Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Oxocarbon Organic Conjugated Compounds for Lithium-ion Batteries and Solar Cells: Progress and Perspectives

Author(s): Lihong Liu, Boshi Cheng, Zhengwei Yang, Huifeng Wang, Chuang Yue* and Fang Hu*

Volume 24, Issue 2, 2020

Page: [200 - 215] Pages: 16

DOI: 10.2174/1385272824666200102111215

Price: $65

Abstract

In recent years, with the continuous depletion of traditional fossil energy, the research of new energy storage materials has become one of the important ways to solve the issue of energy depletion. Generally, in an energy storage system, lithium-ion battery (LIB) has been widely applied in electronic intelligent devices and electrical vehicles (EVs). In an energy conversion system, as the most promising green energy system, solar cells have become a hot research field for scientists. Most recently, oxocarbon organic conjugated compounds (OOCCs) have been widely used in LIBs and solar cells due to their advantages such as abundant raw materials, environmental friendliness and high efficiency. As in this paper, the research progress of LIBs and solar cells based on OOCCs is reviewed, the synthesis strategies of these organic energy storage/conversion materials are summarized and the future research direction of organic energy materials is also prospected.

Keywords: Oxocarbon organic conjugated compounds (OOCCs), Lithium-ion batteries (LIBs), cathode, anode, solar cells, acceptor, donor.

Graphical Abstract
[1]
Tu, T.; Nguyen, M.; Nguyen, H.; Yuliarto, B.; Cordova, K.; Demir, S. Designing bipyridine-functionalized zirconium metal-organic frameworks as a platform for clean energy and other emerging applications. Coord. Chem. Rev., 2018, 364, 33-50.
[http://dx.doi.org/10.1016/j.ccr.2018.03.014]
[2]
Chen, K.; Shi, L.; Zhang, Y.; Liu, Z. Scalable chemical-vapour-deposition growth of three-dimensional graphene materials towards energy-related applications. Chem. Soc. Rev., 2018, 47(9), 3018-3036.
[http://dx.doi.org/10.1039/C7CS00852J] [PMID: 29484331]
[3]
Yu, L.; Fan, Z.; Shao, Y.; Tian, Z.; Sun, J.; Liu, Z. Versatile N-doped MXene ink for printed electrochemical energy storage application. Adv. Energy Mater., 2019, 9(34) 1901839
[http://dx.doi.org/10.1002/aenm.201901839]
[4]
Xie, X.; Huang, K.; Wu, X. Metal-organic framework derived hollow materials for electrochemical energy storage. J. Mater. Chem. A Mater. Energy Sustain., 2018, 6, 6754-6771.
[http://dx.doi.org/10.1039/C8TA00612A]
[5]
Shi, C.; Owusu, K.A.; Xu, X.; Zhu, T.; Zhang, G.; Yang, W.; Mai, L. 1D carbon-based nanocomposites for electrochemical energy storage. Small, 2019, 15(48) e1902348
[http://dx.doi.org/10.1002/smll.201902348] [PMID: 31411000]
[6]
Zhou, Y.; Wang, C.H.; Lu, W.; Dai, L. Recent advances in fiber-shaped supercapacitors and lithium-ion batteries. Adv. Mater., 2019, 9 e1902779
[http://dx.doi.org/10.1002/adma.201902779] [PMID: 31496019]
[7]
Xia, H.; Tao, X.; Wang, Y. Flexible and self-healing thermoelectric converters based on thermosensitive liquids at low temperature gradient. Adv. Electron. Mater., 2016, 2(7) 1600136
[http://dx.doi.org/10.1002/aelm.201600136]
[8]
Deng, D.; Yu, L.; Chen, X.; Wang, G.; Jin, L.; Pan, X.; Deng, J.; Sun, G.; Bao, X. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angew. Chem. Int. Ed. Engl., 2013, 52(1), 371-375.
[http://dx.doi.org/10.1002/anie.201204958] [PMID: 23225769]
[9]
Wei, J.; Guo, F.; Liu, B.; Sun, X.; Wang, X.; Yang, Z.; Xu, K.; Lei, M.; Zhao, Y.; Xu, D. UV-inert ZnTiO3 electron selective layer for photostable perovskite solar cells. Adv. Energy Mater., 2019, 9(40) 1901620
[http://dx.doi.org/10.1002/aenm.201901620]
[10]
Yang, S.; Fan, Q.; Shi, Z.; Liu, L.; Liu, J.; Ke, X.; Liu, J.; Hong, C.; Yang, Y.; Guo, Z. Superior stability secured by a four-phase cathode electrolyte interface on Ni-rich cathode for lithium-ion batteries. ACS Appl. Mater. Interfaces, 2019, 11(40), 36742-36750.
[http://dx.doi.org/10.1021/acsami.9b12578] [PMID: 31532608]
[11]
Wu, H.; Zhang, J.; Du, X.; Zhang, M.; Yang, J.; Zhang, J.; Luo, T.; Liu, H.; Xu, H.; Cui, G. A large π-conjugated tetrakis (4-carboxyphenyl) porphyrin anode enables high specific capacity and superior cycling stability in lithium-ion batteries. Chem. Commun. (Camb.), 2019, 55(76), 11370-11373.
[http://dx.doi.org/10.1039/C9CC05474J] [PMID: 31478549]
[12]
Lin, Z.; Huang, J. Hierarchical nanostructures derived from cellulose for lithium-ion batteries. Dalton Trans., 2019, 48(38), 14221-14232.
[http://dx.doi.org/10.1039/C9DT02986A] [PMID: 31531439]
[13]
Liu, Z.; Song, T.; Paik, U. Sb-based electrode materials for rechargeable batteries. J. Mater. Chem. A Mater. Energy Sustain., 2018, 6, 8159-8193.
[http://dx.doi.org/10.1039/C8TA01782D]
[14]
Hu, F.; Song, T. Application of functionalized ether in lithium ion batteries. RSC Advances, 2017, 7, 54203-54212.
[http://dx.doi.org/10.1039/C7RA11023E]
[15]
Dou, J.; Shen, D.; Li, Y.; Abate, A.; Wei, M. Highly efficient perovskite solar cells based on a Zn2SnO4 compact layer. ACS Appl. Mater. Interfaces, 2019, 11(40), 36553-36559.
[http://dx.doi.org/10.1021/acsami.9b09209] [PMID: 31524371]
[16]
Fan, B.; Zeng, Z.; Zhong, W.; Ying, L.; Zhang, D.; Li, M.; Peng, F.; Li, N.; Huang, F.; Cao, Y. Optimizing microstructure morphology and reducing electronic losses in 1cm2 polymer solar cells to achieve efficiency over 15%. ACS Energy Lett., 2019, 4(10), 2466-2472.
[http://dx.doi.org/10.1021/acsenergylett.9b01447]
[17]
Li, B.; Zhang, Q.; Dai, G.; Fan, H.; Yuan, X.; Xu, Y.; Cohen-Kleinstein, B.; Yuan, J.; Ma, W. Understanding the impact of side-chain on photovoltaic performance in efficient all-polymer solar cells. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2019, 7(40), 12641-12649.
[http://dx.doi.org/10.1039/C9TC02141H]
[18]
Yang, Y.; Chen, H.; Hu, C.; Yang, S. Polyethyleneimine functionalized carbon nanotubes as an interlayer to bridge perovskite/carbon for all inorganic carbon-based perovskite solar cells. J. Mater. Chem. A Mater. Energy Sustain., 2019, 7(38), 22005-22011.
[http://dx.doi.org/10.1039/C9TA08177A]
[19]
Duan, J.; Zhao, Y.; Wang, Y.; Yang, X.; Tang, Q. Hole boosted Cu(Cr,M)O2 nanocrystals for all-inorganic CsPbBr3 perovskite solar cells. Angew. Chem. Int. Ed. Engl., 2019, 58(45), 16147-16151.
[http://dx.doi.org/10.1002/anie.201910843] [PMID: 31508871]
[20]
Zhao, Q.; Zhu, Z.; Chen, J. Molecular engineering with organic carbonyl electrode materials for advanced stationary and redox flow rechargeable batteries. Adv. Mater., 2017, 29(48) 1607007
[http://dx.doi.org/10.1002/adma.201607007] [PMID: 28370809]
[21]
Zou, Q.; Wang, W.; Wang, A.; Yu, Z.; Yuan, K. Preparation of the tetrahydro-hexaquinone as a novel cathode material for rechargeable lithium batteries. Mater. Lett., 2014, 117, 290-293.
[http://dx.doi.org/10.1016/j.matlet.2013.12.027]
[22]
Chen, L.; Liu, S.; Zhao, L.; Zhao, Y. OH-substituted 2, 3-dichloro-5, 6-dicyano-1, 4-benzoquinone as highly stable organic electrode for lithium ion battery. Electrochim. Acta, 2017, 258, 677-683.
[http://dx.doi.org/10.1016/j.electacta.2017.11.113]
[23]
Nokami, T.; Matsuo, T.; Inatomi, Y.; Hojo, N.; Tsukagoshi, T.; Yoshizawa, H.; Shimizu, A.; Kuramoto, H.; Komae, K.; Tsuyama, H.; Yoshida, J. Polymer-bound pyrene-4,5,9,10-tetraone for fast-charge and -discharge lithium-ion batteries with high capacity. J. Am. Chem. Soc., 2012, 134(48), 19694-19700.
[http://dx.doi.org/10.1021/ja306663g] [PMID: 23130634]
[24]
Liu, K.; Zheng, J.; Zhong, G.; Yang, Y. Poly (2,5-dihydroxy-1,4-benzoquinonyl sulfide) (PDBS) as a cathode material for lithium ion batteries. J. Mater. Chem., 2011, 21, 4125-4131.
[http://dx.doi.org/10.1039/c0jm03127e]
[25]
Li, Q.; Li, D.; Wang, H.; Wang, H.G.; Li, Y.; Si, Z.; Duan, Q. Conjugated carbonyl polymer-based flexible cathode for superior lithium-organic batteries. ACS Appl. Mater. Interfaces, 2019, 11(32), 28801-28808.
[http://dx.doi.org/10.1021/acsami.9b06437] [PMID: 31313916]
[26]
Mumyatov, A.; Shestakov, A.; Dremova, N.; Stevenson, K.; Troshin, P. New naphthalene-based polyimide as an environment-friendly organic cathode material for lithium batteries. Energy Technol. (Weinheim), 2019, 7(5) 1801016
[http://dx.doi.org/10.1002/ente.201801016]
[27]
Han, X.; Qing, G.; Sun, J.; Sun, T. How many lithium ions can be inserted onto fused C6 aromatic ring systems? Angew. Chem. Int. Ed. Engl., 2012, 51(21), 5147-5151.
[http://dx.doi.org/10.1002/anie.201109187] [PMID: 22511505]
[28]
Wang, C.; Tang, W.; Yao, Z.; Chen, Y.; Pei, J.; Fan, C. Using an organic acid as a universal anode for highly efficient Li-ion, Na-ion and K-ion batteries. Org. Electron., 2018, 62, 536-541.
[http://dx.doi.org/10.1016/j.orgel.2018.06.027]
[29]
Wang, Y.; Liu, Z.; Liu, H.; Liu, H.; Li, B.; Guan, S. A novel high-capacity anode material derived from aromatic imides for lithium-ion batteries. Small, 2018, 14(17) e1704094
[http://dx.doi.org/10.1002/smll.201704094] [PMID: 29611307]
[30]
Yang, A.; Wang, X.; Lu, Y.; Miao, L.; Xie, W.; Chen, J. Core-shell structured 1,4-benzoquinone@TiO2 cathode for lithium batteries. J. Energy Chem., 2018, 27, 1644-1650.
[http://dx.doi.org/10.1016/j.jechem.2018.06.003]
[31]
Yang, G.; Bu, F.; Huang, Y.; Zhang, Y.; Shakir, I.; Xu, Y. In-situ growth and wrapping of aminoanthraquinone nanowires within 3D graphene framework as high-performance foldable organic cathode for lithium ion batteries. ChemSusChem, 2017, 10, 3419-3426.
[http://dx.doi.org/10.1002/cssc.201701175] [PMID: 28722277]
[32]
Yang, S.J.; Qin, X.Y.; He, R.; Shen, W.; Li, M.; Zhao, L.B. A density functional theory study on the thermodynamic and dynamic properties of anthraquinone analogue cathode materials for rechargeable lithium ion batteries. Phys. Chem. Chem. Phys., 2017, 19(19), 12480-12489.
[http://dx.doi.org/10.1039/C7CP01203A] [PMID: 28470283]
[33]
Huang, W.; Jia, T.; Zhou, G.; Chen, S.; Hou, Q.; Wang, Y.; Luo, S.; Shi, G.; Xu, B. A triphenylamine-based polymer with anthraquinone side chain as cathode material in lithium ion batteries. Electrochim. Acta, 2018, 283, 1284-1290.
[http://dx.doi.org/10.1016/j.electacta.2018.07.062]
[34]
Yuan, C.; Wu, Q.; Shao, Q.; Li, Q.; Gao, B.; Duan, Q.; Wang, H.G. Free-standing and flexible organic cathode based on aromatic carbonyl compound/carbon nanotube composite for lithium and sodium organic batteries. J. Colloid Interface Sci., 2018, 517, 72-79.
[http://dx.doi.org/10.1016/j.jcis.2018.01.095] [PMID: 29421682]
[35]
Luo, Z.; Liu, L.; Zhao, Q.; Li, F.; Chen, J. An insoluble benzoquinone-based organic cathode for use in rechargeable lithium-ion batteries. Angew. Chem. Int. Ed. Engl., 2017, 56(41), 12561-12565.
[http://dx.doi.org/10.1002/anie.201706604] [PMID: 28787540]
[36]
Amin, K.; Meng, Q.; Ahmad, A.; Cheng, M.; Zhang, M.; Mao, L.; Lu, K.; Wei, Z. A carbonyl compound-based flexible cathode with superior rate performance and cyclic stability for flexible lithium-ion batteries. Adv. Mater., 2018, 30(4) 1703868
[http://dx.doi.org/10.1002/adma.201703868] [PMID: 29226388]
[37]
Li, M.; Liu, J.; Liu, T.; Zhang, M.; Pan, F. A versatile single molecular precursor for the synthesis of layered oxide cathode materials for lithium-ion batteries. Chem. Commun. (Camb.), 2018, 54(11), 1331-1334.
[http://dx.doi.org/10.1039/C7CC08505B] [PMID: 29349459]
[38]
Luo, Z.; Liu, L.; Ning, J.; Lei, K.; Lu, Y.; Li, F.; Chen, J. A microporous covalent-organic framework with abundant accessible carbonyl groups for lithium-ion batteries. Angew. Chem. Int. Ed. Engl., 2018, 57(30), 9443-9446.
[http://dx.doi.org/10.1002/anie.201805540] [PMID: 29863784]
[39]
Xie, J.; Chen, W.; Wang, Z.; Jie, K.C.W.; Liu, M.; Zhang, Q. Synthesis and exploration of ladder-structured large aromatic dianhydrides as organic cathodes for rechargeable lithium-ion batteries. Chem. Asian J., 2017, 12(8), 868-876.
[http://dx.doi.org/10.1002/asia.201700070] [PMID: 28221009]
[40]
Sun, G.; Hu, Y.; Sha, Y.; Shi, C.; Yin, G.; Zhang, H.; Liu, H.; Liu, Q. An insoluble naphthalenediimide derivative as a highly stable cathode material for lithium-ion batteries. Mater. Chem. Phys., 2019, 236 121815
[http://dx.doi.org/10.1016/j.matchemphys.2019.121815]
[41]
Miroshnikov, M.; Kato, K.; Babu, G.; Divya, K.P.; Arava, L.M.R.; Ajayan, P.M.; John, G. A common tattoo chemical for energy storage: henna plant-derived naphthoquinone dimer as a green and sustainable cathode material for lithium-ion batteries. RSC Advances, 2018, 8, 1576-1582.
[42]
Wang, Z.; Li, S.; Zhang, Y.; Xu, H. Oxocarbon-functionalized graphene as a lithium-ion battery cathode: a first-principles investigation. Phys. Chem. Chem. Phys., 2018, 20(11), 7447-7456.
[http://dx.doi.org/10.1039/C7CP07960E] [PMID: 29488988]
[43]
Li, L.; Hong, Y.J.; Chen, D.Y.; Lin, M.J. Molecular engineering of perylene imides for high-performance lithium batteries: diels-elder extension and chiral dimerization. Chemistry, 2017, 23(65), 16612-16620.
[http://dx.doi.org/10.1002/chem.201703823] [PMID: 28967155]
[44]
Zhao, L.B.; Gao, S.T.; He, R.; Shen, W.; Li, M. Molecular design of phenanthrenequinone derivatives as organic cathode materials. ChemSusChem, 2018, 11(7), 1215-1222.
[http://dx.doi.org/10.1002/cssc.201702344] [PMID: 29380541]
[45]
Huan, L.; Xie, J.; Chen, M.; Diao, G.; Zhao, R.; Zuo, T. Theoretical investigation of pillar[4]quinone as a cathode active material for lithium-ion batteries. J. Mol. Model., 2017, 23(4), 105.
[http://dx.doi.org/10.1007/s00894-017-3282-3] [PMID: 28271285]
[46]
Huan, L.; Xie, J.; Huang, Z.; Chen, M.; Diao, G.; Zuo, T. Computational electrochemistry of pillar[5]quinone cathode material for lithium-ion batteries. Comput. Mater. Sci., 2017, 137, 233-242.
[http://dx.doi.org/10.1016/j.commatsci.2017.05.045]
[47]
Hernández, G.; Salsamendi, M.; Morozova, S.M.; Lozinskaya, E.I.; Devaraj, S.; Vygodskii, Y.S.; Shaplov, A.; Mecerreyes, D. Polyimides as cathodic materials in lithium-ion batteries: effect of the chemical structure of the diamine monomer. J. Polym. Sci. Pol. Chem., 2018, 56, 714-723.
[http://dx.doi.org/10.1002/pola.28937]
[48]
Wei, W.; Li, L.; Zhang, L.; Hong, J.; He, G. An all-solid-state lithium-organic battery with quinone-based polymer cathode and composite polymer electrolyte. Electrochem. Commun., 2018, 90, 21-25.
[http://dx.doi.org/10.1016/j.elecom.2018.03.006]
[49]
Jung, M.H.; Ghorpade, R.V. Polyimide containing tricarbonyl moiety as an active cathode for rechargeable Li-ion Batteries. J. Electrochem. Soc., 2018, 165, 2476-2482.
[http://dx.doi.org/10.1149/2.0391811jes]
[50]
Peng, C.; Ning, G.H.; Su, J.; Zhong, G.; Tang, W.; Tian, B.; Su, C.; Yu, D.; Zu, L.; Yang, J.; Ng, M.F.; Hu, Y.; Yang, Y.; Armand, M.; Loh, K. Reversible multi-electron redox chemistry of π-conjugated N-containing heteroaromatic molecule-based organic cathodes. Nat. Energy, 2017, 2, 17074.
[http://dx.doi.org/10.1038/nenergy.2017.74]
[51]
Wang, L.; Zhao, M.; Qiu, J.; Gao, P.; Xue, J.; Li, J. Metal organic framework-derived cobalt dicarboxylate as a high-capacity anode material for lithium-ion Batteries. Energy Technol. (Weinheim), 2017, 5, 637-642.
[http://dx.doi.org/10.1002/ente.201600424]
[52]
Ye, H.; Jiang, F.; Li, H.; Xu, Z.; Yin, J.; Zhu, H. Facile synthesis of conjugated polymeric schiff base as negative electrodes for lithium ion batteries. Electrochim. Acta, 2017, 253, 319-323.
[http://dx.doi.org/10.1016/j.electacta.2017.09.062]
[53]
Robitaille, A.; Perea, A.; Bélanger, D.; Leclerc, M. Poly (5-alkyl-thieno [3, 4-c] pyrrole-4, 6-dione): a study of π-conjugated redox polymers as anode materials in lithium-ion batteries. J. Mater. Chem. A Mater. Energy Sustain., 2017, 5, 18088-18094.
[http://dx.doi.org/10.1039/C7TA03786D]
[54]
Yang, H.; Liu, S.; Cao, L.; Jiang, S.; Hou, H. Superlithiation of non-conductive polyimide toward high-performance lithium-ion batteries. J. Mater. Chem. A Mater. Energy Sustain., 2018, 6, 21216-21224.
[http://dx.doi.org/10.1039/C8TA05109G]
[55]
Lakraychi, A.E.; Dolhem, F.; Djedaïni-Pilard, F.; Becuwe, M. Substituent effect on redox potential of terephthalate-based electrode materials for lithium batteries. Electrochem. Commun., 2018, 93, 71-75.
[http://dx.doi.org/10.1016/j.elecom.2018.06.009]
[56]
Wang, L.; Zou, J.; Chen, S.; Yang, J.; Qing, F.; Gao, P.; Li, J. Zinc terephthalates ZnC8H4O4 as anodes for lithium ion batteries. Electrochim. Acta, 2017, 235, 304-310.
[http://dx.doi.org/10.1016/j.electacta.2017.03.095]
[57]
Liang, Y.; Jing, Y.; Gheytani, S.; Lee, K.Y.; Liu, P.; Facchetti, A.; Yao, Y. Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat. Mater., 2017, 16(8), 841-848.
[http://dx.doi.org/10.1038/nmat4919] [PMID: 28628121]
[58]
Wu, J.; Rui, X.; Wang, C.; Pei, W.; Lau, R.; Yan, Q.; Zhang, Q. Nanostructured conjugated ladder polymers for stable and fast lithium storage anodes with high-capacity. Adv. Energy Mater., 2015, 5(9) 402189
[http://dx.doi.org/10.1002/aenm.201402189]
[59]
Xue, L.; Yang, Y.; Zhang, Z.G.; Zhang, J.; Gao, L.; Bin, H.; Yang, Y.; Li, Y. Naphthalenediimide-alt-fused thiophene D–A copolymer for the application as acceptor in all-polymer solar cells. Chem. Asian J., 2016, 11(19), 2785-2791.
[http://dx.doi.org/10.1002/asia.201600450] [PMID: 27253368]
[60]
He, Y.; Li, X.; Liu, H.; Meng, H.; Wang, G.; Cui, B.; Wang, J.; Li, Y. A new n-type polymer based on N, N′-dialkoxynaphthalenediimide (NDIO) for organic thin-film transistors and all-polymer solar cells. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2018, 6, 1349-1352.
[http://dx.doi.org/10.1039/C7TC05145J]
[61]
Robitaille, A.; Jenekhe, S.; Leclerc, M. Poly (naphthalene diimide-alt-bithiophene) prepared by direct (hetero) arylation polymerization for efficient all-polymer solar cells. Chem. Mater., 2018, 30, 5353-5361.
[http://dx.doi.org/10.1021/acs.chemmater.8b02160]
[62]
Feng, G.; Li, J.; Colberts, F.J.M.; Li, M.; Zhang, J.; Yang, F.; Jin, Y.; Zhang, F.; Janssen, R.A.J.; Li, C.; Li, W. “Double-cable” conjugated polymers with linear backbone toward high quantum efficiencies in single-component polymer solar cells. J. Am. Chem. Soc., 2017, 139(51), 18647-18656.
[http://dx.doi.org/10.1021/jacs.7b10499] [PMID: 29199422]
[63]
Yang, F.; Li, J.; Li, C.; Li, W. Improving electron transport in a double-cable conjugated polymer via parallel perylenetriimide design. Macromolecules, 2019, 52, 3689-3696.
[http://dx.doi.org/10.1021/acs.macromol.9b00495]
[64]
Liu, X.; Zhang, C.; Duan, C.; Li, M.; Hu, Z.; Wang, J.; Liu, F.; Li, N.; Brabec, C.J.; Janssen, R.A.J.; Bazan, G.C.; Huang, F.; Cao, Y. Morphology optimization via side chain engineering enables all-polymer solar cells with excellent fill factor and stability. J. Am. Chem. Soc., 2018, 140(28), 8934-8943.
[http://dx.doi.org/10.1021/jacs.8b05038] [PMID: 29944354]
[65]
Zhou, S.; Feng, G.; Xia, D.; Li, C.; Wu, Y.; Li, W. Star-shaped electron acceptor based on naphthalenediimide-porphyrin for non-fullerene organic solar cells. Wuli Huaxue Xuebao, 2018, 34, 344-347.
[66]
Gupta, A.; Hangarge, R.; Wang, X.; Alford, B.; Chellapan, V.; Jones, L.; Rananaware, A.; Bilic, A.; Sonar, P.; Bhosale, S. Crowning of dibenzosilole with a naphthalenediimide functional group to prepare an electron acceptor for organic solar cells. Dyes Pigments, 2015, 120, 314-321.
[http://dx.doi.org/10.1016/j.dyepig.2015.04.033]
[67]
Srivani, D.; Gupta, A.; Bhosale, S.; Ohkubo, K.; Bhosale, R.; Fukuzumi, S.; Bilic, A.; Jones, L.; Bhosale, S. A triphenylamine-naphthalenediimide-fullerene triad: synthesis, photoinduced charge separation and solution-processable bulk heterojunction solar cells. Asian J. Org. Chem., 2018, 7, 220-226.
[http://dx.doi.org/10.1002/ajoc.201700557]
[68]
Patil, H.; Gupta, A.; Bilic, A.; Bhosale, S.; Bhosale, S. A solution-processable electron acceptor based on diketopyrrolopyrrole and naphthalenediimide motifs for organic solar cells. Tetra. Letters., 2014, 55, 4430-4432.
[69]
Li, Z.; Feng, K.; Liu, J.; Mei, J.; Li, Y.; Peng, Q. Large band-gap copolymers based on a 1,2,5,6-naphthalenediimide unit for polymer solar cells with high open circuit voltages and power conversion efficiencies. J. Mater. Chem. A Mater. Energy Sustain., 2016, 4, 7372-7381.
[http://dx.doi.org/10.1039/C6TA01766E]
[70]
Bobe, S.; Gupta, A.; Rananaware, A.; Bilic, A.; Xiang, W.; Li, J.; Bhosale, S.; Bhosale, S.; Evans, R. Insertion of a naphthalenediimide unit in a metal-free donor-acceptor organic sensitizer for efficiency enhancement of a dye-sensitized solar cell. Dyes Pigments, 2016, 134, 83-90.
[http://dx.doi.org/10.1016/j.dyepig.2016.06.038]
[71]
Kim, J.; Park, J.; Lee, W.; Moon, J.; Kim, J.; Hwang, D.; Kang, I. Synthesis and characterization of highly conjugated side-group-substituted benzo[1,2-b:4,5-b′]dithiophene-based copolymer for use in organic solar cells. Polym. Chem., 2018, 56, 653-660.
[http://dx.doi.org/10.1002/pola.28941]
[72]
Song, C.; Li, X.; Wang, Y.; Fu, S.; Wan, L.; Liu, S.; Zhang, W.; Song, W.; Fang, J. Sulfonyl-based non-fullerene electron acceptor-assisted grain boundary passivation for efficient and stable perovskite solar cells. J. Mater. Chem. A Mater. Energy Sustain., 2019, 7, 19881-19888.
[http://dx.doi.org/10.1039/C9TA06439G]
[73]
Babu, B.H.; Lyu, C.; Yu, C.; Wen, Z.; Li, F.; Hao, X.T. Role of central metal ions in 8-hydroxyquinoline-doped ZnO interfacial layers for improving the performance of polymer solar cells. Adv. Mater. Interfaces, 2018, 51801172
[http://dx.doi.org/10.1002/admi.201801172]
[74]
Xu, X.; Yang, L.; Song, D.; Zhao, J.; Li, Z.; Xu, Z.; Zhang, W.F.; Huang, W.; Zhao, S. A novel alcohol-soluble squaraine dye as an interfacial layer for efficient polymer solar cells. Org. Electron., 2019, 69, 241-247.
[http://dx.doi.org/10.1016/j.orgel.2019.03.041]
[75]
Lyu, C.K.; Zheng, F.; Babu, B.H.; Niu, M.S.; Feng, L.; Yang, J.L.; Qin, W.; Hao, X.T. Functionalized graphene oxide enables a high-performance bulk heterojunction organic solar cell with a thick active layer. J. Phys. Chem. Lett., 2018, 9(21), 6238-6248.
[http://dx.doi.org/10.1021/acs.jpclett.8b02701] [PMID: 30240225]
[76]
Wang, S.; Li, Z.; Xu, X.; Zhang, G.; Li, Y.; Peng, Q. Amino-functionalized graphene quantum dots as cathode interlayer for efficient organic solar cells: quantum dot size on interfacial modification ability and photovoltaic performance. Adv. Mater. Interfaces, 2019, 6(3) 1801480
[http://dx.doi.org/10.1002/admi.201801480]
[77]
Caballero-Quintana, I.; Maldonado, J.L.; Meneses-Nava, M.A.; Barbosa-García, O.; Valenzuela-Benavides, J.; Bousseksou, A. Semiconducting polymer thin films used in organic solar cells: a scanning tunneling microscopy study. Adv. Electron. Mater., 2019, 5(2) 1800499
[78]
Aryal, U.K.; Arivunithi, V.M.; Reddy, S.S.; Kim, J.; Gal, Y.S.; Jin, S.H. Efficient dual cathode interfacial layer for high performance organic and perovskite solar cells. Org. Electron., 2018, 63, 222-230.
[http://dx.doi.org/10.1016/j.orgel.2018.09.034]
[79]
Chander, N.; Jayaraman, E.; Rawat, M.; Bagui, A.; Iyer, S.S.K. Stability and reliability of PTB7: PC71BM and PTB7: PC61BM inverted organic solar cells: a comparative study. IEEE J. Photovolt, 2018, 9, 183-193.
[http://dx.doi.org/10.1109/JPHOTOV.2018.2874952]
[80]
Chen, X.; Zhang, L.; Xiao, L.; Gao, K.; Peng, X.; Cao, Y. Conjugated ionic porphyrins as the cathode interlayer materials in organic solar cells. Org. Electron., 2018, 62, 107-113.
[http://dx.doi.org/10.1016/j.orgel.2018.07.021]
[81]
Xu, R.; Sun, X.; Li, C.; Huang, L.; Li, Z.; Cai, H.; Li, J.; Zhang, Y.F.; Ni, J.; Zhang, J. Correlating annealing temperature of ZnO nanoparticle electron transport layer with performance of inverted polymer solar cells. Polym. Bull., 2018, 75, 4397-4408.
[http://dx.doi.org/10.1007/s00289-018-2279-0]
[82]
Huang, C.; Yu, H.; Chen, J.; Zhang, J.; Wu, Z.; Hou, C. Improved performance of polymer solar cells by doping with Bi2O2S nanocrystals. Sol. Energy Mater. Sol. Cells, 2019, 200 110030
[http://dx.doi.org/10.1016/j.solmat.2019.110030]
[83]
Ma, Y.; Zhang, H.; Zhang, Y.; Hu, R.; Jiang, M.; Zhang, R.; Lv, H.; Tian, J.J.; Chu, L.; Zhang, J.; Xue, Q.F.; Yip, H.L.; Xia, R.D.; Li, X.A.; Huang, W. Enhancing the performance of inverted perovskite solar cells via grain boundary passivation with carbon quantum dots. ACS Appl. Mater. Inter., 2018, 11, 3044-3052.
[http://dx.doi.org/10.1021/acsami.8b18867]
[84]
Yang, J.; Liu, C.; Cai, C.; Hu, X.; Huang, Z.; Duan, X.; Meng, X.; Yuan, Z.; Tan, L.; Chen, Y. High-performance perovskite solar cells with excellent humidity and thermo-stability via fluorinated perylenediimide. Adv. Energy Mater., 2019, 9 1900198
[http://dx.doi.org/10.1002/aenm.201900198]
[85]
Ramírez-Como, M.; Balderrama, V.S.; Sacramento, A.; Marsal, L.F.; Lastra, G.; Estrada, M. Fabrication and characterization of inverted organic PTB7: PC70BM solar cells using Hf-In-ZnO as electron transport layer. Sol. Energy, 2019, 181, 386-395.
[http://dx.doi.org/10.1016/j.solener.2019.02.015]
[86]
Polino, G.; Dell’Elce, S.; Liscio, A.; La Notte, L.; Reale, A.; Cardone, G.; Carlo, A.D.; Brunetti, F. ITO based fully-spray coated inverted solar cells with non-toxic solvents: The role of buffer layers interface on low band gap photoactive layer performance. Energy Technol. (Weinheim), 2018, 7(5) 1800627
[87]
Yi, X.; Gautam, B.; Constantinou, I.; Cheng, Y.; Peng, Z.; Klump, E.; Ba, X.; Ho, C.; Dong, C.; Marder, S.; Reynolds, J.R.; Tsang, S.W.; Reynolds, J.R. Impact of nonfullerene molecular architecture on charge generation, transport, and morphology in PTB7-Th-based organic solar cells. Adv. Funct. Mater., 2018, 28(32) 1802702
[http://dx.doi.org/10.1002/adfm.201802702]
[88]
Khanmohammadi, K.; Sohrabi, B.; Meymian, M.Z. Effect of electron-donating and-withdrawing substitutions in naphthoquinone sensitizers: the structure engineering of dyes for DSSCs. J. Mol. Struct., 2018, 1167, 274-279.
[http://dx.doi.org/10.1016/j.molstruc.2018.05.014]
[89]
Geng, S.Z.; Yang, W.T.; Gao, J.; Li, S.X.; Shi, M.M.; Lau, T.K.; Lu, X.; Li, C.; Chen, H.Z. Non-fullerene acceptors with a Thieno [3, 4-c] Pyrrole-4, 6-Dione (TPD) core for efficient organic solar cells. Chin. J. Polym. Sci., 2019, 37, 1005-1014.
[http://dx.doi.org/10.1007/s10118-019-2309-x]
[90]
Hu, K.H.; Wang, Z.K.; Meng, L.; Wang, K.L.; Zhang, Y.; Liao, L.S. Organic bulk-heterojunction injected perovskite films for highly efficient solar cells. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2019, 7, 6391-6397.
[http://dx.doi.org/10.1039/C9TC01058K]
[91]
Peng, J.; Khan, J.I.; Liu, W.; Ugur, E.; Duong, T.; Wu, Y.; Shen, H.; Wang, K.; Aydin, E.; Yang, X.; Wan, Y.; Weber, K.J.; Catchpole, K.R.; Laquai, F.; Wolf, S.D.; White, T.P. A universal double-side passivation for high open-circuit voltage in perovskite solar cells: role of carbonyl groups in Poly (methyl methacrylate). Adv. Energy Mater., 2018, 8 1801208
[http://dx.doi.org/10.1002/aenm.201801208]
[92]
Liu, X.C.; Yin, Q.W.; Hu, Z.C.; Wang, Z.F.; Huang, F.; Cao, Y. Perylene diimide based isomeric conjugated polymers as efficient electron acceptors for all-polymer solar cells. Chin. J. Polym. Sci., 2019, 37, 18-27.
[http://dx.doi.org/10.1007/s10118-019-2188-1]
[93]
Zou, K.; Gao, P.; Ling, X.; Song, B.; Ding, L.; Sun, B.; Fan, J. Phenanthrenone-based hole transport material for efficient dopant-free perovskite solar cells. Org. Electron., 2019, 65, 135-140.
[http://dx.doi.org/10.1016/j.orgel.2018.11.015]
[94]
Ziming, C.; Meiyue, L.; Zhenchao, L.; Tingting, S.; Yongchao, Y.; Hin-Lap, Y.; Yong, C. Stable Sn/Pb-Based perovskile solar cells with a coherent 2D/3D interface. iScience, 2018, 9, 337-346.
[95]
Shi, Y.; Tang, Y.; Yang, K.; Qin, M.; Wang, Y.; Sun, H.; Su, M.; Lu, X.; Zhou, M.; Guo, X. Thiazolothienyl imide-based wide bandgap copolymers for efficient polymer solar cells. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2019, 7, 11142-11151.
[http://dx.doi.org/10.1039/C9TC03301G]
[96]
Rana, P.J.S.; Gunasekaran, R.K.; Park, S.H.; Tamilavan, V.; Karuppanan, S.; Kim, H.J.; Prabakar, K. Open atmosphere-processed stable perovskite solar cells using molecular engineered, dopant-free, highly hydrophobic polymeric hole-transporting materials: influence of Thiophene and alkyl chain on power conversion. Efficiency. J. Phys. Chem. C, 2019, 123, 8560-8568.
[http://dx.doi.org/10.1021/acs.jpcc.8b11898]
[97]
Shamjid, P.; Abhijith, T.; Vivek, P.; Joel, C.S.; Reddy, V.S. Plasmonic effects of Ag nanoparticles for absorption enhancement in polymer solar cells with MoO3 passivation layer. Physica B, 2019, 560, 174-184.
[http://dx.doi.org/10.1016/j.physb.2019.01.052]
[98]
Liu, D.; Fan, P.; Zhang, D.; Zhang, X.; Yu, J. Förster resonance energy transfer and improved charge mobility for high performance and low-cost ternary polymer solar cells. Sol. Energy, 2019, 189, 186-193.
[http://dx.doi.org/10.1016/j.solener.2019.07.060]
[99]
Tan, L.; Wang, Y.; Zhang, J.; Xiao, S.; Zhou, H.; Li, Y.; Chen, Y.; Li, Y. Highly efficient flexible polymer solar cells with robust mechanical stability. Adv. Sci. (Weinh.), 2019, 6(7) 1801180
[http://dx.doi.org/10.1002/advs.201801180] [PMID: 30989017]
[100]
Li, W.; Hendriks, K.H.; Wienk, M.M.; Janssen, R.A.J. Diketopyrrolopyrrole polymers for organic solar cells. Acc. Chem. Res., 2016, 49(1), 78-85.
[http://dx.doi.org/10.1021/acs.accounts.5b00334] [PMID: 26693798]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy