Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Research Article

A Peptide Construct Mediates Focal Adhesion Pathway Through the Activation of Integrin Receptor

Author(s): Mohsen Khosravi, Naser Kakavandi, Shima Rezaee, Mohammad Shabani* and Mohammad Najafi*

Volume 26, Issue 15, 2020

Page: [1749 - 1755] Pages: 7

DOI: 10.2174/1381612826666200311125325

Price: $65

Abstract

Background: The integrin family receptors stimulate the cellular proliferation and migration through the focal adhesion pathway by the activation of PTK2, VASP and TSP1 proteins. The purpose of this study was to investigate the integrin-ligated motifs through the activation of focal adhesion pathway.

Methods: A chimeric peptide was predicted from the integrin-mediated ligands by bioinformatics tools. The VSMCs were treated with the chimeric peptide and simvastatin. The PTK2, VASP and TSP1 protein and gene expression levels were measured by RT-qPCR and Western Blotting techniques, respectively. AutoDock Tools were used for the docking technique.

Results: The PTK2, VASP and TSP1 protein expression levels increased significantly in the VSMCs treated with chimeric peptide in conversely with the effects of simvastatin. The docking results suggested two motifs in the chimeric peptide.

Conclusion: In conclusion, the chimeric peptide activated the focal adhesion pathway. The motifs 1 and 2 may be directly involved in the transduction of signal by integrin family receptors.

Keywords: Peptide, integrin, focal adhesion, PKT2, VASP, TSP1, western blotting.

« Previous
[1]
Kappert K, Blaschke F, Meehan WP, et al. Integrins alphavbeta3 and alphavbeta5 mediate VSMC migration and are elevated during neointima formation in the rat aorta. Basic Res Cardiol 2001; 96(1): 42-9.
[http://dx.doi.org/10.1007/s003950170076] [PMID: 11215531]
[2]
Finney AC, Stokes KY, Pattillo CB, Orr AWJC, Sciences ML. Integrin signaling in atherosclerosis. Cell Mol Life Sci 2017; 74(12): 2263-82.
[http://dx.doi.org/10.1007/s00018-017-2490-4] [PMID: 28246700]
[3]
Ross TD, Coon BG, Yun S, et al. Integrins in mechanotransduction. Curr Opin Cell Biol 2013; 25(5): 613-8.
[http://dx.doi.org/10.1016/j.ceb.2013.05.006] [PMID: 23797029]
[4]
Humphries JD, Paul NR, Humphries MJ, Morgan MR. Emerging properties of adhesion complexes: what are they and what do they do? Trends Cell Biol 2015; 25(7): 388-97.
[http://dx.doi.org/10.1016/j.tcb.2015.02.008] [PMID: 25824971]
[5]
Kanchanawong P, Shtengel G, Pasapera AM, et al. Nanoscale architecture of integrin-based cell adhesions. Nature 2010; 468(7323): 580-4.
[http://dx.doi.org/10.1038/nature09621] [PMID: 21107430]
[6]
Sun C, Yuan H, Wang L, et al. FAK promotes osteoblast progenitor cell proliferation and differentiation by enhancing Wnt signaling. J Bone Miner Res 2016; 31(12): 2227-38.
[http://dx.doi.org/10.1002/jbmr.2908] [PMID: 27391080]
[7]
Raman P, Krukovets I, Marinic TE, Bornstein P, Stenina OI. Glycosylation mediates up-regulation of a potent antiangiogenic and proatherogenic protein, thrombospondin-1, by glucose in vascular smooth muscle cells. J Biol Chem 2007; 282(8): 5704-14.
[http://dx.doi.org/10.1074/jbc.M610965200] [PMID: 17178709]
[8]
Sayers RL, Sundberg-Smith LJ, Rojas M, et al. FRNK expression promotes smooth muscle cell maturation during vascular development and after vascular injury. Arterioscler Thromb Vasc Biol 2008; 28(12): 2115-22.
[http://dx.doi.org/10.1161/ATVBAHA.108.175455] [PMID: 18787183]
[9]
Cox BD, Natarajan M, Stettner MR, Gladson CL. New concepts regarding focal adhesion kinase promotion of cell migration and proliferation. J Cell Biochem 2006; 99(1): 35-52.
[http://dx.doi.org/10.1002/jcb.20956] [PMID: 16823799]
[10]
Chen H, Dai G, Cai Y, et al. Vasodilator-stimulated phosphoprotein (VASP), a novel target of miR-4455, promotes gastric cancer cell proliferation, migration, and invasion, through activating the PI3K/AKT signaling pathway. Cancer Cell Int 2018; 18(1): 97.
[http://dx.doi.org/10.1186/s12935-018-0573-4] [PMID: 30002604]
[11]
Stone J, Holt A, Shaver P, Vuncannon J, Tulis DA. AMP-activated protein kinase inhibits arterial smooth muscle cell proliferation in vasodilator-stimulated phosphoprotein-dependent manner. Am J Physiol Heart Circ Physiol 2013; 304(3): H369-81.
[12]
Maier KG, Sadowitz B, Cullen S, Han X, Gahtan V. Thrombospondin-1-induced vascular smooth muscle cell migration is dependent on the hyaluronic acid receptor CD44. Am J Surg 2009; 198(5): 664-9.
[http://dx.doi.org/10.1016/j.amjsurg.2009.07.018] [PMID: 19887196]
[13]
Stein JJ, Iwuchukwu C, Maier KG, Gahtan V. Thrombospondin-1-induced vascular smooth muscle cell migration and proliferation are functionally dependent on microRNA-21. Surgery 2014; 155(2): 228-33.
[http://dx.doi.org/10.1016/j.surg.2013.08.003] [PMID: 24314882]
[14]
Helkin A, Maier KG, Gahtan V. Thrombospondin-1, -2 and -5 have differential effects on vascular smooth muscle cell physiology. Biochem Biophys Res Commun 2015; 464(4): 1022-7.
[http://dx.doi.org/10.1016/j.bbrc.2015.07.044] [PMID: 26168731]
[15]
Takeda I, Maruya S, Shirasaki T, et al. Simvastatin inactivates β1-integrin and extracellular signal-related kinase signaling and inhibits cell proliferation in head and neck squamous cell carcinoma cells. Cancer Sci 2007; 98(6): 890-9.
[http://dx.doi.org/10.1111/j.1349-7006.2007.00471.x] [PMID: 17428261]
[16]
Wagner BJ, Löb S, Lindau D, et al. Simvastatin reduces tumor cell adhesion to human peritoneal mesothelial cells by decreased expression of VCAM-1 and β1 integrin. Int J Oncol 2011; 39(6): 1593-600.
[http://dx.doi.org/10.3892/ijo.2011.1167] [PMID: 21874229]
[17]
Orr AW, Lee MY, Lemmon JA, et al. Molecular mechanisms of collagen isotype-specific modulation of smooth muscle cell phenotype. Arterioscler Thromb Vasc Biol 2009; 29(2): 225-31.
[http://dx.doi.org/10.1161/ATVBAHA.108.178749] [PMID: 19023090]
[18]
Miller JD. Cardiovascular calcification: Orbicular origins. Nat Mater 2013; 12(6): 476-8.
[http://dx.doi.org/10.1038/nmat3663] [PMID: 23695741]
[19]
Chistiakov DA, Orekhov AN, Bobryshev YV. Vascular smooth muscle cell in atherosclerosis. Acta Physiol (Oxf) 2015; 214(1): 33-50.
[http://dx.doi.org/10.1111/apha.12466] [PMID: 25677529]
[20]
Stary HJC. A report from the committee on vascular lesion of the council on arteriosclerosis. Amn Heart Assoc 1994; 89: 2462-78.
[21]
Shankman LS, Gomez D, Cherepanova OA, et al. KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat Med 2015; 21(6): 628-37.
[http://dx.doi.org/10.1038/nm.3866] [PMID: 25985364]
[22]
Dufourcq P, Couffinhal T, Alzieu P, et al. Vitronectin is up-regulated after vascular injury and vitronectin blockade prevents neointima formation. Cardiovasc Res 2002; 53(4): 952-62.
[http://dx.doi.org/10.1016/S0008-6363(01)00547-8] [PMID: 11922905]
[23]
Anderson HJ, Galileo DS. Small-molecule inhibitors of FGFR, integrins and FAK selectively decrease L1CAM-stimulated glioblastoma cell motility and proliferation. Cell Oncol (Dordr) 2016; 39(3): 229-42.
[http://dx.doi.org/10.1007/s13402-016-0267-7] [PMID: 26883759]
[24]
Tulis DA. Novel protein kinase targets in vascular smooth muscle therapeutics. Curr Opin Pharmacol 2017; 33: 12-6.
[http://dx.doi.org/10.1016/j.coph.2017.03.003] [PMID: 28388507]
[25]
Resovi A, Pinessi D, Chiorino G, Taraboletti G. Current understanding of the thrombospondin-1 interactome. Matrix Biol 2014; 37: 83-91.
[http://dx.doi.org/10.1016/j.matbio.2014.01.012] [PMID: 24476925]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy