Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Research Article

SK1 Inhibitor RB005 Induces Apoptosis in Colorectal Cancer Cells through SK1 Inhibition Dependent and Independent Pathway

Author(s): Jitendra Shrestha, Maftuna Shamshiddinova, Yong-Moon Lee, Yoon Sin Oh, Dong Jae Baek* and Eun-Young Park*

Volume 15, Issue 3, 2022

Published on: 12 January, 2022

Article ID: e110821195568 Pages: 12

DOI: 10.2174/1874467214666210811151324

Price: $65

Abstract

Background and Objective: Colorectal cancer (CRC) is the fourth leading cause of cancer- related death globally, with a high incidence rate in economically fast-growing countries. Sphingosine- 1-phosphate (S1P) is a bioactive lipid mediator that plays critical roles in cancer cell proliferation, migration, and angiogenesis converted by the isoforms of sphingosine kinase (SK1 and SK2). SK1 is highly expressed in colorectal cancer; its inhibitors suppress the formation of S1P and increase ceramide levels having a pro-apoptotic function. RB005 is a selective SK1 inhibitor and a structural analog of PP2A activator FTY720. The purpose of this study is to test whether RB005, an SK1 inhibitor, can be used as an anticancer agent by inhibiting the growth of colon cancer cells.

Methods: We performed MTT and colony-forming assay using colon cancer cell lines HT29 and HCT116 cells to examine the cell toxicity effect of RB005. To determine whether apoptosis of RB005 in colon cancer cell line is due to SK1 inhibition or other mechanisms due to its structural similarity with FTY720, we conducted LC/MS, siRNA knockdown, and PP2A activity experiments.

Results: RB005 notably inhibited CRC cell growth and proliferation compared to PF543 and ABC294640 by inducing the mitochondria-mediated intrinsic apoptotic pathway. Apoptotic cell death is caused by increased mitochondrial permeability Initiated by the activation of pro-apoptotic protein BAX, increased ceramides, and activation of PP2A. Also, RB005 treatment in HT29 cells did not change the expression level of SK1, but strikingly decreased SK1 activity and S1P levels. All these events of cell death and apoptosis were less effective when SK1 was knocked down by siRNA.

Conclusion: This result indicates that RB005 shows the in-vitro anti-CRC effect by inhibiting SK1 activity and PP2A activation, increasing proapoptotic ceramide levels following the activation of the intrinsic apoptotic pathway.

Keywords: Sphingosine kinase inhibitor, RB005, PF543, colorectal cancer, apoptosis, SK1 inhibitor, CRC.

Graphical Abstract
[1]
Arnold, M.; Sierra, M.S.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global patterns and trends in colorectal cancer incidence and mortality. Gut, 2017, 66(4), 683-691.
[http://dx.doi.org/10.1136/gutjnl-2015-310912] [PMID: 26818619]
[2]
Yoon, M.; Kim, N.; Nam, B.; Joo, J.; Ki, M. Changing trends in colorectal cancer in the Republic of Korea: contrast with Japan. Epidemiol. Health, 2015, 37, e2015038.
[http://dx.doi.org/10.4178/epih/e2015038] [PMID: 26493653]
[3]
Kuipers, E.J.; Grady, W.M.; Lieberman, D.; Seufferlein, T.; Sung, J.J.; Boelens, P.G.; van de Velde, C.J.; Watanabe, T. Colorectal cancer. Nat. Rev. Dis. Primers, 2015, 1, 15065.
[http://dx.doi.org/10.1038/nrdp.2015.65] [PMID: 27189416]
[4]
Gill, S.; Blackstock, A.W.; Goldberg, R.M. Colorectal cancer. Mayo Clin. Proc., 2007, 82(1), 114-129.
[http://dx.doi.org/10.1016/S0025-6196(11)60974-9] [PMID: 17285793]
[5]
Lombardi, L.; Morelli, F.; Cinieri, S.; Santini, D.; Silvestris, N.; Fazio, N.; Orlando, L.; Tonini, G.; Colucci, G.; Maiello, E. Adjuvant colon cancer chemotherapy: where we are and where we’ll go. Cancer Treat. Rev., 2010, 36(Suppl. 3), S34-S41.
[http://dx.doi.org/10.1016/S0305-7372(10)70018-9] [PMID: 21129608]
[6]
Pyne, N.J.; Pyne, S. Sphingosine 1-phosphate and cancer. Nat. Rev. Cancer, 2010, 10(7), 489-503.
[http://dx.doi.org/10.1038/nrc2875] [PMID: 20555359]
[7]
Yanagida, K.; Hla, T. Vascular and immunobiology of the circulatory sphingosine 1-phosphate gradient. Annu. Rev. Physiol., 2017, 79, 67-91.
[http://dx.doi.org/10.1146/annurev-physiol-021014-071635] [PMID: 27813829]
[8]
Kawamori, T.; Kaneshiro, T.; Okumura, M.; Maalouf, S.; Uflacker, A.; Bielawski, J.; Hannun, Y.A.; Obeid, L.M. Role for sphingosine kinase 1 in colon carcinogenesis. FASEB J., 2009, 23(2), 405-414.
[http://dx.doi.org/10.1096/fj.08-117572] [PMID: 18824518]
[9]
Long, J.; Xie, Y.; Yin, J.; Lu, W.; Fang, S. SphK1 promotes tumor cell migration and invasion in colorectal cancer. Tumour Biol., 2016, 37(5), 6831-6836.
[http://dx.doi.org/10.1007/s13277-015-4542-4] [PMID: 26662312]
[10]
Bao, Y.; Guo, Y.; Zhang, C.; Fan, F.; Yang, W. Sphingosine kinase 1 and sphingosine-1-phosphate signaling in colorectal cancer. Int. J. Mol. Sci., 2017, 18(10), 2109.
[http://dx.doi.org/10.3390/ijms18102109] [PMID: 28991193]
[11]
Heffernan-Stroud, L.A.; Obeid, L.M. Sphingosine kinase 1 in cancer. Adv. Cancer Res., 2013, 117, 201-235.
[http://dx.doi.org/10.1016/B978-0-12-394274-6.00007-8] [PMID: 23290781]
[12]
Xun, C.; Chen, M-B.; Qi, L.; Tie-Ning, Z.; Peng, X.; Ning, L.; Zhi-Xiao, C.; Li-Wei, W. Targeting sphingosine kinase 2 (SphK2) by ABC294640 inhibits colorectal cancer cell growth in vitro and in vivo. J. Exp. Clin. Cancer Res., 2015, 34(1), 94.
[http://dx.doi.org/10.1186/s13046-015-0205-y] [PMID: 26337959]
[13]
Paugh, S.W.; Payne, S.G.; Barbour, S.E.; Milstien, S.; Spiegel, S. The immunosuppressant FTY720 is phosphorylated by sphingosine kinase type 2. FEBS Lett., 2003, 554(1-2), 189-193.
[http://dx.doi.org/10.1016/S0014-5793(03)01168-2] [PMID: 14596938]
[14]
Cristóbal, I.; Manso, R.; Rincón, R.; Caramés, C.; Senin, C.; Borrero, A.; Martínez-Useros, J.; Rodriguez, M.; Zazo, S.; Aguilera, O.; Madoz-Gúrpide, J.; Rojo, F.; García-Foncillas, J. PP2A inhibition is a common event in colorectal cancer and its restoration using FTY720 shows promising therapeutic potential. Mol. Cancer Ther., 2014, 13(4), 938-947.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0150] [PMID: 24448818]
[15]
Brinkmann, V.; Davis, M.D.; Heise, C.E.; Albert, R.; Cottens, S.; Hof, R.; Bruns, C.; Prieschl, E.; Baumruker, T.; Hiestand, P.; Foster, C.A.; Zollinger, M.; Lynch, K.R. The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J. Biol. Chem., 2002, 277(24), 21453-21457.
[http://dx.doi.org/10.1074/jbc.C200176200] [PMID: 11967257]
[16]
Shrestha, J.; Ki, S.H.; Shin, S.M.; Kim, S.W.; Lee, J-Y.; Jun, H-S.; Lee, T.; Kim, S.; Baek, D.J.; Park, E.Y. Synthesis of novel fty720 analogs with anticancer activity through pp2a activation. Molecules, 2018, 23(11), 2750.
[http://dx.doi.org/10.3390/molecules23112750] [PMID: 30355990]
[17]
MacRitchie, N.; Volpert, G.; Al Washih, M.; Watson, D.G.; Futerman, A.H.; Kennedy, S.; Pyne, S.; Pyne, N.J. Effect of the sphingosine kinase 1 selective inhibitor, PF-543 on arterial and cardiac remodelling in a hypoxic model of pulmonary arterial hypertension. Cell. Signal., 2016, 28(8), 946-955.
[http://dx.doi.org/10.1016/j.cellsig.2016.03.014] [PMID: 27063355]
[18]
Franken, N.A.; Rodermond, H.M.; Stap, J.; Haveman, J.; van Bree, C. Clonogenic assay of cells in vitro. Nat. Protoc., 2006, 1(5), 2315-2319.
[http://dx.doi.org/10.1038/nprot.2006.339] [PMID: 17406473]
[19]
Nganga, R.; Oleinik, N.; Ogretmen, B. Ogretmen, B.: Mechanisms of ceramide-dependent cancer cell death. Adv. Cancer Res., 2018, 140, 1-25.
[http://dx.doi.org/10.1016/bs.acr.2018.04.007] [PMID: 30060806]
[20]
del Solar, V.; Lizardo, D.Y.; Li, N.; Hurst, J.J.; Brais, C.J.; Atilla- Gokcumen, G.E. Differential regulation of specific sphingolipids in colon cancer cells during staurosporine-induced apoptosis. Chem. Biol., 2015, 22(12), 1662-1670.
[http://dx.doi.org/10.1016/j.chembiol.2015.11.004] [PMID: 26687483]
[21]
Hartmann, D.; Lucks, J.; Fuchs, S.; Schiffmann, S.; Schreiber, Y.; Ferreirós, N.; Merkens, J.; Marschalek, R.; Geisslinger, G.; Grösch, S. Long chain ceramides and very long chain ceramides have opposite effects on human breast and colon cancer cell growth. Int. J. Biochem. Cell Biol., 2012, 44(4), 620-628.
[http://dx.doi.org/10.1016/j.biocel.2011.12.019] [PMID: 22230369]
[22]
Gao, Y.; Gao, F.; Chen, K.; Tian, M.L.; Zhao, D.L. Sphingosine kinase 1 as an anticancer therapeutic target. Drug Des. Devel. Ther., 2015, 9, 3239-3245.
[http://dx.doi.org/10.2147/DDDT.S83288] [PMID: 26150697]
[23]
Zhang, L.; Liu, X.; Zuo, Z.; Hao, C.; Ma, Y. Sphingosine kinase 2 promotes colorectal cancer cell proliferation and invasion by enhancing MYC expression. Tumour Biol., 2016, 37(6), 8455-8460.
[http://dx.doi.org/10.1007/s13277-015-4700-8] [PMID: 26733171]
[24]
Venkata, J.K.; An, N.; Stuart, R.; Costa, L.J.; Cai, H.; Coker, W.; Song, J.H.; Gibbs, K.; Matson, T.; Garrett-Mayer, E.; Wan, Z.; Ogretmen, B.; Smith, C.; Kang, Y. Inhibition of sphingosine kinase 2 downregulates the expression of c-Myc and Mcl-1 and induces apoptosis in multiple myeloma. Blood, 2014, 124(12), 1915-1925.
[http://dx.doi.org/10.1182/blood-2014-03-559385] [PMID: 25122609]
[25]
Ju, T.; Gao, D.; Fang, Z.Y. Targeting colorectal cancer cells by a novel sphingosine kinase 1 inhibitor PF-543. Biochem. Biophys. Res. Commun., 2016, 470(3), 728-734.
[http://dx.doi.org/10.1016/j.bbrc.2016.01.053] [PMID: 26775841]
[26]
Le Scolan, E.; Pchejetski, D.; Banno, Y.; Denis, N.; Mayeux, P.; Vainchenker, W.; Levade, T.; Moreau-Gachelin, F. Overexpression of sphingosine kinase 1 is an oncogenic event in erythroleukemic progression. Blood, 2005, 106(5), 1808-1816.
[http://dx.doi.org/10.1182/blood-2004-12-4832] [PMID: 15890687]
[27]
Li, Q.F.; Huang, W.R.; Duan, H.F.; Wang, H.; Wu, C.T.; Wang, L.S. Sphingosine kinase-1 mediates BCR/ABL-induced upregulation of Mcl-1 in chronic myeloid leukemia cells. Oncogene, 2007, 26(57), 7904-7908.
[http://dx.doi.org/10.1038/sj.onc.1210587] [PMID: 17599053]
[28]
Li, Q-F.; Zhu, H-Y.; Yang, Y-F.; Liu, J.; Xiao, F-J.; Zhang, Q-W.; Wu, C-T.; Wang, H.; Wang, L.S. Prokineticin-1/endocrine gland-derived vascular endothelial growth factor is a survival factor for human multiple myeloma cells. Leuk. Lymphoma, 2010, 51(10), 1902-1912.
[http://dx.doi.org/10.3109/10428194.2010.512963] [PMID: 20795791]
[29]
Ramachandran, S.; Shida, D.; Nagahashi, M.; Fang, X.; Milstien, S.; Takabe, K.; Spiegel, S. Lysophosphatidic acid stimulates gastric cancer cell proliferation via ERK1-dependent upregulation of sphingosine kinase 1 transcription. FEBS Lett., 2010, 584(18), 4077-4082.
[http://dx.doi.org/10.1016/j.febslet.2010.08.035] [PMID: 20804754]
[30]
Chen, L.; Chen, H.; Li, Y.; Li, L.; Qiu, Y.; Ren, J. Endocannabinoid and ceramide levels are altered in patients with colorectal cancer. Oncol. Rep., 2015, 34(1), 447-454.
[http://dx.doi.org/10.3892/or.2015.3973] [PMID: 25975960]
[31]
Birkinshaw, R.W.; Czabotar, P.E. The BCL-2 family of proteins and mitochondrial outer membrane permeabilisation. Semin. Cell Dev. Biol., 2017, 72, 152-162.
[http://dx.doi.org/10.1016/j.semcdb.2017.04.001] [PMID: 28396106]
[32]
Siskind, L.J.; Kolesnick, R.N.; Colombini, M. Ceramide forms channels in mitochondrial outer membranes at physiologically relevant concentrations. Mitochondrion, 2006, 6(3), 118-125.
[http://dx.doi.org/10.1016/j.mito.2006.03.002] [PMID: 16713754]
[33]
Colombini, M. Ceramide channels and mitochondrial outer membrane permeability. J. Bioenerg. Biomembr., 2017, 49(1), 57-64.
[http://dx.doi.org/10.1007/s10863-016-9646-z] [PMID: 26801188]
[34]
Ogretmen, B. Sphingolipids in cancer: regulation of pathogenesis and therapy. FEBS Lett., 2006, 580(23), 5467-5476.
[http://dx.doi.org/10.1016/j.febslet.2006.08.052] [PMID: 16970943]
[35]
Jain, A.; Beutel, O.; Ebell, K.; Korneev, S.; Holthuis, J.C. Diverting CERT-mediated ceramide transport to mitochondria triggers Bax-dependent apoptosis. J. Cell Sci., 2017, 130(2), 360-371.
[http://dx.doi.org/10.1242/jcs.194191] [PMID: 27888218]
[36]
Saleh, A.; Srinivasula, S.M.; Acharya, S.; Fishel, R.; Alnemri, E.S. Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation. J. Biol. Chem., 1999, 274(25), 17941-17945.
[http://dx.doi.org/10.1074/jbc.274.25.17941] [PMID: 10364241]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy