Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Mini-Review Article

Type 2 Diabetes Mellitus and Alzheimer's Disease: A Review of the Potential Links

Author(s): Majid Pakdin, Samaneh Toutounchian, Sina Namazi, Zahra Arabpour, Amirreza Pouladi, Sahar Afsahi, Mohadeseh Poudineh, Mohammad Mehdi Mousavi Nasab, Shirin Yaghoobpoor* and Niloofar Deravi*

Volume 18, Issue 8, 2022

Published on: 14 January, 2022

Article ID: e051121197760 Pages: 14

DOI: 10.2174/1573399818666211105122545

Price: $65

Abstract

Diabetes mellitus and Alzheimer’s disease are considered the most prevalent diseases in older ages worldwide. The main pathology of Alzheimer’s disease is highly related with accumulation of misfolded proteins that lead to neuronal dysfunction in the brain. On the other hand, diabetes mellitus is associated with alteration of insulin signaling, which could cause the reduction of glucose uptake, metabolic prohibition of energy consuming cells, as well as suppression of glucose to fat conversion in the liver. In spite of having seemingly different pathological features, both diseases share common underlying biological mechanisms. Besides, the epidemiological and environmental links between these two diseases should not be overlooked. In this study, we aim to review shared pathological mechanisms of Alzheimer’s disease and diabetes mellitus, including impaired glucose metabolism, increased Amyloid-Beta (Aβ) production, impaired lipid metabolism, mitochondrial dysfunction, increased inflammation and elevated oxidative stress. Furthermore, we discuss epidemiological association between these two diseases and also review animal investigations, which have evaluated the potential links between the two diseases.

Keywords: Alzheimer’s disease, diabetes mellitus, insulin, drugs, impaired metabolism, inflammation.

[1]
Olokoba AB, Obateru OA, Olokoba LB. Type 2 diabetes mellitus: A review of current trends. Oman Med J 2012; 27(4): 269-73.
[http://dx.doi.org/10.5001/omj.2012.68] [PMID: 23071876]
[2]
Khan MAB, Hashim MJ, King JK, Govender RD, Mustafa H, Al Kaabi J. Epidemiology of type 2 diabetes - global burden of disease and forecasted trends. J Epidemiol Glob Health 2020; 10(1): 107-11.
[http://dx.doi.org/10.2991/jegh.k.191028.001] [PMID: 32175717]
[3]
Moreira PI. Alzheimer’s disease and diabetes: An integrative view of the role of mitochondria, oxidative stress, and insulin. J Alzheimers Dis 2012; 30(s2)(Suppl. 2): S199-215.
[http://dx.doi.org/10.3233/JAD-2011-111127] [PMID: 22269163]
[4]
Alzheimer’s Association 2015 Alzheimer’s disease facts and figures. Alzheimers Dement 2015; 11(3): 332-84.
[http://dx.doi.org/10.1016/j.jalz.2015.02.003] [PMID: 25984581]
[5]
Wang S-H, Morris RG. Hippocampal-neocortical interactions in memory formation, consolidation, and reconsolidation. Annu Rev Psychol 2010; 61: 49-79, C1-C4.
[http://dx.doi.org/10.1146/annurev.psych.093008.100523] [PMID: 19575620]
[6]
D’Amelio M, Rossini PM. Brain excitability and connectivity of neuronal assemblies in Alzheimer’s disease: From animal models to human findings. Prog Neurobiol 2012; 99(1): 42-60.
[http://dx.doi.org/10.1016/j.pneurobio.2012.07.001] [PMID: 22789698]
[7]
Walsh DM, Selkoe DJ. Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron 2004; 44(1): 181-93.
[http://dx.doi.org/10.1016/j.neuron.2004.09.010] [PMID: 15450169]
[8]
Alves L, Correia ASA, Miguel R, Alegria P, Bugalho P. Alzheimer’s disease: A clinical practice-oriented review. Front Neurol 2012; 3: 63.
[http://dx.doi.org/10.3389/fneur.2012.00063] [PMID: 22529838]
[9]
Perl DP. Neuropathology of Alzheimer's disease. Mt Sinai J Med 2010; 77(1): 32-42.
[http://dx.doi.org/10.1002/msj.20157]
[10]
Hort J, Laczó J, Vyhnálek M, Bojar M, Bureš J, Vlček K. Spatial navigation deficit in amnestic mild cognitive impairment. Proc Natl Acad Sci USA 2007; 104(10): 4042-7.
[http://dx.doi.org/10.1073/pnas.0611314104] [PMID: 17360474]
[11]
Yamin G. NMDA receptor-dependent signaling pathways that underlie amyloid β-protein disruption of LTP in the hippocampus. J Neurosci Res 2009; 87(8): 1729-36.
[http://dx.doi.org/10.1002/jnr.21998] [PMID: 19170166]
[12]
Hsieh H, Boehm J, Sato C, et al. AMPAR removal underlies Abeta-induced synaptic depression and dendritic spine loss. Neuron 2006; 52(5): 831-43.
[http://dx.doi.org/10.1016/j.neuron.2006.10.035] [PMID: 17145504]
[13]
Hyman BT, Van Hoesen GW, Kromer LJ, Damasio AR. Perforant pathway changes and the memory impairment of Alzheimer’s disease. Ann Neurol 1986; 20(4): 472-81.
[http://dx.doi.org/10.1002/ana.410200406] [PMID: 3789663]
[14]
Hardy J, Revesz T. The spread of neurodegenerative disease. N Engl J Med 2012; 366(22): 2126-8.
[http://dx.doi.org/10.1056/NEJMcibr1202401] [PMID: 22646635]
[15]
Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 1992; 42(3 Pt 1): 631-9.
[http://dx.doi.org/10.1212/WNL.42.3.631] [PMID: 1549228]
[16]
Hof PR, Mobbs CV. Functional neurobiology of aging. 1st ed.. Cambridge: Academic Press 2001; pp. 1-960.
[17]
Selvarajah D, Wilkinson ID, Davies J, Gandhi R, Tesfaye S. Central nervous system involvement in diabetic neuropathy. Curr Diab Rep 2011; 11(4): 310-22.
[http://dx.doi.org/10.1007/s11892-011-0205-z] [PMID: 21667355]
[18]
Yagihashi S, Mizukami H, Sugimoto K. Mechanism of diabetic neuropathy: Where are we now and where to go? J Diabetes Investig 2011; 2(1): 18-32.
[http://dx.doi.org/10.1111/j.2040-1124.2010.00070.x] [PMID: 24843457]
[19]
Strachan MW, Deary IJ, Ewing FM, Frier BM. Is type II diabetes associated with an increased risk of cognitive dysfunction? A critical review of published studies. Diabetes Care 1997; 20(3): 438-45.
[http://dx.doi.org/10.2337/diacare.20.3.438] [PMID: 9051402]
[20]
Li Y, Zeng K-W, Wang X-M. Cerebral microangiopathy of diabetes. Zhongguo Zhongyao Zazhi 2017; 42(12): 2247-53.
[PMID: 28822176]
[21]
Harris JJ, Jolivet R, Attwell D. Synaptic energy use and supply. Neuron 2012; 75(5): 762-77.
[http://dx.doi.org/10.1016/j.neuron.2012.08.019] [PMID: 22958818]
[22]
Diehl T, Mullins R, Kapogiannis D. Insulin resistance in Alzheimer’s disease. Transl Res 2017; 183: 26-40.
[http://dx.doi.org/10.1016/j.trsl.2016.12.005] [PMID: 28034760]
[23]
Woods SC, Seeley RJ, Baskin DG, Schwartz MW. Insulin and the blood-brain barrier. Curr Pharm Des 2003; 9(10): 795-800.
[http://dx.doi.org/10.2174/1381612033455323] [PMID: 12678878]
[24]
Craft S, Peskind E, Schwartz MW, Schellenberg GD, Raskind M, Porte D Jr. Cerebrospinal fluid and plasma insulin levels in Alzheimer’s disease: Relationship to severity of dementia and apolipoprotein E genotype. Neurology 1998; 50(1): 164-8.
[http://dx.doi.org/10.1212/WNL.50.1.164] [PMID: 9443474]
[25]
Mahmoudi Z, Jensen MH, Johansen MD, et al. Accuracy evaluation of a new real-time continuous glucose monitoring algorithm in hypoglycemia. Diabetes Technol Ther 2014; 16(10): 667-78.
[http://dx.doi.org/10.1089/dia.2014.0043] [PMID: 24918271]
[26]
Handelsman Y, Mechanick JI, Blonde L, et al. American Association of Clinical Endocrinologists Medical Guidelines for Clinical Practice for developing a diabetes mellitus comprehensive care plan. Endocr Pract 2011; 17(Suppl. 2): 1-53.
[http://dx.doi.org/10.4158/EP.17.S2.1] [PMID: 21474420]
[27]
González-Reyes RE, Aliev G, Ávila-Rodrigues M, Barreto GE. Aliev G, Ávila-Rodrigues M, E Barreto G. Alterations in glucose metabolism on cognition: A possible link between diabetes and dementia. Curr Pharm Des 2016; 22(7): 812-8.
[http://dx.doi.org/10.2174/1381612822666151209152013] [PMID: 26648470]
[28]
Auer RN. Hypoglycemic brain damage. Acute Neuronal Injury 2018; 175-88.
[29]
Vinik AI, Nevoret M-L, Casellini C, Parson H. Diabetic neuropathy. Endocrinol Metabol Clin 2013; 42(4): 747-87.
[http://dx.doi.org/10.1016/j.ecl.2013.06.001] [PMID: 24286949]
[30]
Albers JW, Pop-Busui R. Diabetic neuropathy: mechanisms, emerging treatments, and subtypes. Curr Neurol Neurosci Rep 2014; 14(8): 473.
[http://dx.doi.org/10.1007/s11910-014-0473-5] [PMID: 24954624]
[31]
Jing L, He Q, Zhang J-Z, Li PA. Temporal profile of astrocytes and changes of oligodendrocyte-based myelin following middle cerebral artery occlusion in diabetic and non-diabetic rats. Int J Biol Sci 2013; 9(2): 190-9.
[http://dx.doi.org/10.7150/ijbs.5844] [PMID: 23459858]
[32]
Wang J, Li G, Wang Z, et al. High glucose-induced expression of inflammatory cytokines and reactive oxygen species in cultured astrocytes. Neuroscience 2012; 202: 58-68.
[http://dx.doi.org/10.1016/j.neuroscience.2011.11.062] [PMID: 22178606]
[33]
Kamal A, Priyamvada M, Anbazhagan SN, et al. Linking Alzheimer’s disease and type 2 diabetes mellitus via aberrant insulin signaling and inflammation. CNS Neurol Disord -Drug Targets 2014; 13(2): 338-46.
[http://dx.doi.org/10.2174/18715273113126660137]
[34]
Takeuchi M, Yamagishi S. Alternative routes for the formation of glyceraldehyde-derived AGEs (TAGE) in vivo. Med Hypotheses 2004; 63(3): 453-5.
[http://dx.doi.org/10.1016/j.mehy.2004.03.005] [PMID: 15288367]
[35]
Yamagishi S, Takeuchi M, Inagaki Y, Nakamura K, Imaizumi T. Role of Advanced Glycation End products (AGEs) and their receptor (RAGE) in the pathogenesis of diabetic microangiopathy. Int J Clin Pharmacol Res 2003; 23(4): 129-34.
[PMID: 15224502]
[36]
Takeuchi M, Yamagishi S. Possible involvement of Advanced Glycation End-products (AGEs) in the pathogenesis of Alzheimer’s disease. Curr Pharm Des 2008; 14(10): 973-8.
[http://dx.doi.org/10.2174/138161208784139693] [PMID: 18473848]
[37]
Convit A. Links between cognitive impairment in insulin resistance: An explanatory model. Neurobiol Aging 2005; 26(1)(Suppl. 1): 31-5.
[http://dx.doi.org/10.1016/j.neurobiolaging.2005.09.018] [PMID: 16246463]
[38]
Brüning JC, Gautam D, Burks DJ, et al. Role of brain insulin receptor in control of body weight and reproduction. Science 2000; 289(5487): 2122-5.
[http://dx.doi.org/10.1126/science.289.5487.2122] [PMID: 11000114]
[39]
Fisher TL, White MF. Signaling pathways: the benefits of good communication. Curr Biol 2004; 14(23): R1005-7.
[http://dx.doi.org/10.1016/j.cub.2004.11.024] [PMID: 15589136]
[40]
Vanhaesebroeck B, Leevers SJ, Ahmadi K, et al. Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem 2001; 70(1): 535-602.
[http://dx.doi.org/10.1146/annurev.biochem.70.1.535] [PMID: 11395417]
[41]
Shepherd PR, Withers DJ, Siddle K. Phosphoinositide 3-kinase: The key switch mechanism in insulin signalling. Biochem J 1998; 333(Pt 3): 471-90.
[http://dx.doi.org/10.1042/bj3330471] [PMID: 9677303]
[42]
Kandimalla R, Thirumala V, Reddy PH. Is Alzheimer’s disease a type 3 diabetes? A critical appraisal. Biochim Biophys Acta Mol Basis Dis 2017; 1863(5): 1078-89.
[http://dx.doi.org/10.1016/j.bbadis.2016.08.018] [PMID: 27567931]
[43]
Karoor V, Wang L, Wang HY, Malbon CC. Insulin stimulates sequestration of β-adrenergic receptors and enhanced association of β-adrenergic receptors with Grb2 via tyrosine 350. J Biol Chem 1998; 273(49): 33035-41.
[http://dx.doi.org/10.1074/jbc.273.49.33035] [PMID: 9830057]
[44]
de la Monte SM, Wands JR. Alzheimer’s disease is type 3 diabetes-evidence reviewed. J Diabetes Sci Technol 2008; 2(6): 1101-13.
[http://dx.doi.org/10.1177/193229680800200619] [PMID: 19885299]
[45]
Sun Y, Ma C, Sun H, Wang H, Peng W, Zhou Z. Metabolism: A Novel Shared link between diabetes mellitus and Alzheimer’s disease. J Diabetes Res 2020; 2020: 4981814.
[http://dx.doi.org/10.1155/2020/4981814]
[46]
Tumminia A, Vinciguerra F, Parisi M, Frittitta L. Type 2 diabetes mellitus and Alzheimer’s disease: Role of insulin signalling and therapeutic implications. Int J Mol Sci 2018; 19(11): 3306.
[http://dx.doi.org/10.3390/ijms19113306] [PMID: 30355995]
[47]
Zhao W-Q, Townsend M. Insulin resistance and amyloidogenesis as common molecular foundation for type 2 diabetes and Alzheimer’s disease. Biochim Biophys Acta 2009; 1792(5): 482-96.
[http://dx.doi.org/10.1016/j.bbadis.2008.10.014] [PMID: 19026743]
[48]
Rad SK, Arya A, Karimian H, et al. Mechanism involved in insulin resistance via accumulation of β-amyloid and neurofibrillary tangles: link between type 2 diabetes and Alzheimer’s disease. Drug Des Devel Ther 2018; 12: 3999-4021.
[http://dx.doi.org/10.2147/DDDT.S173970] [PMID: 30538427]
[49]
Baglietto-Vargas D, Shi J, Yaeger DM, Ager R, LaFerla FM. Diabetes and Alzheimer’s disease crosstalk. Neurosci Biobehav Rev 2016; 64: 272-87.
[http://dx.doi.org/10.1016/j.neubiorev.2016.03.005] [PMID: 26969101]
[50]
Avila J, León-Espinosa G, García E, García-Escudero V, Hernández F, DeFelipe J. Tau phosphorylation by GSK3 in different conditions. Int J Alzheimers Dis 2012; 2012: 578373.
[http://dx.doi.org/10.1155/2012/578373]
[51]
Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 1995; 378(6559): 785-9.
[http://dx.doi.org/10.1038/378785a0] [PMID: 8524413]
[52]
Schubert M, Gautam D, Surjo D, et al. Role for neuronal insulin resistance in neurodegenerative diseases. Proc Natl Acad Sci USA 2004; 101(9): 3100-5.
[http://dx.doi.org/10.1073/pnas.0308724101] [PMID: 14981233]
[53]
Ito F, Sono Y, Ito T. Measurement and clinical significance of lipid peroxidation as a biomarker of oxidative stress: Oxidative stress in diabetes, atherosclerosis, and chronic inflammation. Antioxidants 2019; 8(3): 72.
[http://dx.doi.org/10.3390/antiox8030072] [PMID: 30934586]
[54]
Anderson RE, Tan WK, Martin HS, Meyer FB. Effects of glucose and PaO2 modulation on cortical intracellular acidosis, NADH redox state, and infarction in the ischemic penumbra. Stroke 1999; 30(1): 160-70.
[http://dx.doi.org/10.1161/01.STR.30.1.160] [PMID: 9880405]
[55]
Blázquez E, Velázquez E, Hurtado-Carneiro V, Ruiz-Albusac JM. Insulin in the brain: Its pathophysiological implications for States related with central insulin resistance, type 2 diabetes and Alzheimer’s disease. Front Endocrinol (Lausanne) 2014; 5: 161.
[http://dx.doi.org/10.3389/fendo.2014.00161] [PMID: 25346723]
[56]
Sripetchwandee J, Chattipakorn N, Chattipakorn SC. Links between obesity-induced brain insulin resistance, brain mitochondrial dysfunction, and dementia. Front Endocrinol (Lausanne) 2018; 9: 496.
[http://dx.doi.org/10.3389/fendo.2018.00496] [PMID: 30233495]
[57]
de la Monte SM. Type 3 diabetes is sporadic Alzheimer׳s disease: Mini-review. Eur Neuropsychopharmacol 2014; 24(12): 1954-60.
[http://dx.doi.org/10.1016/j.euroneuro.2014.06.008] [PMID: 25088942]
[58]
Plum L, Schubert M, Brüning JC. The role of insulin receptor signaling in the brain. Trends Endocrinol Metab 2005; 16(2): 59-65.
[http://dx.doi.org/10.1016/j.tem.2005.01.008] [PMID: 15734146]
[59]
Farris W, Mansourian S, Chang Y, et al. Insulin-degrading enzyme regulates the levels of insulin, amyloid β-protein, and the β-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci USA 2003; 100(7): 4162-7.
[http://dx.doi.org/10.1073/pnas.0230450100] [PMID: 12634421]
[60]
Behl M, Zhang Y, Zheng W. Involvement of insulin-degrading enzyme in the clearance of beta-amyloid at the blood-CSF barrier: Consequences of lead exposure. Cerebrospinal Fluid Res 2009; 6(1): 11.
[http://dx.doi.org/10.1186/1743-8454-6-11] [PMID: 19747378]
[61]
Cook DG, Leverenz JB, McMillan PJ, et al. Reduced hippocampal insulin-degrading enzyme in late-onset Alzheimer’s disease is associated with the apolipoprotein E-ε4 allele. Am J Pathol 2003; 162(1): 313-9.
[http://dx.doi.org/10.1016/S0002-9440(10)63822-9] [PMID: 12507914]
[62]
Jo D-G, Arumugam TV, Woo H-N, et al. Evidence that γ-secretase mediates oxidative stress-induced β-secretase expression in Alzheimer’s disease. Neurobiol Aging 2010; 31(6): 917-25.
[http://dx.doi.org/10.1016/j.neurobiolaging.2008.07.003] [PMID: 18687504]
[63]
Oda A, Tamaoka A, Araki W. Oxidative stress up-regulates presenilin 1 in lipid rafts in neuronal cells. J Neurosci Res 2010; 88(5): 1137-45.
[PMID: 19885829]
[64]
Tamagno E, Guglielmotto M, Monteleone D, Tabaton M. Amyloid-β production: Major link between oxidative stress and BACE1. Neurotox Res 2012; 22(3): 208-19.
[http://dx.doi.org/10.1007/s12640-011-9283-6] [PMID: 22002808]
[65]
Biessels GJ, Nobili F, Teunissen CE, Simó R, Scheltens P. Understanding multifactorial brain changes in type 2 diabetes: A biomarker perspective. Lancet Neurol 2020; 19(8): 699-710.
[http://dx.doi.org/10.1016/S1474-4422(20)30139-3] [PMID: 32445622]
[66]
Wijesekara N, Ahrens R, Sabale M, et al. Amyloid-β and islet amyloid pathologies link Alzheimer’s disease and type 2 diabetes in a transgenic model. FASEB J 2017; 31(12): 5409-18.
[http://dx.doi.org/10.1096/fj.201700431R] [PMID: 28808140]
[67]
Yamada M, Kasagi F, Sasaki H, Masunari N, Mimori Y, Suzuki G. Association between dementia and midlife risk factors: The Radiation Effects Research Foundation Adult Health Study. J Am Geriatr Soc 2003; 51(3): 410-4.
[http://dx.doi.org/10.1046/j.1532-5415.2003.51117.x] [PMID: 12588587]
[68]
van Duinkerken E, Ryan CM. Diabetes mellitus in the young and the old: Effects on cognitive functioning across the life span. Neurobiol Dis 2020; 134: 104608.
[http://dx.doi.org/10.1016/j.nbd.2019.104608] [PMID: 31494283]
[69]
Biessels GJ, Staekenborg S, Brunner E, Brayne C, Scheltens P. Risk of dementia in diabetes mellitus: A systematic review. Lancet Neurol 2006; 5(1): 64-74.
[http://dx.doi.org/10.1016/S1474-4422(05)70284-2] [PMID: 16361024]
[70]
Magkos F, Yannakoulia M, Chan JL, Mantzoros CS. Management of the metabolic syndrome and type 2 diabetes through lifestyle modification. Annu Rev Nutr 2009; 29: 223-56.
[http://dx.doi.org/10.1146/annurev-nutr-080508-141200] [PMID: 19400751]
[71]
Fahy E, Subramaniam S, Murphy RC, et al. Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res 2009; 50(Suppl.): S9-S14.
[http://dx.doi.org/10.1194/jlr.R800095-JLR200] [PMID: 19098281]
[72]
He X, Huang Y, Li B, Gong C-X, Schuchman EH. Deregulation of sphingolipid metabolism in Alzheimer’s disease. Neurobiol Aging 2010; 31(3): 398-408.
[http://dx.doi.org/10.1016/j.neurobiolaging.2008.05.010] [PMID: 18547682]
[73]
Haus JM, Kashyap SR, Kasumov T, et al. Plasma ceramides are elevated in obese subjects with type 2 diabetes and correlate with the severity of insulin resistance. Diabetes 2009; 58(2): 337-43.
[http://dx.doi.org/10.2337/db08-1228] [PMID: 19008343]
[74]
Schubert KM, Scheid MP, Duronio V. Ceramide inhibits protein kinase B/Akt by promoting dephosphorylation of serine 473. J Biol Chem 2000; 275(18): 13330-5.
[http://dx.doi.org/10.1074/jbc.275.18.13330] [PMID: 10788440]
[75]
Huang X, Liu G, Guo J, Su Z. The PI3K/AKT pathway in obesity and type 2 diabetes. Int J Biol Sci 2018; 14(11): 1483-96.
[http://dx.doi.org/10.7150/ijbs.27173] [PMID: 30263000]
[76]
Pearce NJ, Arch JR, Clapham JC, et al. Development of glucose intolerance in male transgenic mice overexpressing human glycogen synthase kinase-3β on a muscle-specific promoter. Metabolism 2004; 53(10): 1322-30.
[http://dx.doi.org/10.1016/j.metabol.2004.05.008] [PMID: 15375789]
[77]
Hernández F, Gómez de Barreda E, Fuster-Matanzo A, Lucas JJ, Avila J. GSK3: A possible link between beta amyloid peptide and tau protein. Exp Neurol 2010; 223(2): 322-5.
[http://dx.doi.org/10.1016/j.expneurol.2009.09.011] [PMID: 19782073]
[78]
Braverman NE, Moser AB. Functions of plasmalogen lipids in health and disease. Biochim Biophys Acta Mol Basis Dis 2012; 1822(9): 1442-52.
[http://dx.doi.org/10.1016/j.bbadis.2012.05.008]
[79]
Brites P, Waterham HR, Wanders RJ. Functions and biosynthesis of plasmalogens in health and disease. Biochimica et Biophysica Acta (BBA)-. Molecular and Cell Biology of Lipids 2004; 1636(2-3): 219-31.
[http://dx.doi.org/10.1016/j.bbalip.2003.12.010]
[80]
Wood PL. Lipidomics of Alzheimer’s disease: Current status. Alzheimers Res Ther 2012; 4(1): 5.
[http://dx.doi.org/10.1186/alzrt103] [PMID: 22293144]
[81]
Graessler J, Schwudke D, Schwarz PE, Herzog R, Shevchenko A, Bornstein SR. Top-down lipidomics reveals ether lipid deficiency in blood plasma of hypertensive patients. PLoS One 2009; 4(7): e6261.
[http://dx.doi.org/10.1371/journal.pone.0006261] [PMID: 19603071]
[82]
Ginsberg L, Rafique S, Xuereb JH, Rapoport SI, Gershfeld NL. Disease and anatomic specificity of ethanolamine plasmalogen deficiency in Alzheimer’s disease brain. Brain Res 1995; 698(1-2): 223-6.
[http://dx.doi.org/10.1016/0006-8993(95)00931-F] [PMID: 8581486]
[83]
Han X, Holtzman DM, McKeel DW Jr. Plasmalogen deficiency in early Alzheimer’s disease subjects and in animal models: Molecular characterization using electrospray ionization mass spectrometry. J Neurochem 2001; 77(4): 1168-80.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00332.x] [PMID: 11359882]
[84]
Hossain MS, Ifuku M, Take S, Kawamura J, Miake K, Katafuchi T. Plasmalogens rescue neuronal cell death through an activation of AKT and ERK survival signaling. PLoS One 2013; 8(12): e83508.
[http://dx.doi.org/10.1371/journal.pone.0083508] [PMID: 24376709]
[85]
Ifuku M, Katafuchi T, Mawatari S, et al. Anti-inflammatory/anti-amyloidogenic effects of plasmalogens in lipopolysaccharide-induced neuroinflammation in adult mice. J Neuroinflammation 2012; 9(1): 197.
[http://dx.doi.org/10.1186/1742-2094-9-197] [PMID: 22889165]
[86]
Cardoso SM, Correia SC, Carvalho C, Moreira PI. Mitochondria in Alzheimer’s disease and diabetes-associated neurodegeneration: license to heal! In: Pharmacology of Mitochondria. Springer 2017; pp. 281-308.
[87]
Golpich M, Amini E, Mohamed Z, Azman Ali R, Mohamed Ibrahim N, Ahmadiani A. Mitochondrial dysfunction and biogenesis in neurodegenerative diseases: Pathogenesis and treatment. CNS Neurosci Ther 2017; 23(1): 5-22.
[http://dx.doi.org/10.1111/cns.12655] [PMID: 27873462]
[88]
Chornenkyy Y, Wang WX, Wei A, Nelson PT. Alzheimer’s disease and type 2 diabetes mellitus are distinct diseases with potential overlapping metabolic dysfunction upstream of observed cognitive decline. Brain Pathol 2019; 29(1): 3-17.
[http://dx.doi.org/10.1111/bpa.12655] [PMID: 30106209]
[89]
De Felice FG, Ferreira ST. Inflammation, defective insulin signaling, and mitochondrial dysfunction as common molecular denominators connecting type 2 diabetes to Alzheimer disease. Diabetes 2014; 63(7): 2262-72.
[http://dx.doi.org/10.2337/db13-1954] [PMID: 24931033]
[90]
Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. Mechanisms underlying inflammation in neurodegeneration. Cell 2010; 140(6): 918-34.
[http://dx.doi.org/10.1016/j.cell.2010.02.016] [PMID: 20303880]
[91]
Donath MY. Targeting inflammation in the treatment of type 2 diabetes: Time to start. Nat Rev Drug Discov 2014; 13(6): 465-76.
[http://dx.doi.org/10.1038/nrd4275] [PMID: 24854413]
[92]
Popa C, Netea MG, van Riel PL, van der Meer JW, Stalenhoef AF. The role of TNF-α in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk. J Lipid Res 2007; 48(4): 751-62.
[http://dx.doi.org/10.1194/jlr.R600021-JLR200] [PMID: 17202130]
[93]
Rojas-Gutierrez E, Muñoz-Arenas G, Treviño S, et al. Alzheimer’s disease and metabolic syndrome: A link from oxidative stress and inflammation to neurodegeneration. Synapse 2017; 71(10): e21990.
[http://dx.doi.org/10.1002/syn.21990] [PMID: 28650104]
[94]
Akter K, Lanza EA, Martin SA, Myronyuk N, Rua M, Raffa RB. Diabetes mellitus and Alzheimer’s disease: Shared pathology and treatment? Br J Clin Pharmacol 2011; 71(3): 365-76.
[http://dx.doi.org/10.1111/j.1365-2125.2010.03830.x] [PMID: 21284695]
[95]
Ng A, Tam WW, Zhang MW, Ho CS, Husain SF, McIntyre RS. IL-1β, IL-6, TNF-α and CRP in elderly patients with depression or Alzheimer’s disease: Systematic review and meta-analysis. Sci Rep 2018; 8(1): 1-12.
[http://dx.doi.org/10.1038/s41598-018-30487-6] [PMID: 29311619]
[96]
Dhawan G, Floden AM, Combs CK. Amyloid-β oligomers stimulate microglia through a tyrosine kinase dependent mechanism. Neurobiol Aging 2012; 33(10): 2247-61.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.10.027] [PMID: 22133278]
[97]
Yamagishi S. Role of advanced glycation end products (AGEs) and receptor for AGEs (RAGE) in vascular damage in diabetes. Exp Gerontol 2011; 46(4): 217-24.
[http://dx.doi.org/10.1016/j.exger.2010.11.007] [PMID: 21111800]
[98]
Win MTT, Yamamoto Y, Munesue S, Saito H, Han D, Motoyoshi S. Regulation of RAGE for attenuating progression of diabetic vascular complications. Exp Diabetes Res 2012; 2012: 894605.
[99]
Paudel YN, Angelopoulou E, Piperi C, Othman I, Aamir K, Shaikh MF. Impact of HMGB1, RAGE, and TLR4 in Alzheimer’s Disease (AD): From risk factors to therapeutic targeting. Cells 2020; 9(2): 383.
[http://dx.doi.org/10.3390/cells9020383] [PMID: 32046119]
[100]
Fang F, Lue L-F, Yan S, et al. RAGE-dependent signaling in microglia contributes to neuroinflammation, Abeta accumulation, and impaired learning/memory in a mouse model of Alzheimer’s disease. FASEB J 2010; 24(4): 1043-55.
[http://dx.doi.org/10.1096/fj.09-139634] [PMID: 19906677]
[101]
Lue L-F, Kuo Y-M, Beach T, Walker DG. Microglia activation and anti-inflammatory regulation in Alzheimer’s disease. Mol Neurobiol 2010; 41(2-3): 115-28.
[http://dx.doi.org/10.1007/s12035-010-8106-8] [PMID: 20195797]
[102]
Jaganathan R, Ravindran R, Dhanasekaran S. Emerging role of adipocytokines in type 2 diabetes as mediators of insulin resistance and cardiovascular disease. Canadian J diabetes 2018; 42(4): 446-56.
[http://dx.doi.org/10.1016/j.jcjd.2017.10.040]
[103]
Dickson DW. The pathogenesis of senile plaques. J Neuropathol Exp Neurol 1997; 56(4): 321-39.
[http://dx.doi.org/10.1097/00005072-199704000-00001] [PMID: 9100663]
[104]
Cheng X, Yang L, He P, Li R, Shen Y. Differential activation of tumor necrosis factor receptors distinguishes between brains from Alzheimer’s disease and non-demented patients. J Alzheimers Dis 2010; 19(2): 621-30.
[http://dx.doi.org/10.3233/JAD-2010-1253] [PMID: 20110607]
[105]
Billings L, Oddo S, Green K, McGaugh J, Laferla F. Intraneuronal Abeta causes the onset of early Alzheimer’s disease-related cognitive deficits transgenic mice. Neuron 2005; 45(5): 675-88.
[106]
He P, Zhong Z, Lindholm K, et al. Deletion of tumor necrosis factor death receptor inhibits amyloid β generation and prevents learning and memory deficits in Alzheimer’s mice. J Cell Biol 2007; 178(5): 829-41.
[http://dx.doi.org/10.1083/jcb.200705042] [PMID: 17724122]
[107]
Mecocci P, Boccardi V, Cecchetti R, et al. A long journey into aging, brain aging, and Alzheimer’s disease following the oxidative stress tracks. J Alzheimers Dis 2018; 62(3): 1319-35.
[http://dx.doi.org/10.3233/JAD-170732] [PMID: 29562533]
[108]
Sims-Robinson C, Kim B, Rosko A, Feldman EL. How does diabetes accelerate Alzheimer disease pathology? Nat Rev Neurol 2010; 6(10): 551-9.
[http://dx.doi.org/10.1038/nrneurol.2010.130] [PMID: 20842183]
[109]
Nakabeppu Y, Tsuchimoto D, Ichinoe A, Ohno M, Ide Y, Hirano S. Biological significance of the defense mechanisms against oxidative damage in nucleic acids caused by reactive oxygen species. In: Mitochondrial Pathogenesis. Heidelberg: Springer 2004; pp. 101-11.
[110]
Reddy VP, Beyaz A, Perry G, Cooke MS, Sayre LM, Smith MA. The role of oxidative damage to nucleic acids in the pathogenesis of neurological disease. In: Oxidative Damage to Nucleic Acids. Heidelberg: Springer 2007; pp. 123-40.
[111]
Mule NK, Singh JN. Diabetes mellitus to neurodegenerative disorders: is oxidative stress fueling the flame? CNS Neurol Disorde - Drug Targets 2018; 17(9): 644-53.
[http://dx.doi.org/10.2174/1871527317666180809092359]
[112]
Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature 2000; 408(6809): 239-47.
[113]
Heppner FL, Ransohoff RM, Becher B. Immune attack: The role of inflammation in Alzheimer disease. Nat Rev Neurosci 2015; 16(6): 358-72.
[http://dx.doi.org/10.1038/nrn3880] [PMID: 25991443]
[114]
Priora R, Coppo L, Salzano S, Di Simplicio P, Ghezzi P. Measurement of mixed disulfides including glutathionylated proteins. In: Methods in Enzymology. Amsterdam: Elsevier 2010; pp. 149-59.
[115]
Muralidharan P, Cserne Szappanos H, Ingley E, Hool L. Evidence for redox sensing by a human cardiac calcium channel. Sci Rep 2016; 6: 19067.
[http://dx.doi.org/10.1038/srep19067] [PMID: 26750869]
[116]
Dröge W. Free radicals in the physiological control of cell function. Physiol Rev 2002; 82(1): 47-95.
[http://dx.doi.org/10.1152/physrev.00018.2001] [PMID: 11773609]
[117]
Newsholme P, Cruzat V, Arfuso F, Keane K. Nutrient regulation of insulin secretion and action. J Endocrinol 2014; 221(3): R105-20.
[http://dx.doi.org/10.1530/JOE-13-0616] [PMID: 24667247]
[118]
Reddy VP, Zhu X, Perry G, Smith MA. Oxidative stress in diabetes and Alzheimer’s disease. J Alzheimers Dis 2009; 16(4): 763-74.
[http://dx.doi.org/10.3233/JAD-2009-1013] [PMID: 19387111]
[119]
Smith MA, Richey Harris PL, Sayre LM, Beckman JS, Perry G. Widespread peroxynitrite-mediated damage in Alzheimer’s disease. J Neurosci 1997; 17(8): 2653-7.
[http://dx.doi.org/10.1523/JNEUROSCI.17-08-02653.1997] [PMID: 9092586]
[120]
Leeuwenburgh C, Hansen P, Shaish A, Holloszy JO, Heinecke JW. Markers of protein oxidation by hydroxyl radical and reactive nitrogen species in tissues of aging rats. Am J Physiol 1998; 274(2): R453-61.
[PMID: 9486304]
[121]
Stadler K, Bonini MG, Dallas S, et al. Involvement of inducible nitric oxide synthase in hydroxyl radical-mediated lipid peroxidation in streptozotocin-induced diabetes. Free Radic Biol Med 2008; 45(6): 866-74.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.06.023] [PMID: 18620046]
[122]
Smith MA, Harris PL, Sayre LM, Perry G. Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc Natl Acad Sci USA 1997; 94(18): 9866-8.
[http://dx.doi.org/10.1073/pnas.94.18.9866] [PMID: 9275217]
[123]
Sayre LM, Perry G, Harris PL, Liu Y, Schubert KA, Smith MA. In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer’s disease: A central role for bound transition metals. J Neurochem 2000; 74(1): 270-9.
[http://dx.doi.org/10.1046/j.1471-4159.2000.0740270.x] [PMID: 10617129]
[124]
Ott A, Stolk RP, van Harskamp F, Pols HA, Hofman A, Breteler MM. Diabetes mellitus and the risk of dementia: The Rotterdam Study. Neurology 1999; 53(9): 1937-42.
[http://dx.doi.org/10.1212/WNL.53.9.1937] [PMID: 10599761]
[125]
Peila R, Rodriguez BL, Launer LJ. Type 2 diabetes, APOE gene, and the risk for dementia and related pathologies: The Honolulu-Asia Aging Study. Diabetes 2002; 51(4): 1256-62.
[http://dx.doi.org/10.2337/diabetes.51.4.1256] [PMID: 11916953]
[126]
Biessels GJ, Despa F. Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications. Nat Rev Endocrinol 2018; 14(10): 591-604.
[http://dx.doi.org/10.1038/s41574-018-0048-7] [PMID: 30022099]
[127]
Gabbouj S, Natunen T, Koivisto H, et al. Intranasal insulin activates Akt2 signaling pathway in the hippocampus of wild-type but not in APP/PS1 Alzheimer model mice. Neurobiol Aging 2019; 75: 98-108.
[http://dx.doi.org/10.1016/j.neurobiolaging.2018.11.008] [PMID: 30554086]
[128]
Wakabayashi T, Yamaguchi K, Matsui K, et al. Differential effects of diet- and genetically-induced brain insulin resistance on amyloid pathology in a mouse model of Alzheimer’s disease. Mol Neurodegener 2019; 14(1): 15.
[http://dx.doi.org/10.1186/s13024-019-0315-7] [PMID: 30975165]
[129]
Ettcheto M, Sánchez-López E, Gómez-Mínguez Y, et al. Peripheral and central effects of memantine in a mixed preclinical mice model of obesity and familial Alzheimer’s disease. Mol Neurobiol 2018; 55(9): 7327-39.
[http://dx.doi.org/10.1007/s12035-018-0868-4] [PMID: 29404958]
[130]
Kazkayasi I, Burul-Bozkurt N, Ismail MA, et al. Insulin deprivation decreases insulin degrading enzyme levels in primary cultured cortical neurons and in the cerebral cortex of rats with streptozotocin-induced diabetes. Pharmacol Rep 2018; 70(4): 677-83.
[http://dx.doi.org/10.1016/j.pharep.2018.01.008] [PMID: 29940507]
[131]
Kochkina EG, Plesneva SA, Vasilev DS, Zhuravin IA, Turner AJ, Nalivaeva NN. Effects of ageing and experimental diabetes on insulin-degrading enzyme expression in male rat tissues. Biogerontology 2015; 16(4): 473-84.
[http://dx.doi.org/10.1007/s10522-015-9569-9] [PMID: 25792373]
[132]
Bonds JA, Shetti A, Bheri A, et al. Depletion of caveolin-1 in type 2 diabetes model induces Alzheimer’s disease pathology precursors. J Neurosci 2019; 39(43): 8576-83.
[http://dx.doi.org/10.1523/JNEUROSCI.0730-19.2019] [PMID: 31527120]
[133]
Srikanth V, Sinclair AJ, Hill-Briggs F, Moran C, Biessels GJ. Type 2 diabetes and cognitive dysfunction-towards effective management of both comorbidities. Lancet Diabetes Endocrinol 2020; 8(6): 535-45.
[http://dx.doi.org/10.1016/S2213-8587(20)30118-2] [PMID: 32445740]
[134]
Biessels GJ, Whitmer RA. Cognitive dysfunction in diabetes: How to implement emerging guidelines. Diabetologia 2020; 63(1): 3-9.
[http://dx.doi.org/10.1007/s00125-019-04977-9] [PMID: 31420699]
[135]
Kim W, Egan JM. The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol Rev 2008; 60(4): 470-512.
[http://dx.doi.org/10.1124/pr.108.000604] [PMID: 19074620]
[136]
Yaribeygi H, Maleki M, Sathyapalan T, Jamialahmadi T, Sahebkar A. Anti-inflammatory potentials of incretin-based therapies used in the management of diabetes. Life Sci 2020; 241: 117152.
[http://dx.doi.org/10.1016/j.lfs.2019.117152] [PMID: 31837333]
[137]
Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev 2007; 87(4): 1409-39.
[http://dx.doi.org/10.1152/physrev.00034.2006] [PMID: 17928588]
[138]
Perry T, Lahiri DK, Sambamurti K, et al. Glucagon-like peptide-1 decreases endogenous amyloid-β peptide (Abeta) levels and protects hippocampal neurons from death induced by Abeta and iron. J Neurosci Res 2003; 72(5): 603-12.
[http://dx.doi.org/10.1002/jnr.10611] [PMID: 12749025]
[139]
Duckworth WC, Bennett RG, Hamel FG. Insulin degradation: Progress and potential. Endocr Rev 1998; 19(5): 608-24.
[PMID: 9793760]
[140]
Leissring MA, Farris W, Chang AY, et al. Enhanced proteolysis of β-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron 2003; 40(6): 1087-93.
[http://dx.doi.org/10.1016/S0896-6273(03)00787-6] [PMID: 14687544]
[141]
Cabrol C, Huzarska MA, Dinolfo C, et al. Small-molecule activators of insulin-degrading enzyme discovered through high-throughput compound screening. PLoS One 2009; 4(4): e5274.
[http://dx.doi.org/10.1371/journal.pone.0005274] [PMID: 19384407]
[142]
Pivovarova O, Höhn A, Grune T, Pfeiffer AF, Rudovich N. Insulin-degrading enzyme: New therapeutic target for diabetes and Alzheimer’s disease? Ann Med 2016; 48(8): 614-24.
[http://dx.doi.org/10.1080/07853890.2016.1197416] [PMID: 27320287]
[143]
Jha NK, Jha SK, Kumar D, et al. Impact of insulin degrading enzyme and neprilysin in Alzheimer’s disease biology: Characterization of putative cognates for therapeutic applications. J Alzheimers Dis 2015; 48(4): 891-917.
[http://dx.doi.org/10.3233/JAD-150379] [PMID: 26444774]
[144]
Nalivaeva NN, Fisk LR, Belyaev ND, Turner AJ. Amyloid-degrading enzymes as therapeutic targets in Alzheimer’s disease. Curr Alzheimer Res 2008; 5(2): 212-24.
[http://dx.doi.org/10.2174/156720508783954785] [PMID: 18393806]
[145]
Craft S. Insulin resistance syndrome and Alzheimer disease: Pathophysiologic mechanisms and therapeutic implications. Alzheimer Dis Assoc Disord 2006; 20(4): 298-301.
[http://dx.doi.org/10.1097/01.wad.0000213866.86934.7e] [PMID: 17132977]
[146]
Patil I, Sancheti H, Stiles BL, Cadenas E. Brain metabolic and functional alterations in a liver-specific PTEN knockout mouse model. PLoS One 2018; 13(9): e0204043.
[http://dx.doi.org/10.1371/journal.pone.0204043] [PMID: 30235271]
[147]
Zhao WQ, De Felice FG, Fernandez S, et al. Amyloid beta oligomers induce impairment of neuronal insulin receptors. FASEB J 2008; 22(1): 246-60.
[http://dx.doi.org/10.1096/fj.06-7703com] [PMID: 17720802]
[148]
Vandal M, White PJ, Tremblay C, et al. Insulin reverses the high- fat diet-induced increase in brain Aβ and improves memory in an animal model of Alzheimer disease. Diabetes 2014; 63(12): 4291-301.
[http://dx.doi.org/10.2337/db14-0375] [PMID: 25008180]
[149]
Cajal Visa Y, Muñoz-Torrero López-Ibarra D, Vallès Xirau J. Trends in Pharmaceutical and Food Sciences I. 2020.
[150]
Qiu WQ, Folstein MF. Insulin, insulin-degrading enzyme and amyloid-β peptide in Alzheimer’s disease: Review and hypothesis. Neurobiol Aging 2006; 27(2): 190-8.
[http://dx.doi.org/10.1016/j.neurobiolaging.2005.01.004] [PMID: 16399206]
[151]
Correia SC, Santos RX, Perry G, Zhu X, Moreira PI, Smith MA. Insulin-resistant brain state: the culprit in sporadic Alzheimer’s disease? Ageing Res Rev 2011; 10(2): 264-73.
[http://dx.doi.org/10.1016/j.arr.2011.01.001] [PMID: 21262392]
[152]
Alexander A, Saraf S, Saraf S. A comparative study of chitosan and poloxamer based thermosensitive hydrogel for the delivery of PEGylated melphalan conjugates. Drug Dev Ind Pharm 2015; 41(12): 1954-61.
[http://dx.doi.org/10.3109/03639045.2015.1011167] [PMID: 25678314]
[153]
Watson GS, Craft S. Modulation of memory by insulin and glucose: neuropsychological observations in Alzheimer’s disease. Eur J Pharmacol 2004; 490(1-3): 97-113.
[http://dx.doi.org/10.1016/j.ejphar.2004.02.048] [PMID: 15094077]
[154]
Craft S, Asthana S, Cook DG, et al. Insulin dose-response effects on memory and plasma amyloid precursor protein in Alzheimer’s disease: interactions with apolipoprotein E genotype. Psychoneuroendocrinology 2003; 28(6): 809-22.
[http://dx.doi.org/10.1016/S0306-4530(02)00087-2] [PMID: 12812866]
[155]
Schöpf V, Fischmeister FPS, Windischberger C, et al. Effects of individual glucose levels on the neuronal correlates of emotions. Front Hum Neurosci 2013; 7: 212.
[http://dx.doi.org/10.3389/fnhum.2013.00212] [PMID: 23734117]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy