Y.; Wang, S.; Zhang, Y. miR-96 and autophagy are involved in the beneficial effect of grape seed proanthocyanidins against high-fat-diet-induced dyslipidemia in mice. Phytother. Res., 2019, 33(4), 1222-1232.
[http://dx.doi.org/10.1002/ptr.6318] [PMID: 30848548]
[100]
Ahad, A.; Ganai, A.A.; Mujeeb, M.; Siddiqui, W.A. Ellagic acid, an NF-κB inhibitor, ameliorates renal function in experimental diabetic nephropathy. Chem. Biol. Interact., 2014, 219, 64-75.
[http://dx.doi.org/10.1016/j.cbi.2014.05.011] [PMID: 24877639]
[101]
Baselga-Escudero, L.; Bladé, C.; Ribas-Latre, A.; Casanova, E.; Salvadó, M.J.; Arola, L.; Arola-Arnal, A. Grape seed proanthocyanidins repress the hepatic lipid regulators miR-33 and miR-122 in rats. Mol. Nutr. Food Res., 2012, 56(11), 1636-1646.
[http://dx.doi.org/10.1002/mnfr.201200237] [PMID: 22965541]
[102]
Zeng, X.; Sheng, Z.; Li, X.; Fan, X.; Jiang, W. In vitro studies on the interactions of blood lipid level-related biological molecules with gallic acid and tannic acid. J. Sci. Food Agric., 2019, 99(15), 6882-6892.
[http://dx.doi.org/10.1002/jsfa.9974] [PMID: 31386202]
[103]
Li, X.; Jiao, W.; Zhang, W.; Xu, Y.; Cao, J.; Jiang, W. Characterizing the interactions of dietary condensed tannins with bile salts. J. Agric. Food Chem., 2019, 67(34), 9543-9550.
[http://dx.doi.org/10.1021/acs.jafc.9b03985] [PMID: 31379164]
[104]
Insull, W., Jr Clinical utility of bile acid sequestrants in the treatment of dyslipidemia: A scientific review. South. Med. J., 2006, 99(3), 257-273.
[http://dx.doi.org/10.1097/01.smj.0000208120.73327.db] [PMID: 16553100]
[105]
Matsumoto, K.; Takekawa, K. Comparison of the effects of three persimmon cultivars on lipid and glucose metabolism in high-fat diet-fed mice. J. Nutr. Sci. Vitaminol. (Tokyo), 2014, 60(5), 340-347.
[http://dx.doi.org/10.3177/jnsv.60.340] [PMID: 25744423]
[106]
Shashkin, P.; Dragulev, B.; Ley, K. Macrophage differentiation to foam cells. Curr. Pharm. Des., 2005, 11(23), 3061-3072.
[http://dx.doi.org/10.2174/1381612054865064] [PMID: 16178764]
[107]
Terra, X.; Fernández-Larrea, J.; Pujadas, G.; Ardèvol, A.; Bladé, C.; Salvadó, J.; Arola, L.; Blay, M. Inhibitory effects of grape seed procyanidins on foam cell formation in vitro. J. Agric. Food Chem., 2009, 57(6), 2588-2594.
[http://dx.doi.org/10.1021/jf803450a] [PMID: 19292475]
[108]
Kaplan, M.; Hayek, T.; Raz, A.; Coleman, R.; Dornfeld, L.; Vaya, J.; Aviram, M. Pomegranate juice supplementation to atherosclerotic mice reduces macrophage lipid peroxidation, cellular cholesterol accumulation and development of atherosclerosis. J. Nutr., 2001, 131(8), 2082-2089.
[http://dx.doi.org/10.1093/jn/131.8.2082] [PMID: 11481398]
[109]
Lian, Z.; Zhu, B.; Lei, C.; Zhao, W.; Huang, Q.; Jiang, C.; Jin, M.; Shi, J.; Shao, D. Reverse cholesterol transport-related miRNAs and their regulation by natural functional compounds. Curr. Protein Pept. Sci., 2019, 20(10), 1004-1011.
[http://dx.doi.org/10.2174/1389203720666190827143218] [PMID: 31453783]
[110]
Shao, D.; Di, Y.; Lian, Z.; Zhu, B.; Xu, X.; Guo, D.; Huang, Q.; Jiang, C.; Kong, J.; Shi, J. Grape seed proanthocyanidins suppressed ma-crophage foam cell formation by miRNA-9 via targeting ACAT1 in THP-1 cells. Food Funct., 2020, 11(2), 1258-1269.
[http://dx.doi.org/10.1039/C9FO02352F] [PMID: 31967154]
[111]
Chen, D-M.; Cai, X.; Kwik-Uribe, C.L.; Zeng, R.; Zhu, X-Z. Inhibitory effects of procyanidin B(2) dimer on lipid-laden macrophage for-mation. J. Cardiovasc. Pharmacol., 2006, 48(2), 54-70.
[http://dx.doi.org/10.1097/01.fjc.0000242052.60502.21] [PMID: 16954822]
[112]
Morissette, A.; Kropp, C.; Songpadith, J.P.; Junges Moreira, R.; Costa, J.; Mariné-Casadó, R.; Pilon, G.; Varin, T.V.; Dudonné, S.; Boute-krabt, L.; St-Pierre, P.; Levy, E.; Roy, D.; Desjardins, Y.; Raymond, F.; Houde, V.P.; Marette, A. Blueberry proanthocyanidins and ant-hocyanins improve metabolic health through a gut microbiota-dependent mechanism in diet-induced obese mice. Am. J. Physiol. Endocrinol. Metab., 2020, 318(6), E965-E980.
[http://dx.doi.org/10.1152/ajpendo.00560.2019] [PMID: 32228321]
[113]
Quesada, H.; del Bas, J.M.; Pajuelo, D.; Díaz, S.; Fernandez-Larrea, J.; Pinent, M.; Arola, L.; Salvadó, M.J.; Bladé, C. Grape seed proant-hocyanidins correct dyslipidemia associated with a high-fat diet in rats and repress genes controlling lipogenesis and VLDL assembling in liver. Int. J. Obes., 2009, 33(9), 1007-1012.
[114]
Aviram, M.; Dornfeld, L.; Rosenblat, M.; Volkova, N.; Kaplan, M.; Coleman, R.; Hayek, T.; Presser, D.; Fuhrman, B. Pomegranate juice consumption reduces oxidative stress, atherogenic modifications to LDL, and platelet aggregation: Studies in humans and in atherosclero-tic apolipoprotein E-deficient mice. Am. J. Clin. Nutr., 2000, 71(5), 1062-1076.
[http://dx.doi.org/10.1093/ajcn/71.5.1062] [PMID: 10799367]
[115]
Aviram, M.; Rosenblat, M.; Gaitini, D.; Nitecki, S.; Hoffman, A.; Dornfeld, L.; Volkova, N.; Presser, D.; Attias, J.; Liker, H.; Hayek, T. Pomegranate juice consumption for 3 years by patients with carotid artery stenosis reduces common carotid intima-media thickness, blood pressure and LDL oxidation. Clin. Nutr., 2004, 23(3), 423-433.
[http://dx.doi.org/10.1016/j.clnu.2003.10.002] [PMID: 15158307]
[116]
Le, N.A.; Walter, M.F. The role of hypertriglyceridemia in atherosclerosis. Curr. Atheroscler. Rep., 2007, 9(2), 110-115.
[http://dx.doi.org/10.1007/s11883-007-0006-7] [PMID: 17877919]
[117]
Mohana, T.; Navin, A.V.; Jamuna, S.; Sakeena Sadullah, M.S.; Niranjali Devaraj, S. Inhibition of differentiation of monocyte to macrop-hages in atherosclerosis by oligomeric proanthocyanidins –In vivo and in vitro study. Food Chem. Toxicol., 2015, 82, 96-105.
[118]
Guo, Q.; Du, G.; Qi, H.; Zhang, Y.; Yue, T.; Wang, J.; Li, R. A nematicidal tannin from Punica granatum L. rind and its physiological effect on pine wood nematode (Bursaphelenchus xylophilus). Pestic. Biochem. Physiol., 2017, 135, 64-68.
[http://dx.doi.org/10.1016/j.pestbp.2016.06.003] [PMID: 28043333]
[119]
Baker, R.G.; Hayden, M.S.; Ghosh, S. NF-κB, inflammation, and metabolic disease. Cell Metab., 2011, 13(1), 11-22.
[http://dx.doi.org/10.1016/j.cmet.2010.12.008] [PMID: 21195345]
[120]
Grassi, D.; Necozione, S.; Lippi, C.; Croce, G.; Valeri, L.; Pasqualetti, P.; Desideri, G.; Blumberg, J.B.; Ferri, C. Cocoa reduces blood pressure and insulin resistance and improves endothelium-dependent vasodilation in hypertensives. Hypertension, 2005, 46(2), 398-405.
[121]
Ueda, M.; Nishiumi, S.; Nagayasu, H.; Fukuda, I.; Yoshida, K.; Ashida, H. Epigallocatechin gallate promotes GLUT4 translocation in ske-letal muscle. Biochem. Biophys. Res. Commun., 2008, 377(1), 286-290.
[http://dx.doi.org/10.1016/j.bbrc.2008.09.128] [PMID: 18845128]
[122]
Yamashita, Y.; Okabe, M.; Natsume, M.; Ashida, H. Prevention mechanisms of glucose intolerance and obesity by cacao liquor procyani-din extract in high-fat diet-fed C57BL/6 mice. Arch. Biochem. Biophys., 2012, 527(2), 95-104.
[http://dx.doi.org/10.1016/j.abb.2012.03.018] [PMID: 22465028]
[123]
Dominiczak, M.H. Hyperlipidaemia and cardiovascular disease--back to basics: Dietary patterns, foods and cardiovascular risk. Curr. Opin. Lipidol., 2011, 22(6), 509-511.
[http://dx.doi.org/10.1097/MOL.0b013e32834d1703] [PMID: 22101563]
[124]
Kang, I.; Kim, Y.; Tomás-Barberán, F.A.; Espín, J.C.; Chung, S.; Urolithin, A.; Urolithin, A. C, and D, but not iso-urolithin A and urolithin B, attenuate triglyceride accumulation in human cultures of adipocytes and hepatocytes. Mol. Nutr. Food Res., 2016, 60(5), 1129-1138.
[http://dx.doi.org/10.1002/mnfr.201500796] [PMID: 26872561]
[125]
Zhu, W.; Jia, Y.; Peng, J.; Li, C.M. Inhibitory effect of persimmon tannin on pancreatic lipase and the underlying mechanism in vitro. J. Agric. Food Chem., 2018, 66(24), 6013-6021.
[http://dx.doi.org/10.1021/acs.jafc.8b00850] [PMID: 29806464]
[126]
Birari, R.B.; Bhutani, K.K. Pancreatic lipase inhibitors from natural sources: Unexplored potential. Drug Discov. Today, 2007, 12(19-20), 879-889.
[http://dx.doi.org/10.1016/j.drudis.2007.07.024] [PMID: 17933690]
[127]
Mathew, A.S.; Capel-Williams, G.M.; Berry, S.E.; Hall, W.L. Acute effects of pomegranate extract on postprandial lipaemia, vascular fun-ction and blood pressure. Plant Foods Hum. Nutr., 2012, 67(4), 351-357.
[http://dx.doi.org/10.1007/s11130-012-0318-9] [PMID: 23093401]
[128]
Aviram, M.; Dornfeld, L. Pomegranate juice consumption inhibits serum angiotensin converting enzyme activity and reduces systolic blood pressure. Atherosclerosis, 2001, 158(1), 195-198.
[http://dx.doi.org/10.1016/S0021-9150(01)00412-9] [PMID: 11500191]
[129]
Odai, T.; Terauchi, M.; Kato, K.; Hirose, A.; Miyasaka, N. Effects of grape seed proanthocyanidin extract on vascular endothelial function in participants with prehypertension: A randomized, double-blind, placebo-controlled study. Nutrients, 2019, 11(12), E2844.
[http://dx.doi.org/10.3390/nu11122844] [PMID: 31757033]
[130]
Medina-Remón, A.; Tresserra-Rimbau, A.; Pons, A.; Tur, J.A.; Martorell, M.; Ros, E.; Buil-Cosiales, P.; Sacanella, E.; Covas, M.I.; Core-lla, D.; Salas-Salvadó, J.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Ortega-Calvo, M.; García-Valdueza, M.; Arós, F.; Saez, G.T.; Serra-Majem, L.; Pinto, X.; Vinyoles, E.; Estruch, R.; Lamuela-Raventos, R.M. PREDIMED Study Investigators. Effects of total dietary polyphenols on plasma nitric oxide and blood pressure in a high cardiovascular risk cohort. The PREDIMED randomized trial. Nutr. Metab. Cardiovasc. Dis., 2015, 25(1), 60-67.
[http://dx.doi.org/10.1016/j.numecd.2014.09.001] [PMID: 25315667]
[131]
Brunt, E.M.; Wong, V.W.; Nobili, V.; Day, C.P.; Sookoian, S.; Maher, J.J.; Bugianesi, E.; Sirlin, C.B.; Neuschwander-Tetri, B.A.; Rinella, M.E. Nonalcoholic fatty liver disease. Nat. Rev. Dis. Primers, 2015, 1, 15080.
[http://dx.doi.org/10.1038/nrdp.2015.80] [PMID: 27188459]
[132]
Yogalakshmi, B.; Sathiya Priya, C.; Anuradha, C.V. Grape seed proanthocyanidins and metformin combination attenuate hepatic endo-plasmic reticulum stress in rats subjected to nutrition excess. Arch. Physiol. Biochem., 2019, 125(2), 174-183.
[http://dx.doi.org/10.1080/13813455.2018.1444058] [PMID: 29482356]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy