Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Monocyclic β -Lactam: A Review on Synthesis and Potential Biological Activities of a Multitarget Core

Author(s): Taíse H.O. Leite, Mauricio F. Saraiva*, Alessandra C. Pinheiro and Marcus Vinícius N. de Souza

Volume 20, Issue 16, 2020

Page: [1653 - 1682] Pages: 30

DOI: 10.2174/1389557520666200619114820

Price: $65

Abstract

A monocyclic ring in their structure characterizes monobactams, a subclass of β-lactam antibiotics. Many of these compounds have a bactericidal mechanism of action and acts as penicillin and cephalosporins, interfering with bacterial cell wall biosynthesis. The synthesis of novel β-lactams is an emerging area of organic synthesis research due to the problem of increasing bacterial resistance to existing β -lactam antibiotics, and, in this way, new compounds have been presented with several structural modifications, aiming to improve biological activities. Among the biological activities studied, the most outstanding are antibacterial, antitubercular, anticholesterolemic, anticancer, antiinflammatory, antiviral, and anti-enzymatic, among others. This review explores the vast number of works related to monocyclic β-lactams, compounds of great importance in scientific research.

Keywords: Antibiotic, monocyclic β-lactam, pharmacological profile, four membered heterocyclic ring, anticancer, antiinflammatory.

Graphical Abstract
[1]
Sykes, R.B.; Bonner, D.P.; Bush, K.; Georgopapadakou, N.H.; Wells, J.S. Monobactams--monocyclic β-lactam antibiotics produced by bacteria. J. Antimicrob. Chemother., 1981, 8(Suppl. E), 1-16.
[http://dx.doi.org/10.1093/jac/8.suppl_E.1] [PMID: 6976959]
[2]
Imada, A.; Kitano, K.; Kintaka, K.; Muroi, M.; Asai, M. Sulfazecin and isosulfazecin, novel β-lactam antibiotics of bacterial origin. Nature, 1981, 289(5798), 590-591.
[http://dx.doi.org/10.1038/289590a0] [PMID: 7007891]
[3]
Pitts, C.R.; Lectka, T. Chemical synthesis of β-lactams: asymmetric catalysis and other recent advances. Chem. Rev., 2014, 114(16), 7930-7953.
[http://dx.doi.org/10.1021/cr4005549] [PMID: 24555548]
[4]
Hosseyni, S.; Jarrahpour, A. Recent advances in β-lactam synthesis. Org. Biomol. Chem., 2018, 16(38), 6840-6852.
[http://dx.doi.org/10.1039/C8OB01833B] [PMID: 30209477]
[5]
Kamath, A.; Ojima, I. Advances in the chemistry of β-lactam and its medicinal applications. Tetrahedron, 2012, 68(52), 10640-10664.
[http://dx.doi.org/10.1016/j.tet.2012.07.090] [PMID: 23264702]
[6]
Singh, G.; D’hooghe, M.; De Kimpe, N. Azetidines, azetines, and azetes: monocyclic. Comprehensive Heterocyclic Chemistry III; Elsevier: Amsterdam, 2008, pp. 1-110.
[http://dx.doi.org/10.1016/B978-008044992-0.00201-7]
[7]
Dawra, N.D.; Ram, R.N. Facile synthesis of some chlorinated and heteroatom-rich monocyclic β-lactams via the staudinger reaction of acyclic S-alkylisothioureas. Synthesis (Germany), 2016, 48(23), 4199-4206.
[http://dx.doi.org/10.1055/s-0035-1562474]
[8]
Brewer, N.S.; Hellinger, W.C. The monobactams. Mayo Clin. Proc., 1991, 66(11), 1152-1157.
[http://dx.doi.org/10.1016/S0025-6196(12)65797-8] [PMID: 1943248]
[9]
Parker, W.L.; O’Sullivan, J.; Sykes, R.B. Naturally occurring monobactams. Adv. Appl. Microbiol., 1986, 31, 181-205.
[http://dx.doi.org/10.1016/S0065-2164(08)70442-8] [PMID: 3521210]
[10]
Bonner, D.P.; Sykes, R.B. Structure activity relationships among the monobactams. J. Antimicrob. Chemother., 1984, 14(4), 313-327.
[http://dx.doi.org/10.1093/jac/14.4.313] [PMID: 6389473]
[11]
Deketelaere, S.; Van Nguyen, T.; Stevens, C.V.; D’hooghe, M. Synthetic approaches toward monocyclic 3-amino-β-lactams. Chem. Open, 2017, 6(3), 301-319.
[http://dx.doi.org/10.1002/open.201700051] [PMID: 28638759]
[12]
Singh, G.S. β-lactams in the new millennium. Part-I: Monobactams and carbapenems. Mini Rev. Med. Chem., 2004, 4(1), 69-92.
[http://dx.doi.org/10.2174/1389557043487501] [PMID: 14754445]
[13]
Nishida, M.; Mine, Y.; Nonoyama, S.; Kojo, H. Nocardicin A, a new monocyclic β-lactam antibiotic III. In vitro evaluation. J. Antibiot. (Tokyo), 1977, 30(11), 917-925.
[http://dx.doi.org/10.7164/antibiotics.30.917] [PMID: 412823]
[14]
Bush, K.; Bradford, P.A. β-Lactams and β-Lactamase Inhibitors: An Overview. Cold Spring Harb. Perspect. Med., 2016, 6(8), 1-22.
[http://dx.doi.org/10.1101/cshperspect.a025247] [PMID: 27329032]
[15]
Arya, N.; Jagdale, A.Y.; Patil, T.A.; Yeramwar, S.S.; Holikatti, S.S.; Dwivedi, J.; Shishoo, C.J.; Jain, K.S. The chemistry and biological potential of azetidin-2-ones. Eur. J. Med. Chem., 2014, 74, 619-656.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.002] [PMID: 24531200]
[16]
Desai, N.C.; Dodiya, A.M. Synthesis, characterization and in vitro antimicrobial screening of quinoline nucleus containing 1,3,4-oxadiazole and 2-azetidinone derivatives. J. Saudi Chem. Soc., 2014, 18(5), 425-431.
[http://dx.doi.org/10.1016/j.jscs.2011.09.005]
[17]
Carosso, S.; Miller, M.J. Syntheses and studies of new forms of N-sulfonyloxy β-lactams as potential antibacterial agents and β-lactamase inhibitors. Bioorg. Med. Chem., 2015, 23(18), 6138-6147.
[http://dx.doi.org/10.1016/j.bmc.2015.08.005] [PMID: 26321604]
[18]
Fu, H.G.; Hu, X.X.; Li, C.R.; Li, Y.H.; Wang, Y.X.; Jiang, J.D.; Bi, C.W.; Tang, S.; You, X.F.; Song, D.Q. Design, synthesis and biological evaluation of monobactams as antibacterial agents against gram-negative bacteria. Eur. J. Med. Chem., 2016, 110, 151-163.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.024] [PMID: 26827160]
[19]
Deep, A.; Kumar, P.; Narasimhan, B.; Lim, S.M.; Ramasamy, K.; Mishra, R.K.; Mani, V. 2-Azetidinone derivatives: synthesis, antimicrobial, anticancer evaluation and QSAR studies. Acta Pol. Pharm., 2016, 73(1), 65-78.
[PMID: 27008802]
[20]
Kayarmar, R.; Nagaraja, G.K.; Naik, P.; Manjunatha, H.; Revanasiddappa, B.C.; Arulmoli, T. Synthesis and characterization of novel imidazoquinoline based 2-azetidinones as potent antimicrobial and anticancer agents. J. Saudi Chem. Soc., 2017, 21, S434-S444.
[http://dx.doi.org/10.1016/j.jscs.2014.07.003]
[21]
Kahl, B.C. Impact of Staphylococcus aureus on the pathogenesis of chronic cystic fibrosis lung disease. Int. J. Med. Microbiol., 2010, 300(8), 514-519.
[http://dx.doi.org/10.1016/j.ijmm.2010.08.002] [PMID: 20843739]
[22]
Smirnova, G.; Muzyka, N.; Lepekhina, E.; Oktyabrsky, O. Roles of the glutathione- and thioredoxin-dependent systems in the Escherichia coli responses to ciprofloxacin and ampicillin. Arch. Microbiol., 2016, 198(9), 913-921.
[http://dx.doi.org/10.1007/s00203-016-1247-z] [PMID: 27277520]
[23]
Kohanski, M.A.; Dwyer, D.J.; Hayete, B.; Lawrence, C.A.; Collins, J.J. A common mechanism of cellular death induced by bactericidal antibiotics. Cell, 2007, 130(5), 797-810.
[http://dx.doi.org/10.1016/j.cell.2007.06.049] [PMID: 17803904]
[24]
Giacomini, D.; Musumeci, R.; Galletti, P.; Martelli, G.; Assennato, L.; Sacchetti, G.; Guerrini, A.; Calaresu, E.; Martinelli, M.; Cocuzza, C. 4-Alkyliden-azetidinones modified with plant derived polyphenols: Antibacterial and antioxidant properties. Eur. J. Med. Chem., 2017, 140, 604-614.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.048] [PMID: 28992569]
[25]
Alborz, M.; Jarrahpour, A.; Pournejati, R.; Karbalaei-Heidari, H.R.; Sinou, V.; Latour, C.; Brunel, J.M.; Sharghi, H.; Aberi, M.; Turos, E.; Wojtas, L. Synthesis and biological evaluation of some novel diastereoselective benzothiazole β-lactam conjugates. Eur. J. Med. Chem., 2018, 143, 283-291.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.053] [PMID: 29197733]
[26]
Bhattacharya, B.; Turos, E. Synthesis and biology of n-thiolated β-lactams. Tetrahedron, 2012, 68(52), 10665-10685.
[http://dx.doi.org/10.1016/j.tet.2012.06.012]
[27]
Patel, N.B.; Patel, J.C. Synthesis and antimicrobial activity of schiff bases and 2-azetidinones derived from quinazolin-4(3H)-one. Arab. J. Chem., 2011, 4(4), 403-411.
[http://dx.doi.org/10.1016/j.arabjc.2010.07.005]
[28]
Zarei, M.; Mohamadzadeh, M. 3-Thiolated 2-azetidinones: synthesis and in vitro antibacterial and antifungal activities. Tetrahedron, 2011, 67(32), 5832-5840.
[http://dx.doi.org/10.1016/j.tet.2011.05.043]
[29]
Ghuge, R.B.; Murumkar, P.R. Therapeutic Potential of Vicinal Diaryl Azetidin-2-Ones.Vicinal Diaryl-Substituted Heterocycles: A Gold Mine for the Discovery of Novel Therapeutic Agents; Elsevier: Amsterdam, 2018, pp. 21-46.
[http://dx.doi.org/10.1016/B978-0-08-102237-5.00002-X]
[30]
Mishra, S.K.; Tripathi, G.; Kishore, N.; Singh, R.K.; Singh, A.; Tiwari, V.K. Drug development against tuberculosis: Impact of alkaloids. Eur. J. Med. Chem., 2017, 137, 504-544.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.005] [PMID: 28628823]
[31]
Mehta, P.D.; Sengar, N.P.S.; Pathak, A.K. 2-Azetidinone--a new profile of various pharmacological activities. Eur. J. Med. Chem., 2010, 45(12), 5541-5560.
[http://dx.doi.org/10.1016/j.ejmech.2010.09.035] [PMID: 20970895]
[32]
WHO. Cardiovascular diseases., https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) [19th December 2019];2019 Available at:
[33]
Dražić, T.; Molčanov, K.; Sachdev, V.; Malnar, M.; Hećimović, S.; Patankar, J.V.; Obrowsky, S.; Levak-Frank, S.; Habuš, I.; Kratky, D. Novel amino-β-lactam derivatives as potent cholesterol absorption inhibitors. Eur. J. Med. Chem., 2014, 87, 722-734.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.014] [PMID: 25305716]
[34]
Yuan, X.; Lu, P.; Xue, X.; Qin, H.; Fan, C.; Wang, Y.; Zhang, Q. Discovery of 2-azetidinone and 1H-pyrrole-2,5-dione derivatives containing sulfonamide group at the side chain as potential cholesterol absorption inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(3), 849-853.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.077] [PMID: 26783178]
[35]
Arya, N.; Dwivedi, J.; Khedkar, V.M.; Coutinho, E.C.; Jain, K.S. Design, synthesis and biological evaluation of some 2-azetidinone derivatives as potential antihyperlipidemic agents. Arch. Pharm. (Weinheim), 2013, 346(12), 872-881.
[http://dx.doi.org/10.1002/ardp.201300262] [PMID: 24142910]
[36]
Rosenblum, S.B.; Huynh, T.; Afonso, A.; Davis, H.R., Jr; Yumibe, N.; Clader, J.W.; Burnett, D.A. Discovery of 1-(4-fluorophenyl)-(3R)-[3-(4-fluorophenyl)-(3S)-hydroxypropyl]-(4S)-(4 -hydroxyphenyl)-2-azetidinone (SCH 58235): A designed, potent, orally active inhibitor of cholesterol absorption. J. Med. Chem., 1998, 41(6), 973-980.
[http://dx.doi.org/10.1021/jm970701f] [PMID: 9526571]
[37]
Burnett, D.A. Beta-lactam cholesterol absorption inhibitors. Curr. Med. Chem., 2004, 11(14), 1873-1887.
[http://dx.doi.org/10.2174/0929867043364865] [PMID: 15279572]
[38]
McKittrick, B.A.; Ma, K.; Huie, K.; Yumibe, N.; Davis, H., Jr; Clader, J.W.; Czarniecki, M.; McPhail, A.T. Synthesis of C3 heteroatom-substituted azetidinones that display potent cholesterol absorption inhibitory activity. J. Med. Chem., 1998, 41(5), 752-759.
[http://dx.doi.org/10.1021/jm970676d] [PMID: 9513603]
[39]
Tripodi, F.; Pagliarin, R.; Fumagalli, G.; Bigi, A.; Fusi, P.; Orsini, F.; Frattini, M.; Coccetti, P. Synthesis and biological evaluation of 1,4-diaryl-2-azetidinones as specific anticancer agents: Activation of adenosine monophosphate activated protein kinase and induction of apoptosis. J. Med. Chem., 2012, 55(5), 2112-2124.
[http://dx.doi.org/10.1021/jm201344a] [PMID: 22329561]
[40]
Nepali, K.; Sharma, S.; Sharma, M.; Bedi, P.M.; Dhar, K.L. Rational approaches, design strategies, structure activity relationship and mechanistic insights for anticancer hybrids. Eur. J. Med. Chem., 2014, 77, 422-487.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.018] [PMID: 24685980]
[41]
Alegaon, S.G.; Parchure, P.; Araujo, L.D.; Salve, P.S.; Alagawadi, K.R.; Jalalpure, S.S.; Kumbar, V.M. Quinoline-azetidinone hybrids: Synthesis and in vitro antiproliferation activity against Hep G2 and Hep 3B human cell lines. Bioorg. Med. Chem. Lett., 2017, 27(7), 1566-1571.
[http://dx.doi.org/10.1016/j.bmcl.2017.02.043] [PMID: 28262527]
[42]
Zhou, P.; Liang, Y.; Zhang, H.; Jiang, H.; Feng, K.; Xu, P.; Wang, J.; Wang, X.; Ding, K.; Luo, C.; Liu, M.; Wang, Y. Design, synthesis, biological evaluation and cocrystal structures with tubulin of chiral β-lactam bridged combretastatin A-4 analogues as potent antitumor agents. Eur. J. Med. Chem., 2018, 144, 817-842.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.004] [PMID: 29306206]
[43]
D’hooghe, M.; Mollet, K.; De Vreese, R.; Jonckers, T.H.; Dams, G.; De Kimpe, N. Design, synthesis, and antiviral evaluation of purine-β-lactam and purine-aminopropanol hybrids. J. Med. Chem., 2012, 55(11), 5637-5641.
[http://dx.doi.org/10.1021/jm300383k] [PMID: 22519297]
[44]
Yoakim, C.; Ogilvie, W.W.; Cameron, D.R.; Chabot, C.; Grand-Maître, C.; Guse, I.; Haché, B.; Kawai, S.; Naud, J.; O’Meara, J.A.; Plante, R.; Déziel, R. Potent beta-lactam inhibitors of human cytomegalovirus protease. Antivir. Chem. Chemother., 1998, 9(5), 379-387.
[http://dx.doi.org/10.1177/095632029800900502] [PMID: 9875391]
[45]
Yoakim, C.; Ogilvie, W.W.; Cameron, D.R.; Chabot, C.; Guse, I.; Haché, B.; Naud, J.; O’Meara, J.A.; Plante, R.; Déziel, R. beta-Lactam derivatives as inhibitors of human cytomegalovirus protease. J. Med. Chem., 1998, 41(15), 2882-2891.
[http://dx.doi.org/10.1021/jm980131z] [PMID: 9667976]
[46]
Gerona-Navarro, G.; Pérez de Vega, M.J.; García-López, M.T.; Andrei, G.; Snoeck, R.; De Clercq, E.; Balzarini, J.; González-Muñiz, R. From 1-acyl-β-lactam human cytomegalovirus protease inhibitors to 1-benzyloxycarbonylazetidines with improved antiviral activity. A straightforward approach to convert covalent to noncovalent inhibitors. J. Med. Chem., 2005, 48(7), 2612-2621.
[http://dx.doi.org/10.1021/jm0492812] [PMID: 15801851]
[47]
Sperka, T.; Pitlik, J.; Bagossi, P.; Tözsér, J. Beta-lactam compounds as apparently uncompetitive inhibitors of HIV-1 protease. Bioorg. Med. Chem. Lett., 2005, 15(12), 3086-3090.
[http://dx.doi.org/10.1016/j.bmcl.2005.04.020] [PMID: 15893929]
[48]
Seo, Y.H.; Kim, J.K.; Jun, J.G. Synthesis and biological evaluation of piperlongumine derivatives as potent anti-inflammatory agents. Bioorg. Med. Chem. Lett., 2014, 24(24), 5727-5730.
[http://dx.doi.org/10.1016/j.bmcl.2014.10.054] [PMID: 25453809]
[49]
Gowramma, B.; Praveen, T.K.; Kalirajan, R.; Babu, B. Synthesis of some novel 2-azetidinones/4-thiazolidinones bearing 1, 3, 4- thiadiazole nucleus and screening for its anti-imflammatory activity. LDDD, 2016, 13(7), 676-683.
[http://dx.doi.org/10.2174/1570180813666151123235546]
[50]
Gilani, S.J.; Khan, S.A.; Alam, O.; Singh, V.; Arora, A. Thiazolidin-4-One, Azetidin-2-One and 1,3,4-Oxadiazole Derivatives of Isonicotinic Acid Hydrazide: Synthesis and Their Biological Evaluation. J. Serb. Chem. Soc., 2011, 76(8), 1057-1067.
[http://dx.doi.org/10.2298/JSC101104092G]
[51]
Chhajed, S.S.; Upasani, C.D. Synthesis and in-silico molecular docking simulation of 3-chloro-4-substituted-1-(2-(1H-benzimidazol-2-yl)phenyl))-azetidin-2-ones as novel analgesic anti-inflammatory agent. Arab. J. Chem., 2016, 9, S1779-S1785.
[http://dx.doi.org/10.1016/j.arabjc.2012.04.038]
[52]
Bisacchi, G.S.; Slusarchyk, W.A.; Bolton, S.A.; Hartl, K.S.; Jacobs, G.; Mathur, A.; Meng, W.; Ogletree, M.L.; Pi, Z.; Sutton, J.C.; Treuner, U.; Zahler, R.; Zhao, G.; Seiler, S.M. Synthesis of potent and highly selective nonguanidine azetidinone inhibitors of human tryptase. Bioorg. Med. Chem. Lett., 2004, 14(9), 2227-2231.
[http://dx.doi.org/10.1016/j.bmcl.2004.02.011] [PMID: 15081014]
[53]
Cairns, J.A. Inhibitors of mast cell tryptase beta as therapeutics for the treatment of asthma and inflammatory disorders. Pulm. Pharmacol. Ther., 2005, 18(1), 55-66.
[http://dx.doi.org/10.1016/j.pupt.2004.09.032] [PMID: 15607128]
[54]
Ni, W.W.; Cao, M.D.; Huang, W.; Meng, L.; Wei, J.F. Tryptase inhibitors: a patent review. Expert Opin. Ther. Pat., 2017, 27(8), 919-928.
[http://dx.doi.org/10.1080/13543776.2017.1322064] [PMID: 28425830]
[55]
Sommerhoff, C.P.; Schaschke, N. Mast cell tryptase beta as a target in allergic inflammation: an evolving story. Curr. Pharm. Des., 2007, 13(3), 313-332.
[http://dx.doi.org/10.2174/138161207779313579] [PMID: 17313363]
[56]
Slusarchyk, W.A.; Bolton, S.A.; Hartl, K.S.; Huang, M.H.; Jacobs, G.; Meng, W.; Ogletree, M.L.; Pi, Z.; Schumacher, W.A.; Seiler, S.M.; Sutton, J.C.; Treuner, U.; Zahler, R.; Zhao, G.; Bisacchi, G.S. Synthesis of potent and highly selective inhibitors of human tryptase. Bioorg. Med. Chem. Lett., 2002, 12(21), 3235-3238.
[http://dx.doi.org/10.1016/S0960-894X(02)00689-3] [PMID: 12372541]
[57]
Qian, X.; Zheng, B.; Burke, B.; Saindane, M.T.; Kronenthal, D.R. A stereoselective synthesis of BMS-262084, an azetidinone-based tryptase inhibitor. J. Org. Chem., 2002, 67(11), 3595-3600.
[http://dx.doi.org/10.1021/jo010757o] [PMID: 12027669]
[58]
Terra-Filho, M.; Menna-Barreto, S.S. Medicamentos Alternativos e Novos Fármacos. J. Bras. Pneumol. 2010, 36(Suppl. 1), S1-S68.
[http://dx.doi.org/10.1590/S1806-37132010001300001] [PMID: 20944949]
[59]
Han, W.T.; Trehan, A.K.; Wright, J.J.K.; Federici, M.E.; Seiler, S.M.; Meanwell, N.A. Azetidin-2-one derivatives as inhibitors of thrombin. Bioorg. Med. Chem., 1995, 3(8), 1123-1143.
[http://dx.doi.org/10.1016/0968-0896(95)00101-L] [PMID: 7582985]
[60]
Wong, P.C.; Crain, E.J.; Watson, C.A.; Schumacher, W.A. A small-molecule factor XIa inhibitor produces antithrombotic efficacy with minimal bleeding time prolongation in rabbits. J. Thromb. Thrombolysis, 2011, 32(2), 129-137.
[http://dx.doi.org/10.1007/s11239-011-0599-0] [PMID: 21614454]
[61]
Wong, P.C.; Jiang, X. Apixaban, a direct factor Xa inhibitor, inhibits tissue-factor induced human platelet aggregation in vitro: comparison with direct inhibitors of factor VIIa, XIa and thrombin. Thromb. Haemost., 2010, 104(2), 302-310.
[PMID: 20589316]
[62]
Cainelli, G.; Galletti, P.; Garbisa, S.; Giacomini, D.; Sartor, L.; Quintavalla, A. 4-alkylidene-azetidin-2-ones: novel inhibitors of leukocyte elastase and gelatinase. Bioorg. Med. Chem., 2003, 11(24), 5391-5399.
[http://dx.doi.org/10.1016/j.bmc.2003.09.035] [PMID: 14642583]
[63]
Clemente, A.; Domingos, A.; Grancho, A.P.; Iley, J.; Moreira, R.; Neres, J.; Palma, N.; Santana, A.B.; Valente, E. Design, synthesis and stability of N-acyloxymethyl- and N-aminocarbonyloxymethyl- 2-azetidinones as human leukocyte elastase inhibitors. Bioorg. Med. Chem. Lett. 2001, 11(8), 1065-1068.
[http://dx.doi.org/10.1016/S0960-894X(01)00131-7] [PMID: 11327591]
[64]
Gérard, S.; Galleni, M.; Dive, G.; Marchand-Brynaert, J. Synthesis and evaluation of N1/C4-substituted β-lactams as PPE and HLE inhibitors. Bioorg. Med. Chem., 2004, 12(1), 129-138.
[http://dx.doi.org/10.1016/j.bmc.2003.10.009] [PMID: 14697778]
[65]
Hagmann, W.K.; Kissinger, A.L.; Shah, S.K.; Finke, P.E.; Dorn, C.P.; Brause, K.A.; Ashe, B.M.; Weston, H.; Maycock, A.L.; Knight, W.B. Orally active β-lactam inhibitors of human leukocyte elastase. 2. Effect of C-4 substitution. J. Med. Chem., 1993, 36(6), 771-777.
[http://dx.doi.org/10.1021/jm00058a015] [PMID: 8459404]
[66]
Hahmann, W.K.; Shah, S.K.; Dorn, C.P.; O’Grady, L.A.; Hale, J.J.; Finke, P.E.; Thompson, K.R.; Brause, K.A.; Ashe, B.M.; Weston, H.; Dahlgren, M.E.; Maycock, A.L.; Dellea, P.S.; Hand, K.M.; Osinga, D.G.; Bonney, R.J.; Davies, P.; Fletcher, D.S.; Doherty, J.B. Prevention of human leukocyte elastase-mediated lung damage by 3-alkyl-4-azetidinones. Bioorg. Med. Chem. Lett., 1991, 1(10), 545-550.
[http://dx.doi.org/10.1016/S0960-894X(01)80463-7]
[67]
Shah, S.K.; Dorn, C.P., Jr; Finke, P.E.; Hale, J.J.; Hagmann, W.K.; Brause, K.A.; Chandler, G.O.; Kissinger, A.L.; Ashe, B.M.; Weston, H. Orally active β-lactam inhibitors of human leukocyte elastase-1. Activity of 3,3-diethyl-2-azetidinones. J. Med. Chem., 1992, 35(21), 3745-3754.
[http://dx.doi.org/10.1021/jm00099a003] [PMID: 1433189]
[68]
Shah, S.K.; Finke, P.E.; Brause, K.A.; Chandler, G.O.; Ashe, B.M.; Weston, H.; Maycock, A.L.; Mumford, R.A.; Doherty, J.B. Monocyclic β-lactam inhibitors of human leukocyte elastase. Stereospecific synthesis and activity of 3,4-disubstituted-2-azetidinones. Bioorg. Med. Chem. Lett., 1993, 3(11), 2295-2298.
[http://dx.doi.org/10.1016/S0960-894X(01)80942-2]
[69]
Adonias, M.; Anayaba, J.; Cámara, J.; Canet, E.; Gateau-Olesker, A.; Gero, S.D.; Grande, M.; Hernando, J.I.M. enantioselective synthesis and antielastase activity of 1,3,4-trisubstituted and 3,4-disubstituted β-lactam antibiotics. Bioorg. Med. Chem. Lett., 1993, 3(12), 2547-2552.
[http://dx.doi.org/10.1016/S0960-894X(01)80714-9]
[70]
Vergely, I.; Boggetto, N.; Okochi, V.; Golpayegani, S.; Reboud-Ravaux, M.; Kobaiter, R.; Joyeau, R.; Wakselman, M. Inhibition of human leukocyte elastase by functionalized n-aryl azetidin-2-ones: substituent effects at C-3 and benzylic positions. Eur. J. Med. Chem., 1995, 30(3), 199-208.
[http://dx.doi.org/10.1016/0223-5234(96)88226-2]
[71]
Balsamo, A.; Asti, C.; Belfiore, M.S.; Brandolini, L.; Cercignani, G.; Gentili, D.; Macchia, M.; Mantovanini, M.; Orlandini, E.; Rossello, A. New β-lactam monocyclic inhibitors of human elastases: Synthesis and anti-elastase properties of 1-carbamoyl-4-methyleneaminoxyazetidinone derivatives. Eur. J. Med. Chem., 1997, 32(11), 889-894.
[http://dx.doi.org/10.1016/S0223-5234(97)82774-2]
[72]
Roberge, C.; Cvetovich, R.J.; Amato, J.S.; Pecore, V.; Hartner, F.W.; Greasham, R.; Chartrain, M. Process development for the production of the (S)-acid precursor of a novel elastase inhibitor (L-694,458) through the lipase-catalyzed kinetic resolution of a β-lactam benzyl ester. J. Biosci. Bioeng., 1997, 83(1), 48-53.
[73]
Cvetovich, R.J.; Chartrain, M.; Hartner, F.W., Jr; Roberge, C.; Amato, J.S.; Grabowski, E.J.J. An asymmetric synthesis of l-694,458, a human leukocyte elastase inhibitor, via novel enzyme resolution of β-lactam esters. J. Org. Chem., 1996, 61(19), 6575-6580.
[http://dx.doi.org/10.1021/jo960618k] [PMID: 11667523]
[74]
Gérard, S.; Dive, G.; Clamot, B.; Touillaux, R.; Marchand-Brynaert, J. Synthesis, hydrolysis, biochemical and theoretical evaluation of 1,4-bis(alkoxycarbonyl)azetidin-2-ones as potential elastase inhibitors. Tetrahedron, 2002, 58(12), 2423-2433.
[http://dx.doi.org/10.1016/S0040-4020(02)00112-6]
[75]
Bonneau, P.R.; Hasani, F.; Plouffe, C.; Malenfant, E.; LaPlante, S.R.; Guse, I.; Ogilvie, W.W.; Plante, R.; Davidson, W.C.; Hopkins, J.L.; Morelock, M.M.; Cordingley, M.G.; Déziel, R. inhibition of human cytomegalovirus protease by monocyclic beta-lactam derivatives: kinetic characterization using a fluroescent probe. J. Am. Chem. Soc., 1999, 121(13), 2965-2973.
[http://dx.doi.org/10.1021/ja983905+]
[76]
Gerona-Navarro, G.; Pérez de Vega, M.J.; García-López, M.T.; Andrei, G.; Snoeck, R.; Balzarini, J.; De Clercq, E.; González-Muñiz, R. Synthesis and anti-HCMV activity of 1-acyl-β-lactams and 1-acylazetidines derived from phenylalanine. Bioorg. Med. Chem. Lett., 2004, 14(9), 2253-2256.
[http://dx.doi.org/10.1016/j.bmcl.2004.02.010] [PMID: 15081019]
[77]
Borthwick, A.D.; Weingarten, G.; Haley, T.M.; Tomaszewski, M.; Wang, W.; Hu, Z.; Bedard, J.; Jin, H.; Yuen, L.; Mansour, T.S. Design and synthesis of monocyclic beta-lactams as mechanism-based inhibitors of human cytomegalovirus protease. Bioorg. Med. Chem. Lett, 1998, 8(4), 365-370.
[http://dx.doi.org/10.1016/S0960-894X(98)00032-8] [PMID: 9871686]
[78]
Ogilvie, W.W.; Yoakim, C.; Dô, F.; Haché, B.; Lagacé, L.; Naud, J.; O’Meara, J.A.; Déziel, R. Synthesis and antiviral activity of monobactams inhibiting the human cytomegalovirus protease. Bioorg. Med. Chem, 1999, 7(8), 1521-1531.
[http://dx.doi.org/10.1016/S0968-0896(99)00094-2] [PMID: 10482444]
[79]
Lu, J.; Wang, M.; Wang, Z.; Fu, Z.; Lu, A.; Zhang, G. Advances in the discovery of cathepsin K inhibitors on bone resorption. J. Enzyme Inhib. Med. Chem. 2018, 33(1), 890-904.
[http://dx.doi.org/10.1080/14756366.2018.1465417] [PMID: 29723068]
[80]
Setti, E.L.; Davis, D.; Janc, J.W.; Jeffery, D.A.; Cheung, H.; Yu, W. 3,4-disubstituted azetidinones as selective inhibitors of the cysteine protease cathepsin K. Exploring P3 elements for potency and selectivity. Bioorg. Med. Chem. Lett., 2005, 15(5), 1529-1534.
[http://dx.doi.org/10.1016/j.bmcl.2004.12.088] [PMID: 15713422]
[81]
Zhou, N.E.; Guo, D.; Thomas, G.; Reddy, A.V.N.; Kaleta, J.; Purisima, E.; Menard, R.; Micetich, R.G.; Singh, R. 3-Acylaminoazetidin- 2-one as a novel class of cysteine proteases inhibitors. Bioorg. Med. Chem. Lett., 2003, 13(1), 139-141.
[http://dx.doi.org/10.1016/S0960-894X(02)00831-4] [PMID: 12467634]
[82]
Abeed, A.A.O.; Youssef, M.S.K.; Hegazy, R. Synthesis, Anti-Diabetic and Renoprotective Activity of Some New Benzazole, Thiazolidin-4-One and Azetidin-2-One Derivatives. J. Braz. Chem. Soc., 2017, 28(11), 2054-2063.
[http://dx.doi.org/10.21577/0103-5053.20170050]
[83]
Gupta, A.; Halve, A.K. β-Lactams: a mini review of their biological activity. Int. J. Pharm. Sci. Res., 2015, 6(3), 978-987.
[84]
Goel, R.K.; Mahajan, M.P.; Kulkarni, S.K. Evaluation of anti-hyperglycemic activity of some novel monocyclic beta lactams. J. Pharm. Pharm. Sci., 2004, 7(1), 80-83.
[PMID: 15144739]
[85]
Reddy, D.R.S.; Rao, D.S. Synthesis and Biological Evaluation of 6-Fluoro Benzothiazole Substituted Quinazolines. J. Chem. Pharm. Sci., 2013, 6(2), 98-101.
[86]
Guillon, C.D.; Koppel, G.A.; Brownstein, M.J.; Chaney, M.O.; Ferris, C.F.; Lu, S.F.; Fabio, K.M.; Miller, M.J.; Heindel, N.D.; Hunden, D.C.; Cooper, R.D.; Kaldor, S.W.; Skelton, J.J.; Dressman, B.A.; Clay, M.P.; Steinberg, M.I.; Bruns, R.F.; Simon, N.G. Azetidinones as vasopressin V1a antagonists. Bioorg. Med. Chem., 2007, 15(5), 2054-2080.
[http://dx.doi.org/10.1016/j.bmc.2006.12.031] [PMID: 17234419]
[87]
Nidhi, K.; Indrajeet, S.; Khushboo, M.; Gauri, K.; Sem, D.J. Hydrotropy: a promising tool for solubility enhancement: a review. Int. J. Drug Dev. Res., 2011, 3(2), 26-33.
[88]
Serradeil-Le Gal, C.; Wagnon, J.; Valette, G.; Garcia, G.; Pascal, M.; Maffrand, J.P.; Le Fur, G. Nonpeptide vasopressin receptor antagonists: development of selective and orally active V1a, V2 and V1b receptor ligands. Prog. Brain Res. , 2002; 139, pp. 197-210.
[http://dx.doi.org/10.1016/S0079-6123(02)39017-4] [PMID: 12436936]
[89]
Simon, N.G.; Guillon, C.; Fabio, K.; Heindel, N.D.; Lu, S.F.; Miller, M.; Ferris, C.F.; Brownstein, M.J.; Garripa, C.; Koppel, G.A. Vasopressin antagonists as anxiolytics and antidepressants: recent developments. Recent Patents CNS Drug Discov., 2008, 3(2), 77-93.
[http://dx.doi.org/10.2174/157488908784534586] [PMID: 18537767]
[90]
Gupta, A.; Halve, A.K. Synthesis & antifungal screening of novel azetidin-2-ones. Open Chem. J., 2015, 2, 1-6.
[http://dx.doi.org/10.2174/1874842201502010001]
[91]
Kumar, S.; Kaur, H.; Kumar, A. Synthesis of new azetidinonyl/thiazolidinonyl quinazolinone derivatives as antiparkinsonian agents. Arab. J. Chem., 2012, 5(4), 475-484.
[http://dx.doi.org/10.1016/j.arabjc.2010.09.014]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy