Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Chemistry of 2-(Piperazin-1-yl) Quinoline-3-Carbaldehydes

Author(s): Mohammed A. Salem, Moustafa A. Gouda* and Ghada G. El-Bana*

Volume 19, Issue 4, 2022

Published on: 13 January, 2022

Page: [480 - 495] Pages: 16

DOI: 10.2174/1570193X18666211001124510

Price: $65

Abstract

This review described the preparation of 2- chloroquinoline-3-carbaldehyde derivatives 18 through Vilsmeier-Haack formylation of N-arylacetamides and the use of them as a key intermediate for the preparation of 2-(piperazin-1-yl) quinoline-3-carbaldehydes. The synthesis of the 2- (piperazin-1-yl) quinolines derivatives was explained through the following chemical reactions: acylation, sulfonylation, Claisen-Schmidt condensation, 1, 3-dipolar cycloaddition, one-pot multicomponent reactions (MCRs), reductive amination, Grignard reaction and Kabachnik-Field’s reaction.

Keywords: 2-chloroquinoline-3-carbaldehyde, 2-(piperazin-1-yl) quinoline-3-carbaldehydes benzoimidazole, Kabachnik- Field’s reaction, Vilsmeier-Haack, reactivity, 1, 3-dipolar cycloaddition, MCRs.

Graphical Abstract
[1]
Kumar, A.; Srivastava, K.; Kumar, S.R.; Puri, S.K.; Chauhan, P.M. Synthesis of new 4-aminoquinolines and quinoline-acridine hybrids as antimalarial agents. Bioorg. Med. Chem. Lett., 2010, 20(23), 7059-7063.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.107] [PMID: 20951034]
[2]
Arancibia, R.; Dubar, F.; Pradines, B.; Forfar, I.; Dive, D.; Klahn, A.H.; Biot, C. Synthesis and antimalarial activities of rhenium bioorganometallics based on the 4-aminoquinoline structure. Bioorg. Med. Chem., 2010, 18(22), 8085-8091.
[http://dx.doi.org/10.1016/j.bmc.2010.09.005] [PMID: 20934349]
[3]
Solomon, V.R.; Hu, C.; Lee, H. Design and synthesis of anti-breast cancer agents from 4-piperazinylquinoline: A hybrid pharmacophore approach. Bioorg. Med. Chem., 2010, 18(4), 1563-1572.
[http://dx.doi.org/10.1016/j.bmc.2010.01.001] [PMID: 20106668]
[4]
Mahamoud, A.; Chevalier, J.; Davin-Regli, A.; Barbe, J.; Pages, J.M. Quinoline derivatives as promising inhibitors of antibiotic efflux pump in multidrug resistant Enterobacter aerogenes isolates. Curr. Drug Targets, 2006, 7(7), 843-847.
[5]
Leatham, P.A.; Bird, H.A.; Wright, V.; Seymour, D.; Gordon, A. A double blind study of antrafenine, naproxen and placebo in osteoarthrosis. Eur. J. Rheumatol. Inflamm., 1983, 6(2), 209-211.
[PMID: 6673985]
[6]
Wilson, W.D.; Zhao, M.; Patterson, S.E.; Wydra, R.L.; Janda, L.; Strekowski, L.; Schinazi, R.F. Design of RNA interactive anti‐HIV‐1 Agents: Unfused aromatic intercalators. ChemInform, 2010, 23(44), 311-311.
[http://dx.doi.org/10.1002/chin.199244311]
[7]
Strekowski, L.; Mokrosz, J.L.; Honkan, V.A.; Czarny, A.; Cegla, M.T.; Wydra, R.L.; Patterson, S.E.; Schinazi, R.F. Synthesis and quantitative structure-activity relationship analysis of 2-(aryl or heteroaryl)quinolin-4-amines, a new class of anti-HIV-1 agents. J. Med. Chem., 1991, 34(5), 1739-1746.
[http://dx.doi.org/10.1021/jm00109a031] [PMID: 2033597]
[8]
Davis, R.; Markham, A.; Balfour, J.A. Ciprofloxacin. An updated review of its pharmacology, therapeutic efficacy and tolerability. Drugs, 1996, 51(6), 1019-1074.
[http://dx.doi.org/10.2165/00003495-199651060-00010] [PMID: 8736621]
[9]
Lubasch, A.; Erbes, R.; Mauch, H.; Lode, H. Sparfloxacin in the treatment of drug resistant tuberculosis or intolerance of first line therapy. Eur. Respir. J., 2001, 17(4), 641-646.
[http://dx.doi.org/10.1183/09031936.01.17406410] [PMID: 11401058]
[10]
Schultz, C. Gatifloxacin ophthalmic solution for treatment of bacterial conjunctivitis: Safety, efficacy and patient perspective. Ophthalmol. Eye Dis., 2012, 4, S7383.
[http://dx.doi.org/10.4137/OED.S7383]
[11]
Bareggi, S.R.; Cornelli, U. Clioquinol: Review of its mechanisms of action and clinical uses in neurodegenerative disorders. CNS Neurosci. Ther., 2012, 18(1), 41-46.
[http://dx.doi.org/10.1111/j.1755-5949.2010.00231.x] [PMID: 21199452]
[12]
Parhizgar, A.R.; Tahghighi, A. Introducing new antimalarial analogues of chloroquine and amodiaquine: A narrative review. Iran. J. Med. Sci., 2017, 42(2), 115-128.
[PMID: 28360437]
[13]
Plosker, G.L.; Scott, L.J. Saquinavir: A review of its use in boosted regimens for treating HIV infection. Drugs, 2003, 63(12), 1299-1324.
[http://dx.doi.org/10.2165/00003495-200363120-00007] [PMID: 12790697]
[14]
Guo, C.C.; Tong, R.B.; Li, K.L. Chloroalkyl piperazine and nitrogen mustard porphyrins: Synthesis and anticancer activity. Bioorg. Med. Chem., 2004, 12(9), 2469-2475.
[http://dx.doi.org/10.1016/j.bmc.2004.01.045] [PMID: 15080942]
[15]
Gillard, M.; Van Der Perren, C.; Moguilevsky, N.; Massingham, R.; Chatelain, P. Binding characteristics of cetirizine and levocetirizine to human H(1) histamine receptors: Contribution of Lys(191) and Thr(194). Mol. Pharmacol., 2002, 61(2), 391-399.
[http://dx.doi.org/10.1124/mol.61.2.391] [PMID: 11809864]
[16]
Ryckebusch, A.; Deprez-Poulain, R.; Maes, L.; Debreu-Fontaine, M.A.; Mouray, E.; Grellier, P.; Sergheraert, C. Synthesis and in vitro and in vivo antimalarial activity of N1-(7-chloro-4-quinolyl)-1,4-bis(3-aminopropyl)piperazine derivatives. J. Med. Chem., 2003, 46(4), 542-557.
[http://dx.doi.org/10.1021/jm020960r] [PMID: 12570376]
[17]
McCombie, S.W.; Tagat, J.R.; Vice, S.F.; Lin, S.I.; Steensma, R.; Palani, A.; Neustadt, B.R.; Baroudy, B.M.; Strizki, J.M.; Endres, M.; Cox, K.; Dan, N.; Chou, C.C. Piperazine-based CCR5 antagonists as HIV-1 inhibitors. III: Synthesis, antiviral and pharmacokinetic profiles of symmetrical heteroaryl carboxamides. Bioorg. Med. Chem. Lett., 2003, 13(3), 567-571.
[http://dx.doi.org/10.1016/S0960-894X(02)00918-6] [PMID: 12565973]
[18]
Kimura, M.; Masuda, T.; Yamada, K.; Kubota, N.; Kawakatsu, N.; Mitani, M.; Kishii, K.; Inazu, M.; Namiki, T. Novel diphenylalkyl piperazine derivatives with dual calcium antagonistic and antioxidative activities. Bioorg. Med. Chem. Lett., 2002, 12(15), 1947-1950.
[http://dx.doi.org/10.1016/S0960-894X(02)00322-0] [PMID: 12113815]
[19]
Kawasaki, N.; Miyataka, H.; Nishiki, M.; Matsumoto, H.; Inagaki, N.; Nagai, H.; Satoh, T. Synthesis of trimethylhydroquinone derivatives as anti-allergic agents with anti-oxidative actions. Chem. Pharm. Bull. (Tokyo), 1999, 47(2), 177-181.
[http://dx.doi.org/10.1248/cpb.47.177] [PMID: 10071852]
[20]
Mayence, A.; Vanden Eynde, J.J.; LeCour, L., Jr; Walker, L.A.; Tekwani, B.L.; Huang, T.L. Piperazine-linked bisbenzamidines: A novel class of antileishmanial agents. Eur. J. Med. Chem., 2004, 39(6), 547-553.
[http://dx.doi.org/10.1016/j.ejmech.2004.01.009] [PMID: 15183913]
[21]
Yevich, J.P.; New, J.S.; Smith, D.W.; Lobeck, W.G.; Catt, J.D.; Minielli, J.L.; Eison, M.S.; Taylor, D.P.; Riblet, L.A.; Temple, D.L., Jr Synthesis and biological evaluation of 1-(1,2-benzisothiazol-3-yl)- and (1,2-benzisoxazol-3-yl)piperazine derivatives as potential antipsychotic agents. J. Med. Chem., 1986, 29(3), 359-369.
[http://dx.doi.org/10.1021/jm00153a010] [PMID: 2869146]
[22]
Vilsmeier, A.; Haack, A. Über die Einwirkung von Halogenphosphor auf Alkyl‐formanilide. Ber. Dtsch. Chem. Ges. B, 1927, 60B, 119-122.
[http://dx.doi.org/10.1002/cber.19270600118]
[23]
Desai, N.R.; Gurunathan, K.; Suchetan, P.A.; Basappa, A.K.D.; Naveen, S.; Lokanath, N.K.; Sreenivasa, S. Synthesis, crystal structure and molecular docking studies of novel 2-(4-(4-substitutedphenylsulfonyl) piperazin-1-yl) quinolone-3-carbaldehyde derivatives. Res. Chem. Intermed., 2017, 43(11), 6131-6154.
[http://dx.doi.org/10.1007/s11164-017-2981-9]
[24]
Zhao, Y.; Li, M.; Li, B.; Zhang, S.; Su, A.; Xing, Y.; Ge, Z.; Li, R.; Yang, B. Discovery and optimization of thienopyridine derivatives as novel urea transporter inhibitors. Eur. J. Med. Chem., 2019, 172, 131-142.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.060] [PMID: 30959323]
[25]
Meth-Cohn, O.; Narine, B.; Tarnowski, B. A versatile new synthesis of quinolines and related fused pyridines, Part 5. The synthesis of 2-chloroquinoline-3-carbaldehydes. J. Chem. Soc. Perkin Trans., 1981, I, 1520-1530.
[http://dx.doi.org/10.1039/p19810001520]
[26]
Marjani, A.P.; Khalafy, J.; Rostampoor, A. The Synthesis of New Benzo [h] thieno [2, 3‐b] quinoline‐9‐yl (aryl) methanone Derivatives. J. Heterocycl. Chem., 2017, 54(1), 648-652.
[27]
Abu‐Hashem, A.A.; Gouda, M.A.; Abdelgawad, A.A.M. Vilsmeier-haack cyclisation as a facile synthetic route to thieno [2,3- b] quinolines (Part I). Lett. Org. Chem., 2021, 18(1)
[http://dx.doi.org/10.2174/1570178617999200711175956]
[28]
Abu‐Hashem, A.A.; Abdelgawad, A.A.M. Synthetic and reactions routes to tetrahydrothieno[3,2-b] quinoline derivatives (part IV). Mini Rev. Org. Chem., 2021, 18(00)
[http://dx.doi.org/10.2174/1570193X18666210218212719]
[29]
Kalita, P.K.; Baruah, B.; Bhuyan, P.J. Synthesis of novel pyrano [2, 3-b] quinolines from simple acetanilides via intramolecular 1, 3-dipolar cycloaddition. Tetrahedron Lett., 2006, 47(44), 7779-7782.
[http://dx.doi.org/10.1016/j.tetlet.2006.08.086]
[30]
Fang, Y.; Xiao, M.; Hu, A.; Ye, J.; Lian, W.; Liu, A. Design, Synthesis, and Evaluation of 3‐((4‐(t‐Butyl)‐2‐(2‐benzylidenehydrazinyl) thiazol‐5‐yl) methyl) quinolin‐2(1H)‐ones as neuraminidase inhibitors. Chin. J. Chem., 2016, 34(4), 403-411.
[http://dx.doi.org/10.1002/cjoc.201500738]
[31]
Saravanan, N.; Arthanareeswari, M.; Kamaraj, P.; Sivakumar, B. Efficient synthesis of quinolo-oxepanes through [3+2] cycloaddition reaction of α,β-unsaturated ester with unstabilized azomethine ylides. Asian J. Chem., 2015, 27(10), 3667-3670.
[http://dx.doi.org/10.14233/ajchem.2015.18915]
[32]
Zeleke, D.; Eswaramoorthy, R.; Belay, Z.; Melaku, Y. Synthesis and antibacterial, antioxidant, and molecular docking analysis of some novel quinoline derivatives. J. Chem., 2020, 2020, 1324096.
[http://dx.doi.org/10.1155/2020/1324096]
[33]
Kalluraya, B.; Nayak, J.; Adhikari, A.; Shetty, N.S.; Winter, M. Synthesis and characterization of some novel quinolinothiazines of biological interest. Phosphorus Sulfur Silicon Relat. Elem., 2008, 183(8), 1870-1883.
[http://dx.doi.org/10.1080/10426500701792933]
[34]
Murugesan, A.; Gengan, R.M.; Rajamanikandan, R.; Ilanchelian, M. One-pot synthesis via 1, 3-dipolar cycloaddition reaction to piperazinyl-quinolinyl dispiro heterocyclic derivatives and spectrofluorometric and molecular docking studies on their binding with human serum albumin. J. Mol. Struct., 2017, 1149, 439-451.
[http://dx.doi.org/10.1016/j.molstruc.2017.08.017]
[35]
Murugesan, A.; Gengan, R.M.; Rajamanikandan, R.; Ilanchelian, M.; Lin, C.H. One-pot synthesis of Claisen–Schmidt reaction through (E)-chalcone derivatives: Spectral studies in human serum albumin protein binding and molecular docking investigation. Synth. Commun., 2017, 47(20), 1884-1904.
[http://dx.doi.org/10.1080/00397911.2017.1355466]
[36]
Murugesan, A.; Gengan, R.M.; Moodley, K.G. ‏One-pot synthesis of methyl piperazinyl–quinolinyl nicotinonitrile derivatives under microwave conditions and molecular docking studies with DNA. J. Iran. Chem. Soc., 2018, 15(11), 2573-2584.
[http://dx.doi.org/10.1007/s13738-018-1446-4]
[37]
Rajkoomar, N.; Murugesan, A.; Prabu, S.; Gengan, R.M. Synthesis of methyl piperazinyl-quinolinyl α-aminophosphonates derivatives under microwave irradiation with Pd–SrTiO3 catalyst and their antibacterial and antioxidant activities. Phosphorus Sulfur Silicon Relat. Elem., 2020, 195(12), 1031-1038.
[http://dx.doi.org/10.1080/10426507.2020.1799366]
[38]
Baruah, A.; De, D.; Khanna, I.K.; Pillarisetti, S.; Maitra, S.; Alexander, C.W.; Sreenu, J.; Dager, I. Preparation of novel benzylamine derivatives as CETP inhibitors. WO Patent, 2006073973 A2, 2006.
[39]
Kumar Darsi, S.S.; Kumar, K.S.; Devi, B.R.; Naidu, A.; Dubey, P.K. L-Proline Catalyzed Synthesis of novel 5-{[2-(2-phenylpiperazin-1-yl) quinolin] methylene}-2, 4-dione derivatives. Lett. Org. Chem., 2014, 11(8), 551-555.
[http://dx.doi.org/10.2174/1570178611999140404113821]
[40]
Lin, H.; Yang, P.; Fei, T.; Liu, F. Synthesis and crystal structure of novel β‐lactam derivatives bearing quinoline moiety via [2+ 2] cycloaddition. J. Heterocycl. Chem., 2016, 53(6), 2036-2041.
[http://dx.doi.org/10.1002/jhet.2526]
[41]
Yang, P.; Lin, H.; Fei, T.; Liu, F. Design and synthesis of novel quinoline tethered tricyclic 1, 5‐benzothiazepine derivatives via 1, 3‐dipolar cycloaddition reaction. J. Heterocycl. Chem., 2017, 54(1), 517-523.
[http://dx.doi.org/10.1002/jhet.2614]
[42]
Sharghi, H.; Aberi, M.; Shiri, P. Silica‐supported Cu (II)–quinoline complex: Efficient and recyclable nanocatalyst for one‐pot synthesis of benzimidazolquinoline derivatives and 2H‐indazoles. Appl. Organomet. Chem., 2019, 33(7), e4974.
[http://dx.doi.org/10.1002/aoc.4974]
[43]
Tang, Z.; Peng, Y.; Liu, F. Design and synthesis of novel quinoline derivatives bearing oxadiazole, isoxazoline, triazolothiadiazole, triazolothiadiazine, and piperazine moieties. J. Heterocycl. Chem., 2020, 57(6), 2330-2338.
[http://dx.doi.org/10.1002/jhet.3907]
[44]
Rabong, C.; Hametner, C.; Mereiter, K. Scope and limitations of the T-reaction employing some functionalized CH-acids and naturally occurring secondary amines. Heterocycles, 2008, 75(4), 799-838.
[http://dx.doi.org/10.3987/COM-07-11260]
[45]
Cziáky, Z.; Kóródi, F.; Frank, L. Synthesis and antiarrhythmic activity of new 2-chloro-3-aminomethylquinolines. Pharmazie, 1990, 45(9), 690-690.
[PMID: 2284317]
[46]
Desai, N.R.; Kumar, D.A.; Suchetan, P.A.; Lokanath, N.K.; Naveen, S.; Shivaraja, G.; Sreenivasa, S. Synthesis, crystal structure and molecular docking studies of novel 2-(4-benzoylpiperazin-1-yl) quinoline-3-carbaldehyde. Chem. Data Collect, 2019, 24, 100282.
[http://dx.doi.org/10.1016/j.cdc.2019.100282]
[47]
Murugesan, A.; Gengan, R.M.; Lin, C.H. Efficient synthesis of ethyl–piperazinyl quinolinyl-(E)-chalcone derivatives via Claisen–Schmidt reaction by using TiO2-BPTETSA catalyst. J. Taiwan Inst. Chem. Eng., 2017, 80, 852-866.
[http://dx.doi.org/10.1016/j.jtice.2017.07.014]
[48]
Murugesan, A.; Singh, T.; Rajamanikandan, R.; Vinu, M.; Ilanchelian, M.; Lin, C.H.; Gengan, R.M. Synthesis, spectroscopic, DFT, HSA binding and docking studies of new 1, 5-bis (4-chlorophenyl)-3-(2-(4-methylpiperazin-1-yl) quinolin-3-yl) pentane-1, 5-dione. J. Mol. Struct., 2021, 1223, 129260.
[http://dx.doi.org/10.1016/j.molstruc.2020.129260]
[49]
Praveen Kumar Darsi, S.S.; Kumar, K.S.; Devi, B.R.; Naidu, A.; Dubey, P.K. L-proline catalyzed synthesis of novel 5-{[2-(2-phenylpiperazin-1-yl)quinolin] methylene}-2,4-dione derivatives. Lett. Org. Chem., 2014, 11(8), 551-555.
[http://dx.doi.org/10.2174/1570178611999140404113821]
[50]
Murugesan, A.; Gengan, R.M.; Anand, K. Green approach: Nanocrystalline titania-based sulfonic acid catalyst for the synthesis of piperazinyl-quinolinyl pyran derivatives. Adv. Mater. Lett., 2017, 8, 128-135.
[http://dx.doi.org/10.5185/amlett.2017.7040]
[51]
Anikin, A.V.; Gantla, V.R.; Gregor, V.E.; Jiang, L.; Liu, Y.; Mcgee, D.P.C.; Mikel, C.C.; Pickens, J.C.; Webb, T. Heterocyclic compounds as tyrosine kinase modulators and their preparation, pharmaceutical compositions and use in the treatment of diseases. WO Patent, 2007056155 A1, 2007.
[52]
Murugesan, A.; Gengan, R.M.; Moodley, K.G.; Gericke, G. Microwave-assisted: Boron nitride nano materials based sulfonic acid catalyst for the synthesis of biologically active ethylpiperazinyl-quinolinyl fused acridine derivatives. Adv. Mater. Lett., 2017, 8(7), 773-782.
[http://dx.doi.org/10.5185/amlett.2017.1495]
[53]
Murugesan, A.; Gengan, R.M.; Krishnan, A. Sulfonic acid functionalized boron nitride nano materials as a microwave-assisted efficient and highly biologically active one-pot synthesis of piperazinyl-quinolinyl fused Benzo [c] acridine derivatives. Mater. Chem. Phys., 2017, 188, 154-167.
[http://dx.doi.org/10.1016/j.matchemphys.2016.12.039]
[54]
Boruah, A.; Hosahalli, S.; Panigrahi, S.K. Preparation of substituted 2-aminopyrimidine derivatives as kinase inhibitors. WO Patent, 2014106800 A2, 2014.
[55]
Murugesh, V.; Bruneau, C.; Achard, M.; Sahoo, A.R.; Sharma, G.V.M.; Suresh, S. Ruthenium catalyzed β-C(sp3)-H functionalization on the ‘privileged’ piperazine nucleus. Chem. Commun. (Camb.), 2017, 53(75), 10448-10451.
[http://dx.doi.org/10.1039/C7CC05604D] [PMID: 28884776]
[56]
Ruan, F. Preparation of quinoline derivatives and analogs for use as dual inhibitors of BRD4 and class I PI3Ks. US Patent, 20190308963 A1, 2019.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy