Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

General Research Article

Visible Light Assisted Synthesis of 5-Aryl-1,2,4-thiazolidine-3-thiones Under Catalyst-free Condition

Author(s): Amol Khandebharad*, Swapnil Sarda, Pravin Kulkarni and Brijmohan Agrawal

Volume 7, Issue 3, 2020

Page: [326 - 333] Pages: 8

DOI: 10.2174/2213346107999200729131533

Price: $65

Abstract

Light energy can be considered as an ideal eco-friendly source of energy for green chemistry. This perspective was used to synthesize 5-aryl-1,2,4-thiazolidine-3-thiones derivative as a quick, efficient and highly improved protocol. The present method developed an energy competent and integrated technique by one-pot condensations of aromatic aldehyde and thiosemicarbazide under the catalyst-free condition in aqueous-alcoholic media. The impact of light on reaction along with mechanical stirring provided a prominent yield of the product. The mild reaction conditions, short reaction time and easy workup procedure, avoidance of heavy metal catalyst and harsh reaction conditions make this protocol greener.

Keywords: Aromatic aldehyde, thiosemicarbazide, water: ethanol (1:1), visible light, thio-triazole derivatives, green chemistry.

Graphical Abstract
[1]
Tucker, J.L.; Faul, M.M. Industrial research: Drug companies must adopt green chemistry. Nature, 2016, 534(7605), 27-29.
[http://dx.doi.org/10.1038/534027a] [PMID: 27251259]
[2]
Ferreira, G.P.; Nicoletti, D. C.; de C. da Silva, F.; F. Ferreira, V. Green synthetic routes to pharmaceutical drugs. Curr. Green Chem., 2017, 3(3), 259-276.
[http://dx.doi.org/10.2174/2213346104666170130145445]
[3]
Guo, J.T.; Yang, D.C.; Guan, Z.; He, Y.H. Chlorophyll-catalyzed visible-light-mediated synthesis of tetrahydroquinolines from n,n-dimethylanilines and maleimides. J. Org. Chem., 2017, 82(4), 1888-1894.
[http://dx.doi.org/10.1021/acs.joc.6b03034] [PMID: 28107007]
[4]
Zhang, M.; Fu, Q.Y.; Gao, G.; He, H.Y.; Zhang, Y.; Wu, Y.S.; Zhang, Z.H. Catalyst-free, visible-light promoted one-pot synthesis of spirooxindole-pyran derivatives in aqueous ethyl lactate. ACS Sustain. Chem.& Eng., 2017, 5(7), 6175-6182.
[http://dx.doi.org/10.1021/acssuschemeng.7b01102]
[5]
Zhang, Y.; Feng, J.; Xu, J.; Chen, G.; Hong, Z. Solvothermal synthesis and visible-light driven photocatalytic properties of yfeo 3 nanoparticles. Integr. Ferroelectr., 2014, 151(1), 108-115.
[http://dx.doi.org/10.1080/10584587.2014.899876]
[6]
Nadaf, A.N.; Shivashankar, K. CFL light Promoted one-pot synthesis of pyrano[3,2- c ]Chromen-5(4 H)-. Ones. Synth. Commun., 2018, 48(7), 809-815.
[http://dx.doi.org/10.1080/00397911.2018.1426101]
[7]
Mishra, A.; Srivastava, M.; Rai, P.; Yadav, S.; Tripathi, B.P.; Singh, J.; Singh, J. Visible light triggered, catalyst free approach for the synthesis of thiazoles and imidazo[2,1-b]Thiazoles in EtOH : H 2 O Green Medium. RSC Advances, 2016, 6(54), 49164-49172.
[http://dx.doi.org/10.1039/C6RA05385H]
[8]
Yadav, S.; Srivastava, M.; Rai, P.; Singh, J.; Prasad Tiwari, K.; Singh, J. Visible light induced, catalyst free, convenient synthesis of chromene nucleus and its derivatives using water–ethanol mixture as a solvent. New J. Chem., 2015, 39(6), 4556-4561.
[http://dx.doi.org/10.1039/C5NJ00002E]
[9]
Srivastava, V.; Yadav, A.; Yadav, L.S. Eosin y catalyzed visible-light-driven aerobic oxidative cyclization of thioamides to 1,2,4-thiadiazoles. Synlett, 2013, 24(4), 465-470.
[http://dx.doi.org/10.1055/s-0032-1318158]
[10]
Albini, A.; Fagnoni, M. Photochemistry as a Green Synthetic Method; New Methodol. Techniq. Sustain. Organ. Chemis, 2008, pp. 279-293.
[http://dx.doi.org/10.1007/978-1-4020-6793-8_13]
[11]
Yoo, W.J.; Tsukamoto, T.; Kobayashi, S. Visible light-mediated Ullmann-type C-N coupling reactions of carbazole derivatives and aryl iodides. Org. Lett., 2015, 17(14), 3640-3642.
[http://dx.doi.org/10.1021/acs.orglett.5b01645] [PMID: 26151428]
[12]
Wu, W.; Jiang, H. Palladium-catalyzed oxidation of unsaturated hydrocarbons using molecular oxygen. Acc. Chem. Res., 2012, 45(10), 1736-1748.
[http://dx.doi.org/10.1021/ar3000508] [PMID: 22839752]
[13]
Saravanan, R.; Gupta, V.K.; Narayanan, V.; Stephen, A. Visible light degradation of textile effluent using novel catalyst ZnO/γ-Mn2O3. J. Taiwan Inst. Chem. Eng., 2014, 45, 1910-1917.
[http://dx.doi.org/10.1016/j.jtice.2013.12.021]
[14]
Zhao, J.; Wu, W.; Sun, J.; Guo, S. Triplet photosensitizers: From molecular design to applications. Chem. Soc. Rev., 2013, 42(12), 5323-5351.
[http://dx.doi.org/10.1039/c3cs35531d] [PMID: 23450221]
[15]
Sharma, A.K.; Tiwari, J.; Jaiswal, D.; Singh, S.; Singh, J.; Singh, J. Organophotoredox catalysis: Visible-light-induced multicomponent synthesis of chromeno[4, 3-b]chromene and hexahydro-1h-xanthene derivatives. Curr. Organocatal., 2019, 6(3), 222-230.
[http://dx.doi.org/10.2174/2213337206666190306154327]
[16]
Zhang, Q.; Yang, F.; Dai, W-L. Recent advances in the aspects of architectural photocatalysts and its application. Curr. Organocatal., 2019, 6(1), 3-19.
[http://dx.doi.org/10.2174/2213337206666190301154615]
[17]
Mukherjee, N.; Maity, P.; Ghosh, T.; Panja, S.; Ranu, B.C. Visible light photocatalyzed carbon-heteroatom bond formation and synthesis of related compounds. Curr. Green Chem., 2017, 3(4), 279-317.
[http://dx.doi.org/10.2174/2213346104666170130150016]
[18]
Keshari, T.; Yadav, V.K.; Srivastava, V.P.; Yadav, L.D.S. Visible light organophotoredox catalysis: A general approach to β-keto sul-foxidation of alkenes. Green Chem., 2014, 16(8), 3986.
[http://dx.doi.org/10.1039/C4GC00857J]
[19]
Buncel, E.; Stairs, R.A.; Robert, A. The Role of the Solvent in Chemical Reactions; Oxford University Press, 2003.
[20]
Chanda, A.; Fokin, V.V. Organic synthesis “on water”. Chem. Rev., 2009, 109(2), 725-748.
[http://dx.doi.org/10.1021/cr800448q] [PMID: 19209944]
[21]
Chastrette, M.; Rajzmann, M.; Chanon, M.; Purcell, K.F. Approach to a general classification of solvents using a multivariate statistical treatment of quantitative solvent parameters. J. Am. Chem. Soc., 1985, 107(1), 1-11.
[http://dx.doi.org/10.1021/ja00287a001]
[22]
Sheldon, R.A. Green solvents for sustainable organic synthesis: State of the art. Green Chem., 2005, 7(5), 267.
[http://dx.doi.org/10.1039/b418069k]
[23]
Hansen, C.M. Hansen Solubility Parameters : A User’s Handbook; CRC Press, 2007.
[25]
Marcus, Y. Solubility and solvation in mixed solvent systems. Pure Appl. Chem., 1990, 62(11), 2069-2076.
[http://dx.doi.org/10.1351/pac199062112069]
[26]
Rajasekaran, A.; Sivakumar, K.K.; Sureshkumar, K.; Manjushree, M. Design, synthesis, characterisation and in-vitro antimicrobial activity of some hybridized triazole scaffolds. Futur. J. Pharm. Sci., 2017, 3(1), 1-10.
[http://dx.doi.org/10.1016/j.fjps.2016.09.003]
[27]
Patil, P.B.; Patil, J.D.; Korade, S.N.; Kshirsagar, S.D.; Govindwar, S.P.; Pore, D.M. An efficient synthesis of anti-microbial 1,2,4-triazole-3-thiones promoted by acidic ionic liquid. Res. Chem. Intermed., 2016, 42(5), 4171-4180.
[http://dx.doi.org/10.1007/s11164-015-2267-z]
[28]
Patil, J.D.; Pore, D.M. [C16MPy] AlCl3Br: An efficient novel ionic liquid for synthesis of novel 1,2,4-triazolidine-3-thiones in water. RSC Advances, 2014, 4(28), 14314-14319.
[http://dx.doi.org/10.1039/c3ra46916f]
[29]
Ramesh, R.; Lalitha, A. PEG-assisted two-component approach for the facile synthesis of 5-aryl-1,2,4-triazolidine-3-thiones under catalyst-free conditions. RSC Advances, 2015, 5(63), 51188-51192.
[http://dx.doi.org/10.1039/C5RA07726E]
[30]
Mali, D.A.; Telvekar, V.N. Synthesis of Triazolidines and triazole using DMAP. Synth. Commun., 2017, 47(4), 324-329.
[http://dx.doi.org/10.1080/00397911.2016.1263338]
[31]
Tiwari, J.; Saquib, M.; Singh, S.; Tufail, F.; Singh, J.; Singh, J. Catalyst-free glycerol-mediated green synthesis of 5′-thioxospiro[Indoline-3,3′-[1,2,4]Triazolidin]-2-Ones/Spiro[Indoline-3,3′-[1,2,4]Triazolidine]-2,5′-Diones. Synth. Commun., 2017, 47(21), 1999-2006.
[http://dx.doi.org/10.1080/00397911.2017.1359844]
[32]
Ramesh, R.; Lalitha, A. Facile and green chemistry access to 5-Aryl-1,2,4-triazolidine-3-thiones in aqueous medium. ChemistrySelect, 2016, 1(9), 2085-2089.
[http://dx.doi.org/10.1002/slct.201600348]
[33]
Mane, M.M.; Pore, D.M. A Novel one pot multi-component strategy for facile synthesis of5-aryl-[1,2,4]-triazolidine-3-thiones. Tetrahedron Lett., 2014, 55(48), 6601-6604.
[http://dx.doi.org/10.1016/j.tetlet.2014.10.052]
[34]
Wujec, M.; Pitucha, M.; Dobosz, M.; Kosikowska, U.; Malm, A. Synthesis and potential antimycotic activity of 4-substituted-3-(thiophene-2-yl-methyl)-Delta2-1,2,4-triazoline-5-thiones. Acta Pharm., 2004, 54(3), 251-260.
[PMID: 15610621]
[35]
Pitucha, M.; Wujec, M.; Dobosz, M. Synthesis of 3-(pyridin-4-ylmethyl)-4-substituted-1,2,4-triazoline-5-thione. J. Chin. Chem. Soc. (Taipei), 2007, 54(1), 69-73.
[http://dx.doi.org/10.1002/jccs.200700012]
[36]
Guda, D.R.; Wang, T.; Cho, H.M.; Lee, M.E. Trimethylsilyl Isothiocyanate (TMSNCS): An efficient reagent for the one-pot synthesis of mercapto-1,2,4-triazoles. Tetrahedron Lett., 2012, 53(39), 5238-5242.
[http://dx.doi.org/10.1016/j.tetlet.2012.07.054]
[37]
Sahin, D.; Bayrak, H.; Demirbas, A.; Demirbas, N.; Alpay Karaoglu, S. Design and synthesis of new 1,2,4-triazole derivatives containing morpholine moiety as antimicrobial Agents. Turk. J. Chem., 2012, 36(3), 411-426.
[38]
Salgin-Gökşen, U.; Gökhan-Kelekçi, N.; Göktaş, O.; Köysal, Y.; Kiliç, E.; Işik, S.; Aktay, G.; Özalp, M. 1-Acylthiosemicarbazides, 1,2,4-triazole-5(4H)-thiones, 1,3,4-thiadiazoles and hydrazones containing 5-methyl-2-benzoxazolinones: Synthesis, analgesic-anti-inflammatory and antimicrobial activities. Bioorg. Med. Chem., 2007, 15(17), 5738-5751.
[http://dx.doi.org/10.1016/j.bmc.2007.06.006] [PMID: 17587585]
[39]
Srivastava, V.; Singh, P.K.; Singh, P.P.; Eosin, Y. Catalyzed visible-light-promoted aerobic oxidative cyclization of 2-aminobenzothiazole. Croat. Chem. Acta, 2015, 88(3), 227-233.
[http://dx.doi.org/10.5562/cca2632]
[40]
Khandebharad, A.U.; Sarda, S.R.; Gill, C.H.; Agrawal, B.R. Synthesis of quinazolinone derivatives catalyzed by triethanolamine/nacl in aqueous media. Polycycl. Aromat. Compd., 2018, 40(2), 437-445.
[http://dx.doi.org/10.1080/10406638.2018.1485713]
[41]
Khandebharad, A.U.; Sarda, S.R.; Gill, C.H.; Soni, M.G.; Agrawal, B.R. Condition based divergence in synthesis of tetrahydrobenzo. Pyrans. Res. Chem. Intermed., 2016, 42(6), 5779-5787 [b].
[http://dx.doi.org/10.1007/s11164-015-2403-9]
[42]
Khandebharad, A.; Sarda, S.; Soni, M.; Gill, C.; Kulkarni, P. NaCl : A facile, environmentally benign catalyst for the synthesis of pyrazole 4- carbonitrile in aqueous media. Curr. Chem. Lett., 2018, 7, 57-64.
[43]
Khandebharad, A.U.; Sarda, S.R.; Farooqui, M.; Pathan, M.; Agrawal, B.R. Solvent in Solute System for the Synthesis of Highly Substituted Pyridine by Using Choline Hydroxide and Water. Polycycl. Aromat. Compd., 2018, 40(3), 832-839.
[http://dx.doi.org/10.1080/10406638.2018.1485713]
[44]
Pirrung, M.C. Acceleration of organic reactions through aqueous solvent effects. Chemistry, 2006, 12(5), 1312-1317.
[http://dx.doi.org/10.1002/chem.200500959] [PMID: 16189838]
[45]
Pelaez, M.; Nolan, N.T.; Pillai, S.C.; Seery, M.K.; Falaras, P.; Kontos, A.G.; Dunlop, P.S.M.; Hamilton, J.W.J.; Byrne, J.A.; O’Shea, K.; Entezari, M.H.; Dionysiou, D.D. A Review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B, 2012, 125, 331-349.
[http://dx.doi.org/10.1016/j.apcatb.2012.05.036]
[46]
Borgarello, E.; Kiwi, J.; Grätzel, M.; Pelizzetti, E.; Visca, M. Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles. J. Am. Chem. Soc., 1982, 104(11), 2996-3002.
[http://dx.doi.org/10.1021/ja00375a010]
[47]
Gangu, K.K.; Maddila, S.; Maddila, S.N.; Jonnalagadda, S.B. Efficient synthetic route for thio-triazole derivatives catalyzed by iron doped fluorapatite. Res. Chem. Intermed., 2017, 43(3), 1793-1811.
[http://dx.doi.org/10.1007/s11164-016-2730-5]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy