Trends on the Rapid Expansion of Supercritical Solutions Process Applied to Food and Non-food Industries

Author(s): Maria T.M.S. Gomes, Ádina L. Santana, Diego T. Santos*, Maria A.A. Meireles

Journal Name: Recent Patents on Food, Nutrition & Agriculture

Volume 10 , Issue 2 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: The supercritical fluids applied to particle engineering over the last years have received growing interest from the food and non-food industries, in terms of processing, packaging, and preservation of several products. The rapid expansion of supercritical solutions (RESS) process has been recently reported as an efficient technique for the production of free-solvent particles with controlled morphology and size distribution.

Objective: In this review, we report technological aspects of the application of the RESS process applied to the food and non-food industry, considering recent data and patent survey registered in literature.

Methods: The effect of process parameters cosolvent addition, temperature, pressure, nozzle size among others, during RESS on the size, structure and morphology of the resulted particles, and the main differences about recent patented RESS processes are reviewed.

Results: Most of the experimental works intend to optimize their processes through investigation of process parameters.

Conclusion: RESS is a feasible alternative for the production of particles with a high yield of bioactive constituents of interest to the food industry. On the other hand, patents developed using this type of process for food products are very scarce, less attention being given to the potential of this technique to develop particles from plant extracts with bioactive substances.

Keywords: RESS, supercritical fluids, food bioactives, encapsulation, particle formation, stability.

[1]
Janiszewska-Turak E. Carotenoids microencapsulation by spray drying method and supercritical micronization. Food Res Int 2017; 99: 891-901.
[2]
Wu J-J, Shen L-Y, Yin M-C, Cheng Y-S. Supercritical carbon dioxide anti-solvent micronization of lycopene extracted and chromatographic purified from Momordica charantia L. aril. J Taiwan Institute of Chem Eng 2017; 80: 64-70.
[3]
Zhao C, Wang L, Zu Y, Li C, Liu S, Yang L, et al. Micronization of Ginkgo biloba extract using supercritical antisolvent process. Powder Technol 2011; 209(1): 73-80.
[4]
Yun J-H, Lee H-Y, Asaduzzaman AKM, Chun B-S. Micronization and characterization of squid lecithin/polyethylene glycol composite using particles from gas saturated solutions (PGSS) process. J Ind Eng Chem 2013; 19(2): 686-91.
[5]
Lubary M, de Loos TW, ter Horst JH, Hofland GW. Production of microparticles from milk fat products using the Supercritical Melt Micronization (ScMM) process. J Supercrit Fluids 2011; 55(3): 1079-88.
[6]
Suankaew N, Matsumura Y, Saramala I, Ruktanonchai UR, Soottitantawat A, Charinpanitkul T. l-Menthol crystal micronized by rapid expansion of supercritical carbon dioxide. J Ind Eng Chem 2012; 18(3): 904-8.
[7]
Arango-Ruiz Á, Martin Á, Cosero MJ, Jiménez C, Londoño J. Encapsulation of curcumin using Supercritical Antisolvent (SAS) technology to improve its stability and solubility in water. Food Chem 2018; 258: 156-63.
[8]
Santos DT, Albarelli JQ, Beppu MM, Meireles MAA. Stabilization of anthocyanin extract from jabuticaba skins by encapsulation using supercritical CO2 as solvent. Food Res Int 2013; 50(2): 617-24.
[9]
Zu Y, Zhang Q, Zhao X, Wang D, Li W, Sui X, et al. Preparation and characterization of vitexin powder micronized by a Supercritical Antisolvent (SAS) process. Powder Technol 2012; 228: 47-55.
[10]
Campardelli R, Reverchon E, Porta GD. Biopolymer particles for proteins and peptides sustained release produced by supercritical emulsion extraction. Procedia Eng 2012; 42: 239-46.
[11]
Vo DT, Saravana PS, Woo H-C, Chun B-S. Fucoxanthin-rich oil encapsulation using biodegradable polyethylene glycol and particles from gas-saturated solutions technique. J CO2 Utiliz 2018; 26: 359-69.
[12]
Bertucco A, Lora M, Kikic I. Fractional crystallization by gas antisolvent technique: Theory and experiments. AIChE J 1998; 44(10): 2149-58.
[13]
Weidner E, Knez Z, Novak Z. Process for preparing particesor powders. WO9521688. 1995.
[14]
Debenedetti PG, Tom JW, Yeo SD. Rapid expansion of supercritical solutions (RESS): Fundamentals and applications. Fluid Phase Equilib 1993; 82: 311-8.
[15]
Hezave AZ, Esmaeilzadeh F. The effects of RESS parameters on the diclofenac particle size. Adv Powder Technol 2011; 22(5): 587-95.
[16]
Hiendrawan S, Veriansyah B, Tjandrawinata RR. Micronization of fenofibrate by rapid expansion of supercritical solution. J Ind Eng Chem 2014; 20(1): 54-60.
[17]
Paisana MC, Müllers KC, Wahl MA, Pinto JF. Production and stabilization of olanzapine nanoparticles by Rapid Expansion Of Supercritical Solutions (RESS). J Supercrit Fluids 2016; 109: 124-33.
[18]
Nuchuchua O, Nejadnik MR, Goulooze SC, Lješković NJ, Every HA, Jiskoot W. Characterization of drug delivery particles produced by supercritical carbon dioxide technologies. J Supercrit Fluids 2017; 128: 244-62.
[19]
Jung J, Perrut M. Particle design using supercritical fluids: Literature and patent survey. J Supercrit Fluids 2001; 20(3): 179-219.
[20]
Moribe K, Tsutsumi S-i, Morishita S, Shinozaki H, Tozuka Y, Oguchi T, et al. Micronization of phenylbutazone by rapid expansion of supercritical CO2 solution. Chem Pharm Bull 2005; 53(8): 1025-8.
[21]
Huang Z, Sun G-B, Chiew YC, Kawi S. Formation of ultrafine aspirin particles through rapid expansion of Supercritical Solutions (RESS). Powder Technol 2005; 160(2): 127-34.
[22]
Kröber H, Teipel U, Krause H. Manufacture of submicron particles via expansion of supercritical fluids. Chem Eng Technol. Ind Chem‐Plant Equipment‐Process Eng‐Biotechnol 2000; 23(9): 763-5.
[23]
Pemsel M, Schwab S, Scheurer A, Freitag D, Schatz R, Schlücker E. Advanced PGSS process for the encapsulation of the biopesticide Cydia pomonella granulovirus. J Supercrit Fluids 2010; 53(1): 174-8.
[24]
Martín A, Cocero MJ. Micronization processes with supercritical fluids: Fundamentals and mechanisms. Adv Drug Deliv Rev 2008; 60(3): 339-50.
[25]
Huang Z, Guo Y-H, Miao H, Teng L-J. Solubility of progesterone in supercritical carbon dioxide and its micronization through RESS. Powder Technol 2014; 258: 66-77.
[26]
Knez Z, Weidner E. Particles formation and particle design using supercritical fluids. Curr Opin Solid State Mater Sci 2003; 7(4): 353-61.
[27]
Byrappa K, Ohara S, Adschiri T. Nanoparticles synthesis using supercritical fluid technology – towards biomedical applications. Adv Drug Deliv Rev 2008; 60(3): 299-327.
[28]
Trucillo P, Campardelli R, Aliakbarian B, Perego P, Reverchon E. Supercritical assisted process for the encapsulation of olive pomace extract into liposomes. J Supercrit Fluids 2018; 135: 152-9.
[29]
Cheng Y-S, Lu P-M, Huang C-Y, Wu J-J. Encapsulation of lycopene with lecithin and α-tocopherol by supercritical antisolvent process for stability enhancement. J Supercrit Fluids 2017; 130: 246-52.
[30]
Mihalcea L, Turturică M, Ghinea IO, Barbu V, Ioniţă E, Cotârleț M, et al. Encapsulation of carotenoids from sea buckthorn extracted by CO2 supercritical fluids method within whey proteins isolates matrices. Innov Food Sci Emerg Technol 2017; 42: 120-9.
[31]
Alias D, Yunus R, Chong GH, Che Abdullah CA. Single step encapsulation process of tamoxifen in biodegradable polymer using Supercritical Anti-Solvent (SAS) process. Powder Technol 2017; 309: 89-94.
[32]
Keshavarz A, Karimi-Sabet J, Fattahi A, Golzary A, Rafiee-Tehrani M, Dorkoosh FA. Preparation and characterization of raloxifene nanoparticles using Rapid Expansion of Supercritical Solution (RESS). J Supercrit Fluids 2012; 63: 169-79.
[33]
Keshmiri K, Vatanara A, Tavakoli O, Manafi N. Production of ultrafine clobetasol propionate via rapid expansion of supercritical solution (RESS): Full factorial approach. J Supercrit Fluids 2015; 101: 176-83.
[34]
Satvati HR, Lotfollahi MN. Effects of extraction temperature, extraction pressure and nozzle diameter on micronization of cholesterol by RESS process. Powder Technol 2011; 210(2): 109-14.
[35]
Temelli F. Perspectives on the use of supercritical particle formation technologies for food ingredients. J Supercrit Fluids 2018; 134: 244-51.
[36]
Li Q, Huang D, Lu T, Seville JPK, Xing L, Leeke GA. Supercritical fluid coating of API on excipient enhances drug release. Chem Eng J 2017; 313: 317-27.
[37]
Montes A, Williamson D, Hanke F, Garcia-Casas I, Pereya C, Martínez de la Ossa E, et al. New insights into the formation of submicron silica particles using CO2 as anti-solvent. J Supercrit Fluids 2018; 133: 218-24.
[38]
Miyazaki Y, Sugihara H, Nishiura A, Kadota K, Tozuka Y, Takeuchi H. Application of combinational supercritical CO2 techniques to the preparation of inhalable particles. J Drug Deliv Sci Technol 2016; 36: 1-9.
[39]
Lim RTY, Hoong AYJ, Ng WK, Tan RBH. Anomalous size evolution of partially amorphized pharmaceutical particles during post-milling storage. Powder Technol 2015; 286: 1-8.
[40]
Kim J-S, Kim M-S, Park HJ, Jin S-J, Lee S, Hwang S-J. Physicochemical properties and oral bioavailability of amorphous atorvastatin hemi-calcium using spray-drying and SAS process. Int J Pharm 2008; 359(1): 211-9.
[41]
Rossmann M, Braeuer A, Dowy S, Gallinger TG, Leipertz A, Schluecker E. Solute solubility as criterion for the appearance of amorphous particle precipitation or crystallization in the Supercritical Antisolvent (SAS) process. J Supercrit Fluids 2012; 66: 350-8.
[42]
Haq M, Chun B-S. Microencapsulation of omega-3 polyunsaturated fatty acids and astaxanthin-rich salmon oil using particles from gas saturated solutions (PGSS) process. LWT 2018; 92: 523-30.
[43]
Wen Z, Liu B, Zheng Z, You X, Pu Y, Li Q. Preparation of liposomes entrapping essential oil from Atractylodes macrocephala Koidz by modified RESS technique. Chem Eng Res Des 2010; 88(8): 1102-7.
[44]
Ghoreishi SM, Hedayati A, Kordnejad M. Micronization of chitosan via rapid expansion of supercritical solution. J Supercrit Fluids 2016; 111: 162-70.
[45]
Momenkiaei F, Raofie F. Preparation of Silybum marianum seeds extract nanoparticles by supercritical solution expansion. J Supercrit Fluids 2018; 138: 46-55.
[46]
Uchida H, Nishijima M, Sano K, Demoto K, Sakabe J, Shimoyama Y. Production of theophylline nanoparticles using rapid expansion of supercritical solutions with a solid cosolvent (RESS-SC) technique. J Supercrit Fluids 2015; 105: 128-35.
[47]
Montes A, Merino R, De los Santos DM, Pereyra C, Martínez de la Ossa EJ. Micronization of vanillin by rapid expansion of supercritical solutions process. J CO2 Utiliz 2017; 21: 169-76.
[48]
Yim J-H, Kim W-S, Lim JS. Recrystallization of adefovir dipivoxil particles using the rapid expansion of supercritical solutions (RESS) process. J Supercrit Fluids 2013; 82: 168-76.
[49]
Werner O, Turner C. Investigation of different particle sizes on superhydrophobic surfaces made by rapid expansion of supercritical solution with in situ laser diffraction (RESS-LD). J Supercrit Fluids 2012; 67: 53-9.
[50]
Lin P-C, Su C-S, Tang M, Chen Y-P. Micronization of ethosuximide using the rapid expansion of supercritical solution (RESS) process. J Supercrit Fluids 2012; 72: 84-9.
[51]
Tsai C-C, Lin H-M, Lee M-J. Phase equilibrium and micronization for flufenamic acid with supercritical carbon dioxide. J Taiwan Inst Chem Eng 2017; 72: 19-28.
[52]
Baseri H, Lotfollahi MN. Effects of expansion parameters on characteristics of gemfibrozil powder produced by rapid expansion of supercritical solution process. Powder Technol 2014; 253: 744-50.
[53]
Sharma SK, Jagannathan R. High throughput RESS processing of sub-10nm ibuprofen nanoparticles. J Supercrit Fluids 2016; 109: 74-9.
[54]
Sodeifian G, Sajadian SA. Solubility measurement and preparation of nanoparticles of an anticancer drug (Letrozole) using rapid expansion of supercritical solutions with solid cosolvent (RESS-SC). J Supercrit Fluids 2018; 133: 239-52.
[55]
Chen B-Q, Kankala RK, Wang S-B, Chen A-Z. Continuous nanonization of lonidamine by modified-rapid expansion of supercritical solution process. J Supercrit Fluids 2018; 133: 486-93.
[56]
Ovaskainen L, Chigome S, Birkin NA, Howdle SM, Torto N, Wågberg L, et al. Superhydrophobic polymeric coatings produced by rapid expansion of supercritical solutions combined with electrostatic deposition (RESS-ED). J Supercrit Fluids 2014; 95: 610-7.
[57]
Wolff S, Beuermann S, Türk M. Impact of rapid expansion of supercritical solution process conditions on the crystallinity of poly(vinylidene fluoride) nanoparticles. J Supercrit Fluids 2016; 117: 18-25.
[58]
Chen C-T, Lee C-A, Tang M, Chen Y-P. Experimental investigation for the solubility and micronization of pyridin-4- amine in supercritical carbon dioxide. J CO2 Utiliz 2017; 18: 173-80.
[59]
Fattahi A, Karimi-Sabet J, Keshavarz A, Golzary A, Rafiee-Tehrani M, Dorkoosh FA. Preparation and characterization of simvastatin nanoparticles using rapid expansion of supercritical solution (RESS) with trifluoromethane. J Supercrit Fluids 2016; 107: 469-78.
[60]
Goyeneche R, Fanovich A, Rodriguez Rodrigues C, Nicolao MC, Di Scala K. Supercritical CO2 extraction of bioactive compounds from radish leaves: Yield, antioxidant capacity and cytotoxicity. J Supercrit Fluids 2018; 135: 78-83.
[61]
Zhao L, Temelli F. Preparation of liposomes using supercritical carbon dioxide via depressurization of the supercritical phase. J Food Eng 2015; 158: 104-12.
[62]
Charpentier PA, Jia M, Lucky RA. Study of the RESS process for producing beclomethasone-17, 21-dipropionate particles suitable for pulmonary delivery. AAPS PharmSciTech 2008; 9(1): 39-46.
[63]
Türk M, Bolten D. Polymorphic properties of micronized mefenamic acid, nabumetone, paracetamol and tolbutamide produced by rapid expansion of supercritical solutions (RESS). J Supercrit Fluids 2016; 116: 239-50.
[64]
Hezave AZ, Esmaeilzadeh F. Micronization of drug particles via RESS process. J Supercrit Fluids 2010; 52(1): 84-98.
[65]
Hezave AZ, Aftab S, Esmaeilzadeh F. Micronization of creatine monohydrate via rapid expansion of supercritical solution (RESS). J Supercrit Fluids 2010; 55(1): 316-24.
[66]
Ozkan G, Franco P, De Marco I, Xiao J, Capanoglu E. A review of microencapsulation methods for food antioxidants: principles, advantages, drawbacks and applications. Food Chem 2018; 272: 494-506.
[67]
Vandana KR, Prasanna Raju Y, Harini Chowdary V, Sushma M, Vijay Kumar N. An overview on in situ micronization technique–An emerging novel concept in advanced drug delivery. Saudi Pharm J 2014; 22(4): 283-9.
[68]
Aguiar-Ricardo A. Building dry powder formulations using supercritical CO2 spray drying. Curr Opin Green Sustain Chem 2017; 5: 12-6.
[69]
Badens E, Masmoudi Y, Mouahid A, Crampon C. Current situation and perspectives in drug formulation by using supercritical fluid technology. J Supercrit Fluids 2018; 134: 274-83.
[70]
Davis M, Walker G. Recent strategies in spray drying for the enhanced bioavailability of poorly water-soluble drugs. J Control Release 2018; 269: 110-27.
[71]
Tabernero A, Martín del Valle EM, Galán MA. Supercritical fluids for pharmaceutical particle engineering: Methods, basic fundamentals and modelling. Chem Eng Process: Process Intens 2012; 60: 9-25.
[72]
Montes A, Litwinowicz AA, Gradl U, Gordillo MD, Pereyra C, Martínez de la Ossa EJ. Exploring high operating conditions in the ibuprofen precipitation by rapid expansion of supercritical solutions process. Ind Eng Chem Res 2014; 53(1): 474-80.
[73]
Robert P, Gorena T, Romero N, Sepulveda E, Chavez J, Saenz C. Encapsulation of polyphenols and anthocyanins from pomegranate (Punica granatum) by spray drying. Int J Food Sci Technol 2010; 45(7): 1386-94.
[74]
Malamatari M, Somavarapu S, Kachrimanis K, Bloxham M, Taylor KMG, Buckton G. Preparation of theophylline inhalable microcomposite particles by wet milling and spray drying: The influence of mannitol as a co-milling agent. Int J Pharm 2016; 514(1): 200-11.
[75]
Noshad M, Mohebbi M, Koocheki A, Shahidi F. Microencapsulation of vanillin by spray drying using soy protein isolate–maltodextrin as wall material. Flavour Fragrance J 2015; 30(5): 387-91.
[76]
Hundre SY, Karthik P, Anandharamakrishnan C. Effect of whey protein isolate and β-cyclodextrin wall systems on stability of microencapsulated vanillin by spray-freeze drying method. Food Chem 2015; 174: 16-24.
[77]
Souza VBd, Fujita A, Thomazini M, da Silva ER, Lucon JF, Genovese MI, et al. Functional properties and stability of spray-dried pigments from Bordo grape (Vitis labrusca) winemaking pomace. Food Chem 2014; 164: 380-6.
[78]
Tolun A, Altintas Z, Artik N. Microencapsulation of grape polyphenols using maltodextrin and gum arabic as two alternative coating materials: Development and characterization. J Biotechnol 2016; 239: 23-33.
[79]
Marqués JL, Porta GD, Reverchon E, Renuncio JAR, Mainar AM. Supercritical antisolvent extraction of antioxidants from grape seeds after vinification. J Supercrit Fluids 2013; 82: 238-43.
[80]
Natolino A, Da Porto C, Rodríguez-Rojo S, Moreno T, Cocero MJ. Supercritical antisolvent precipitation of polyphenols from grape marc extract. J Supercrit Fluids 2016; 118: 54-63.
[81]
Guamán-Balcázar MC, Montes A, Fernández-Ponce MT, Casas L, Mantell C, Pereyra C, et al. Generation of potent antioxidant nanoparticles from mango leaves by supercritical antisolvent extraction. J Supercrit Fluids 2018; 138: 92-101.
[82]
Torres RAC, Santana ÁL, Santos DT, Meireles MAA. Perspectives on the application of supercritical antisolvent fractionation process for the purification of plant extracts: Effects of operating parameters and patent survey. Recent Pat Eng 2016; 10: 121-30.
[83]
Lu M, Ho C-T, Huang Q. Improving quercetin dissolution and bioaccessibility with reduced crystallite sizes through media milling technique. J Funct Foods 2017; 37: 138-46.
[84]
García-Casas I, Montes A, Pereyra C, Martínez de la Ossa EJ. Generation of quercetin/cellulose acetate phthalate systems for delivery by supercritical antisolvent process. Eur J Pharm Sci 2017; 100: 79-86.
[85]
Min-ji K, Kim Y-H, Kim E-H, Tae KJ, Cheol JK, Yong JC. Method of producing nano-structured food material by supercritical fluids system. KR101143926B1 . 2009.
[86]
Fulton JL, Deverman GS, Matson DW, et al. System and method for enhanced electrostatic deposition and surface coatings. US9687864B2 . 2011.
[87]
Chan C, Li H, Li H. Supercritical fluid extracting, spraying and granulating system and method. CN103212340B . 2010.
[88]
Temelli F, Seifried B. Supercritical fluid treatment of high molecular weight biopolymers. US9249266B2 . 2013.
[89]
McClain J, Taylor CD, Zani BG, Kiorpes TC. Nanoparticle and surface-modified particulate coatings, coated balloons, and methods therefore. EP2658527A4 . 2012.
[90]
Wen Z, Liu B, Zheng Z, You X, Pu Y, Liu J. Method for preparing nanoliposomes by supercritical CO2 fluid. CN101972228B . 2010.
[91]
Haeggström E, Ylirrusi J, Falck K, et al. A method and a device for producing nanoparticles. US20170231914A1 . 2017.
[92]
Demibüker M, Jesson G. Apparatus and method for the production of particles. WO2011159218A1 . 2010.
[93]
Guo Y, Zhao Y, Wang H. Supercritical fluid device for preparing micropowder. CN203123938U . 2012.
[94]
Taek IK. Ultrafine particles of inclusion complex of peracetylated cyclodextrin and drug using supercritical carbon dioxide, preparation method thereof and use thereof. KR101701203B1 . 2014.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 10
ISSUE: 2
Year: 2019
Page: [82 - 92]
Pages: 11
DOI: 10.2174/2212798410666180925160459

Article Metrics

PDF: 23
HTML: 6
EPUB: 1
PRC: 2