Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Improved Production of Two Anti-Candida Lipopeptide Homologues Co- Produced by the Wild-Type Bacillus subtilis RLID 12.1 under Optimized Conditions

Author(s): Ramya Ramchandran, Swetha Ramesh, Anviksha A , RamLal Thakur, Arunaloke Chakrabarti and Utpal Roy*

Volume 21, Issue 5, 2020

Page: [438 - 450] Pages: 13

DOI: 10.2174/1389201020666191205115008

Price: $65

Abstract

Background: Antifungal cyclic lipopeptides, bioactive metabolites produced by many species of the genus Bacillus, are promising alternatives to synthetic fungicides and antibiotics for the biocontrol of human pathogenic fungi. In a previous study, the co- production of five antifungal lipopeptides homologues (designated as AF1, AF2, AF3, AF4 and AF5) by the producer strain Bacillus subtilis RLID 12.1 using unoptimized medium was reported; though the two homologues AF3 and AF5 differed by 14 Da and in fatty acid chain length were found effective in antifungal action, the production/ yield rate of these two lipopeptides determined by High-Performance Liquid Chromatography was less in the unoptimized media.

Methods: In this study, the production/yield enhancement of the two compounds AF3 and AF5 was specifically targeted. Following the statistical optimization (Plackett-Burman and Box-Behnken designs) of media formulation, temperature and growth conditions, the production of AF3 and AF5 was improved by about 25.8- and 7.4-folds, respectively under static conditions.

Results: To boost the production of these two homologous lipopeptides in the optimized media, heat-inactivated Candida albicans cells were used as a supplement resulting in 34- and 14-fold increase of AF3 and AF5, respectively. Four clinical Candida auris isolates had AF3 and AF5 MICs (100 % inhibition) ranging between 4 and 16 μg/ml indicating the lipopeptide’s clinical potential. To determine the in vitro pharmacodynamic potential of AF3 and AF5, time-kill assays were conducted which showed that AF3 (at 4X and 8X concentrations) at 48h exhibited mean log reductions of 2.31 and 3.14 CFU/ml of C. albicans SC 5314, respectively whereas AF5 at 8X concentration showed a mean log reduction of 2.14 CFU/ml.

Conclusion: With the increasing threat of multidrug-resistant yeasts and fungi, these antifungal lipopeptides produced by optimized method promise to aid in the development of novel antifungal that targets disease-causing fungi with improved efficacy.

Keywords: Antifungal lipopeptide, ANOVA, B. subtilis, Box-Behnken design, Plackett-Burman design, production, time-kill assay.

« Previous
Graphical Abstract
[1]
Chakrabarti, A.; Singh, R. The emerging epidemiology of mould infections in developing countries. Curr. Opin. Infect. Dis., 2011, 24(6), 521-526.
[http://dx.doi.org/10.1097/QCO.0b013e32834ab21e] [PMID: 21799406]
[2]
Nobile, C.J.; Johnson, A.D. Candida albicans biofilms and human disease. Annu. Rev. Microbiol., 2015, 69, 71-92.
[http://dx.doi.org/10.1146/annurev-micro-091014-104330] [PMID: 26488273]
[3]
Chandra, J.; Kuhn, D.M.; Mukherjee, P.K.; Hoyer, L.L.; McCormick, T.; Ghannoum, M.A. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J. Bacteriol., 2001, 183(18), 5385-5394.
[http://dx.doi.org/10.1128/JB.183.18.5385-5394.2001] [PMID: 11514524]
[4]
Chakrabarti, A.; Sood, P.; Rudramurthy, S.M.; Chen, S.; Kaur, H.; Capoor, M.; Chhina, D.; Rao, R.; Eshwara, V.K.; Xess, I.; Kindo, A.J.; Umabala, P.; Savio, J.; Patel, A.; Ray, U.; Mohan, S.; Iyer, R.; Chander, J.; Arora, A.; Sardana, R.; Roy, I.; Appalaraju, B.; Sharma, A.; Shetty, A.; Khanna, N.; Marak, R.; Biswas, S.; Das, S.; Harish, B.N.; Joshi, S.; Mendiratta, D. Incidence, characteristics and outcome of ICU-acquired candidemia in India. Intensive Care Med., 2015, 41(2), 285-295.
[http://dx.doi.org/10.1007/s00134-014-3603-2] [PMID: 25510301]
[5]
Chowdhary, A.; Anil Kumar, V.; Sharma, C.; Prakash, A.; Agarwal, K.; Babu, R.; Dinesh, K.R.; Karim, S.; Singh, S.K.; Hagen, F.; Meis, J.F. Multidrug-resistant endemic clonal strain of Candida auris in India. Eur. J. Clin. Microbiol. Infect. Dis., 2014, 33(6), 919-926.
[http://dx.doi.org/10.1007/s10096-013-2027-1] [PMID: 24357342]
[6]
Calandra, T.; Roberts, J.A.; Antonelli, M.; Bassetti, M.; Vincent, J.L. Diagnosis and management of invasive candidiasis in the ICU: an updated approach to an old enemy. Crit. Care, 2016, 20(1), 125.
[http://dx.doi.org/10.1186/s13054-016-1313-6]
[7]
Stein, T. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol., 2005, 56(4), 845-857.
[http://dx.doi.org/10.1111/j.1365-2958.2005.04587.x] [PMID: 15853875]
[8]
Gudiña, E.J.; Rangarajan, V.; Sen, R.; Rodrigues, L.R. Potential therapeutic applications of biosurfactants. Trends Pharmacol. Sci., 2013, 34(12), 667-675.
[http://dx.doi.org/10.1016/j.tips.2013.10.002] [PMID: 24182625]
[9]
Sandrin, C.; Peypoux, F.; Michel, G. Coproduction of surfactin and iturin A, lipopeptides with surfactant and antifungal properties, by Bacillus subtilis. Biotechnol. Appl. Biochem., 1990, 12(4), 370-375.
[PMID: 2119191]
[10]
Ahimou, F.; Jacques, P.; Deleu, M. Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity. Enzyme Microb. Technol., 2000, 27(10), 749-754.
[http://dx.doi.org/10.1016/S0141-0229(00)00295-7] [PMID: 11118581]
[11]
Ohno, A.; Ano, T.; Shoda, M. Effect of temperature on production of lipopeptides 603 antibiotics, iturin an and surfactin by dual producer, B. subtilis RB14, in solid state fermentation. J. Ferment. Bioeng., 1995, 80, 517-519.
[http://dx.doi.org/10.1016/0922-338X(96)80930-5]
[12]
Bland, J.M. The first synthesis of a member of the iturin family, the antifungal cyclic lipopeptide, iturin-A2. J. Org. Chem., 1996, 61, 5663-5664.
[http://dx.doi.org/10.1021/jo960452n]
[13]
Pathak, K.V. Purification and characterization of antifungal compounds produced by banyan Endophytic bacilli; PhD Thesis, Sardar Patel University Vallabh: India, 2011.
[14]
Rangarajan, V.; Clarke, K.G. Process development and intensification for enhanced production of Bacillus lipopeptides. Biotechnol. Genet. Eng. Rev., 2015, 31(1-2), 46-68.
[http://dx.doi.org/10.1080/02648725.2016.1166335] [PMID: 27136722]
[15]
Ramachandran, R.; Shrivastava, M.; Narayanan, N.N.; Thakur, R.L.; Chakrabarti, A.; Roy, U. Evaluation of antifungal efficacy of three new cyclic lipopeptides of the class Bacillus subtilis RLID 12.1. Antimicrob. Agents Chemother., 2018a, 62(1), e01457-e17.
[16]
Ramachandran, R.; Ramesh, S.; Ramkumar, S.; Chakrabarti, A.; Roy, U. Calcium alginate bead-mediated enhancement of the selective recovery of a lead novel antifungal bacillomycin variant. Appl. Biochem. Biotechnol., 2018 b, 186(4), 917-936.
[http://dx.doi.org/10.1007/s12010-018-2778-3] [PMID: 29797296]
[17]
Bie, X.; Lu, Z.; Lu, F.; Zeng, X. Screening the main factors affecting extraction of the antimicrobial substance from Bacillus sp. fmbJ using the Plackett-Burman method. World J. Microbiol. Biotechnol., 2005, 21(6), 925-928.
[http://dx.doi.org/10.1007/s11274-004-6722-z]
[18]
Qu, Y.; Ma, Q.; Zhang, X.; Zhou, H.; Li, X.; Zhou, J. Optimization of indigo production by a newly isolated Pseudomonas sp. QM. J. Basic Microbiol., 2012, 52, 687-694.
[19]
Wang, Y.; Fang, X.; An, F.; Wang, G.; Zhang, X. Improvement of antibiotic activity of Xenorhabdus bovienii by medium optimization using response surface methodology. Microb. Cell Fact., 2011, 10, 98.
[http://dx.doi.org/10.1186/1475-2859-10-98] [PMID: 22082189]
[20]
Joshi, S.; Yadav, S.; Desai, A.J. Application of response surface methodology to evaluate the optimum components for the enhanced production of lichenysin by Bacillus licheniformis R2. Biochem. Eng. J., 2008, 41, 122-127.
[http://dx.doi.org/10.1016/j.bej.2008.04.005]
[21]
Box, G.E.P. Multi-factor designs of first order. Biometrika, 1952, 39, 49-57.
[http://dx.doi.org/10.1093/biomet/39.1-2.49]
[22]
Gu, X.B.; Zheng, Z.M.; Yu, H.Q.; Wang, J.; Liang, F.; Liu, R.L. Optimization of medium constituents for a novel lipopeptide production by Bacillus subtilis MO-01 by a response surface method. Process Biochem., 2005, 40, 3196-3201.
[http://dx.doi.org/10.1016/j.procbio.2005.02.011]
[23]
Mhatre, E.; Troszok, A.; Gallegos-Monterrosa, R.; Lindstädt, S.; Hölscher, T.; Kuipers, O.P.; Kovács, Á.T. The impact of manganese on biofilm development of Bacillus subtilis. Microbiology, 2016, 162, 1468-1478.
[24]
Eisenstadt, E.; Fisher, S.; Der, C.L.; Silver, S. Manganese transport in Bacillus subtilis W23 during growth and sporulation. J. Bacteriol., 1973, 113(3), 1363-1372.
[PMID: 4632400]
[25]
Leães, F.L.; Velho, R.V.; Caldas, D.G.; Ritter, A.C.; Tsai, S.M.; Brandelli, A. Expression of essential genes for biosynthesis of antimicrobial peptides of Bacillus is modulated by inactivated cells of target microorganisms. Res. Microbiol., 2016, 167(2), 83-89.
[http://dx.doi.org/10.1016/j.resmic.2015.10.005] [PMID: 26577655]
[26]
Clinical and Laboratory Standards Institute. Reference method for broth dilution antifungal susceptibility testing of yeasts, 3rd; CLSI document M27-A3; Clinical and Laboratory Standards Institute: Wayne, PA, 2008.
[27]
Clancy, C.J.; Huang, H.; Cheng, S.; Derendorf, H.; Nguyen, M.H. Characterizing the effects of caspofungin on Candida albicans, Candida parapsilosis, and Candida glabrata isolates by simultaneous time-kill and postantifungal-effect experiments. Antimicrob. Agents Chemother., 2006, 50, 2569-2572.
[28]
Klepser, M.E.; Ernst, E.J.; Lewis, R.E.; Ernst, M.E.; Pfaller, M.A. Influence of test conditions on antifungal time-kill curve results: proposal for standardized methods. Antimicrob. Agents Chemother., 1998, 42(5), 1207-1212.
[http://dx.doi.org/10.1128/AAC.42.5.1207] [PMID: 9593151]
[29]
Kumar, A.; Johri, B.N. Antimicrobial lipopeptides of bacillus: Natural weapons for biocontrol of plant pathogens. In: Microorganisms in Sustainable Agriculture and Biotechnology; Satyanarayana, T.; Kumar, A.; Johri, B.N., Eds.; Springer: Netherlands, 2012; pp. 90-111.
[http://dx.doi.org/10.1007/978-94-007-2214-9_6]
[30]
Chollet-Imbert, M.; Gancel, F.; Slomianny, C.; Jacques, P. Differentiated pellicle organization and lipopeptide production in standing culture of Bacillus subtilis strains. Arch. Microbiol., 2009, 191(1), 63-71.
[http://dx.doi.org/10.1007/s00203-008-0429-8] [PMID: 18795262]
[31]
Davis, D.A.; Lynch, H.C.; Varley, J. The Production of surfactin in batch culture by Bacillus subtilis ATCC 21332 is strongly influenced by the conditions of nitrogen metabolism. Enzyme Microb. Technol., 1999, 25, 322-329.
[http://dx.doi.org/10.1016/S0141-0229(99)00048-4]
[32]
Pryor, S.W.; Gibson, D.M.; Hay, A.G.; Gossett, J.M.; Walker, L.P. Optimization of spore and antifungal lipopeptide production during the solid-state fermentation of Bacillus subtilis. Appl. Biochem. Biotechnol., 2007, 143(1), 63-79.
[http://dx.doi.org/10.1007/s12010-007-0036-1] [PMID: 18025597]
[33]
Jacques, P.; Hbid, C.; Destain, J.; Razafindralambo, H.; Paquot, M.; Pauw, E. Thonart, 667 P. Optimization of biosurfactant lipopeptide production from Bacillus subtilis S499 by Plackett-burman design. Appl. Biochem. Biotechnol., 1999, 77, 223-233.
[http://dx.doi.org/10.1385/ABAB:77:1-3:223]
[34]
Heron, J.R. Some Observations on commercial malt extracts. J. Inst. Brew., 1966, 72, 452-457.
[http://dx.doi.org/10.1002/j.2050-0416.1966.tb02989.x]
[35]
Wokes, F.; Klatzkin, C. Protein in malted preparations. J. Pharm. Pharmacol., 1949, 1(12), 903-914.
[http://dx.doi.org/10.1111/j.2042-7158.1949.tb12510.x] [PMID: 15398568]
[36]
Mizumoto, S.; Shoda, M. Medium optimization of antifungal lipopeptide, iturin A, production by Bacillus subtilis in solid-state fermentation by response surface methodology. Appl. Microbiol. Biotechnol., 2007, 76(1), 101-108.
[http://dx.doi.org/10.1007/s00253-007-0994-9] [PMID: 17476498]
[37]
Medeot, D.B.; Bertorello-Cuenca, M.; Liaudat, J.P.; Alvarez, F.; Flores-Cáceres, M.L.; Jofré, E. Improvement of biomass and cyclic lipopeptides production in Bacillus amyloliquefaciens MEP 2 18 by modifying carbon and nitrogen sources and ratios of the culture media. Biol. Control, 2017, 115, 119-128.
[http://dx.doi.org/10.1016/j.biocontrol.2017.10.002]
[38]
Ohno, A.; Ano, T.; Shoda, M. Effect of temperature change and aeration on the production of the antifungal peptide antibiotic iturin by Bacillus subtilis NB22 in liquid cultivation. J. Ferment. Bioeng., 1993, 75, 463-465.
[http://dx.doi.org/10.1016/0922-338X(93)90098-S]
[39]
Mizumoto, S.; Hirai, M.; Shoda, M. Enhanced iturin A production by Bacillus subtilis and its effect on suppression of the plant pathogen Rhizoctonia solani. Microbiol. Biotechnol., 2007, 75, 1267-1274.
[40]
Zohora, U.S.; Rahman, M.S.; Khan, A.W.; Okanami, M.; Ano, T. Improvement of production of lipopeptide antibiotic iturin A using fish protein. J. Environ. Sci., 2013, 25, S2-S7.
[41]
Xu, Z.; Shao, J.; Li, B.; Yan, X.; Shen, Q.; Zhang, R. Contribution of bacillomycin D in Bacillus amyloliquefaciens SQR9 to antifungal activity and biofilm formation. Appl. Environ. Microbiol., 2013, 79(3), 808-815.
[http://dx.doi.org/10.1128/AEM.02645-12] [PMID: 23160135]
[42]
Miethke, M.; Klotz, O.; Linne, U.; May, J.J.; Beckering, C.L.; Marahiel, M.A. Ferri-bacillibactin uptake and hydrolysis in Bacillus subtilis. Mol. Microbiol., 2006, 61(6), 1413-1427.
[http://dx.doi.org/10.1111/j.1365-2958.2006.05321.x] [PMID: 16889643]
[43]
Shemesh, M.; Chai, Y.A combination of glycerol and manganese promotes biofilm formation in Bacillus subtilis via histidine kinase KinD signaling. J. Bacteriol., 2013, 195, 2747-2754.
[44]
Kavamura, V.N.; de Melo, I.S. Effects of different osmolarities on bacterial biofilm formation. Braz. J. Microbiol., 2014, 45(2), 627-631.
[http://dx.doi.org/10.1590/S1517-83822014000200034] [PMID: 25242950]
[45]
Huang, X.; Liu, J.N.; Wang, Y.; Liu, J.; Lu, L. The positive effects of Mn2+ on nitrogen use and surfactin production by Bacillus subtilis ATCC 21332. Biotechnol. Biotechnol. Equip., 2015, 29, 381-389.
[PMID: 26019656]
[46]
Luo, C.; Zhou, H.; Zou, J.; Wang, X.; Zhang, R.; Xiang, Y.; Chen, Z. Bacillomycin L and surfactin contribute synergistically to the phenotypic features of Bacillus subtilis 916 and the biocontrol of rice sheath blight induced by Rhizoctonia solani. Appl. Microbiol. Biotechnol., 2015, 99, 1897-1910.
[47]
Harwood, R.C.; Mouillon, J.M.; Pohl, S.; Arnau, J. Secondary metabolite production 708 and the safety of industrially important members of the Bacillus subtilis group. FEMS Microbiol. Rev., 2018, 42, 721-738.
[48]
Sarig, H.; Rotem, S.; Ziserman, L.; Danino, D.; Mor, A. Impact of self-assembly properties on antibacterial activity of short acyl-lysine oligomers. Antimicrob. Agents Chemother., 2008, 52(12), 4308-4314.
[49]
Bahar, A.A.; Ren, D. Antimicrobial peptides. Pharmaceuticals, (Basel), 2013, 6(12), 1543-1575.
[http://dx.doi.org/10.3390/ph6121543] [PMID: 24287494]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy