Generic placeholder image

Current Hypertension Reviews

Editor-in-Chief

ISSN (Print): 1573-4021
ISSN (Online): 1875-6506

Review Article

Endothelial Dysfunction Induced by Cadmium and Mercury and its Relationship to Hypertension

Author(s): Airton C. Martins, Alessanda A.D. Santos, Ana C.B.A. Lopes, Anatoly V. Skalny, Michael Aschner, Alexey A. Tinkov and Monica M.B. Paoliello*

Volume 17, Issue 1, 2021

Published on: 21 January, 2021

Page: [14 - 26] Pages: 13

DOI: 10.2174/1573402117666210121102405

Price: $65

Abstract

Hypertension is an important public health concern that affects millions globally, leading to a large number of morbidities and fatalities. The etiology of hypertension is complex and multifactorial, and it involves environmental factors, including heavy metals. Cadmium and mercury are toxic elements commonly found in the environment, contributing to hypertension. We aimed to assess the role of cadmium and mercury-induced endothelial dysfunction in the development of hypertension. A narrative review was carried out through database searches. In this review, we discussed the critical roles of cadmium and mercury in the etiology of hypertension and provided new insights into potential mechanisms of their effect, focusing primarily on endothelial dysfunction. Although the mechanisms by which cadmium and mercury induce hypertension have yet to be completely elucidated, evidence for both implicates impaired nitric oxide signaling in their hypertensive etiology.

Keywords: Cadmium, mercury, heavy metals, nitric oxide, hypertension, endothelial dysfunction.

Graphical Abstract
[1]
Kira CS, Sakuma AM, De Capitani EM, de Freitas CU, Cardoso MRA, Gouveia N. Associated factors for higher lead and cadmium blood levels, and reference values derived from general population of Sao Paulo, Brazil. Sci Total Environ 2016; 543(A): 628-35.
[2]
ATSDR. Substance priority list. Agency for toxic substances and disease registry 2019.
[3]
McKelvey W, Gwynn RC, Jeffery N, et al. A biomonitoring study of lead, cadmium, and mercury in the blood of New York City adults. Environ Health Perspect 2007; 115(10): 1435-41.
[http://dx.doi.org/10.1289/ehp.10056] [PMID: 17938732]
[4]
Hecht EM, Arheart K, Lee DJ, Hennekens CH, Hlaing WM. A cross-sectional survey of cadmium biomarkers and cigarette smoking. Biomarkers 2016; 21(5): 429-35.
[http://dx.doi.org/10.3109/1354750X.2016.1153717] [PMID: 26983064]
[5]
Abass K, Koiranen M, Mazej D, et al. Arsenic, cadmium, lead and mercury levels in blood of Finnish adults and their relation to diet, lifestyle habits and sociodemographic variables. Environ Sci Pollut Res Int 2017; 24(2): 1347-62.
[http://dx.doi.org/10.1007/s11356-016-7824-5] [PMID: 27778267]
[6]
Martins AC, Urbano MR, Lopes ACB, et al. Blood cadmium levels and sources of exposure in an adult urban population in southern Brazil. Environ Res 2020; 187: 109618.
[http://dx.doi.org/10.1016/j.envres.2020.109618] [PMID: 32447086]
[7]
Garner R, Levallois P. Cadmium levels and sources of exposure among Canadian adults. Health Rep 2016; 27(2): 10-8.
[PMID: 26885840]
[8]
Ahn SC, Chang JY, Lee JS, et al. Exposure factors of cadmium for residents in an abandoned metal mine area in Korea. Environ Geochem Health 2017; 39(5): 1059-70.
[http://dx.doi.org/10.1007/s10653-016-9872-7] [PMID: 27670774]
[9]
Wiseman CL, Zereini F, Püttmann W. Metal translocation patterns in Solanum melongena grown in close proximity to traffic. Environ Sci Pollut Res Int 2014; 21(2): 1572-81.
[http://dx.doi.org/10.1007/s11356-013-2039-5] [PMID: 23943080]
[10]
Garner RE, Levallois P. Associations between cadmium levels in blood and urine, blood pressure and hypertension among Canadian adults. Environ Res 2017; 155: 64-72.
[http://dx.doi.org/10.1016/j.envres.2017.01.040] [PMID: 28189876]
[11]
Madrigal JM, Ricardo AC, Persky V, Turyk M. Associations between blood cadmium concentration and kidney function in the U.S. population: Impact of sex, diabetes and hypertension. Environ Res 2019; 169: 180-8.
[http://dx.doi.org/10.1016/j.envres.2018.11.009] [PMID: 30466011]
[12]
Lee BK, Ahn J, Kim NS, Lee CB, Park J, Kim Y. Association of blood pressure with exposure to lead and cadmium: Analysis of data from the 2008-2013 Korean National Health and Nutrition Examination Survey. Biol Trace Elem Res 2016; 174(1): 40-51.
[http://dx.doi.org/10.1007/s12011-016-0699-y] [PMID: 27087554]
[13]
Ahn J, Kim NS, Lee BK, Park J, Kim Y. Association of Blood Pressure with Blood Lead and Cadmium Levels in Korean Adolescents: Analysis of Data from the 2010-2016 Korean National Health and Nutrition Examination Survey. J Korean Med Sci 2018; 33(44): e278.
[http://dx.doi.org/10.3346/jkms.2018.33.e278] [PMID: 30369859]
[14]
Park SK, Zhao Z, Mukherjee B. Construction of environmental risk score beyond standard linear models using machine learning methods: application to metal mixtures, oxidative stress and cardiovascular disease in NHANES. Environ Health 2017; 16(1): 102.
[http://dx.doi.org/10.1186/s12940-017-0310-9] [PMID: 28950902]
[15]
Wu W, Liu D, Jiang S, Zhang K, Zhou H, Lu Q. Polymorphisms in gene MMP-2 modify the association of cadmium exposure with hypertension risk. Environ Int 2019; 124: 441-7.
[http://dx.doi.org/10.1016/j.envint.2019.01.041] [PMID: 30684802]
[16]
Franceschini N, Fry RC, Balakrishnan P, et al. Cadmium body burden and increased blood pressure in middle-aged American Indians: The strong heart study. J Hum Hypertens 2017; 31(3): 225-30.
[http://dx.doi.org/10.1038/jhh.2016.67] [PMID: 27629244]
[17]
Shiue I, Hristova K. Higher urinary heavy metal, phthalate and arsenic concentrations accounted for 3-19% of the population attributable risk for high blood pressure: US NHANES, 2009-2012. Hypertens Res 2014; 37(12): 1075-81.
[http://dx.doi.org/10.1038/hr.2014.121] [PMID: 25077919]
[18]
Noor N, Zong G, Seely EW, Weisskopf M, James-Todd T. Urinary cadmium concentrations and metabolic syndrome in U.S. adults: The National Health and Nutrition Examination Survey 2001-2014. Environ Int 2018; 121(Pt 1): 349-56.
[http://dx.doi.org/10.1016/j.envint.2018.08.029] [PMID: 30243183]
[19]
Gao Y, Zhu X, Shrubsole MJ, et al. The modifying effect of kidney function on the association of cadmium exposure with blood pressure and cardiovascular mortality: NHANES 1999-2010. Toxicol Appl Pharmacol 2018; 353: 15-22.
[http://dx.doi.org/10.1016/j.taap.2018.05.032] [PMID: 29842852]
[20]
Wu W, Jiang S, Zhao Q, et al. Associations of environmental exposure to metals with the risk of hypertension in China. Sci Total Environ 2018; 622-623: 184-91.
[http://dx.doi.org/10.1016/j.scitotenv.2017.11.343] [PMID: 29216461]
[21]
Yoopan N, Watcharasit P, Wongsawatkul O, Piyachaturawat P, Satayavivad J. Attenuation of eNOS expression in cadmium-induced hypertensive rats. Toxicol Lett 2008; 176(2): 157-61.
[http://dx.doi.org/10.1016/j.toxlet.2007.11.002] [PMID: 18155860]
[22]
Gökalp O, Ozdem S, Dönmez S, et al. Impairment of endothelium-dependent vasorelaxation in cadmium-hypertensive rats. Toxicol Ind Health 2009; 25(7): 447-53.
[http://dx.doi.org/10.1177/0748233709106822] [PMID: 19648216]
[23]
Donpunha W, Kukongviriyapan U, Sompamit K, Pakdeechote P, Kukongviriyapan V, Pannangpetch P. Protective effect of ascorbic acid on cadmium-induced hypertension and vascular dysfunction in mice. Biometals 2011; 24(1): 105-15.
[http://dx.doi.org/10.1007/s10534-010-9379-0] [PMID: 20872046]
[24]
Almenara CC, Broseghini-Filho GB, Vescovi MV, et al. Chronic cadmium treatment promotes oxidative stress and endothelial damage in isolated rat aorta. PLoS One 2013; 8(7): e68418.
[http://dx.doi.org/10.1371/journal.pone.0068418] [PMID: 23874620]
[25]
Ferramola ML, Antón RI, Anzulovich AC, Giménez MS. Myocardial oxidative stress following sub-chronic and chronic oral cadmium exposure in rats. Environ Toxicol Pharmacol 2011; 32(1): 17-26.
[http://dx.doi.org/10.1016/j.etap.2011.03.002] [PMID: 21787725]
[26]
Angeli JK, Cruz Pereira CA, de Oliveira Faria T, Stefanon I, Padilha AS, Vassallo DV. Cadmium exposure induces vascular injury due to endothelial oxidative stress: The role of local angiotensin II and COX-2. Free Radic Biol Med 2013; 65: 838-48.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.08.167] [PMID: 23973752]
[27]
Chen H, Lu Y, Cao Z, et al. Cadmium induces NLRP3 inflammasome-dependent pyroptosis in vascular endothelial cells. Toxicol Lett 2016; 246: 7-16.
[http://dx.doi.org/10.1016/j.toxlet.2016.01.014] [PMID: 26809137]
[28]
Washington B, Williams S, Armstrong P, Mtshali C, Robinson JT, Myles EL. Cadmium toxicity on arterioles vascular smooth muscle cells of spontaneously hypertensive rats. Int J Environ Res Public Health 2006; 3(4): 323-8.
[http://dx.doi.org/10.3390/ijerph2006030040] [PMID: 17159273]
[29]
Biagioli M, Pifferi S, Ragghianti M, Bucci S, Rizzuto R, Pinton P. Endoplasmic reticulum stress and alteration in calcium homeostasis are involved in cadmium-induced apoptosis. Cell Calcium 2008; 43(2): 184-95.
[http://dx.doi.org/10.1016/j.ceca.2007.05.003] [PMID: 17588656]
[30]
Choudhary R, Bodakhe SH. Olmesartan, an angiotensin II receptor blocker inhibits the progression of cataract formation in cadmium chloride induced hypertensive albino rats. Life Sci 2016; 167: 105-12.
[http://dx.doi.org/10.1016/j.lfs.2016.10.012] [PMID: 27744053]
[31]
Lemaire J, Van der Hauwaert C, Savary G, et al. Cadmium-induced renal cell toxicity is associated with microRNA deregulation. Int J Toxicol 2020; 39(2): 103-14.
[http://dx.doi.org/10.1177/1091581819899039] [PMID: 31934807]
[32]
da Conceição Nascimento Pinheiro M, do Nascimento JLM, de Lima Silveira LC, da Rocha JBT, Aschner M. Mercury and selenium - A review on aspects related to the health of human populations in the Amazon. Environ Bioindic 2009; 4(3): 222-45.
[http://dx.doi.org/10.1080/15555270903143440] [PMID: 31485199]
[33]
Roman HA, Walsh TL, Coull BA, et al. Evaluation of the cardiovascular effects of methylmercury exposures: Current evidence supports development of a dose-response function for regulatory benefits analysis. Environ Health Perspect 2011; 119(5): 607-14.
[http://dx.doi.org/10.1289/ehp.1003012] [PMID: 21220222]
[34]
Grotto D, de Castro MM, Barcelos GR, Garcia SC, Barbosa F Jr. Low level and sub-chronic exposure to methylmercury induces hypertension in rats: nitric oxide depletion and oxidative damage as possible mechanisms. Arch Toxicol 2009; 83(7): 653-62.
[http://dx.doi.org/10.1007/s00204-009-0437-8] [PMID: 19468715]
[35]
Wells EM, Kopylev L, Nachman R, Radke EG, Segal D. Seafood, wine, rice, vegetables, and other food items associated with mercury biomarkers among seafood and non-seafood consumers: NHANES 2011-2012. J Expo Sci Environ Epidemiol 2020; 30(3): 504-14.
[http://dx.doi.org/10.1038/s41370-020-0206-6] [PMID: 32015433]
[36]
Buchanan S, Targos L, Nagy KL, Kearney KE, Turyk M. Fish consumption and hair mercury among Asians in Chicago. J Occup Environ Med 2015; 57(12): 1325-30.
[http://dx.doi.org/10.1097/JOM.0000000000000560] [PMID: 26641830]
[37]
Clarkson TW, Magos L, Myers GJ. The toxicology of mercury--current exposures and clinical manifestations. N Engl J Med 2003; 349(18): 1731-7.
[http://dx.doi.org/10.1056/NEJMra022471] [PMID: 14585942]
[38]
Hu XF, Singh K, Chan HM. Mercury exposure, blood pressure, and hypertension: A systematic review and dose-response meta-analysis. Environ Health Perspect 2018; 126(7): 076002.
[http://dx.doi.org/10.1289/EHP2863] [PMID: 30073953]
[39]
Wells EM, Herbstman JB, Lin YH, et al. Methyl mercury, but not inorganic mercury, associated with higher blood pressure during pregnancy. Environ Res 2017; 154: 247-52.
[http://dx.doi.org/10.1016/j.envres.2017.01.013] [PMID: 28110211]
[40]
Eom SY, Choi SH, Ahn SJ, et al. Reference levels of blood mercury and association with metabolic syndrome in Korean adults. Int Arch Occup Environ Health 2014; 87(5): 501-13.
[http://dx.doi.org/10.1007/s00420-013-0891-8] [PMID: 23824410]
[41]
Park SK, Lee S, Basu N, Franzblau A. Associations of blood and urinary mercury with hypertension in U.S. adults: The NHANES 2003-2006. Environ Res 2013; 123: 25-32.
[http://dx.doi.org/10.1016/j.envres.2013.02.003] [PMID: 23472608]
[42]
Choi AL, Weihe P, Budtz-Jørgensen E, et al. Methylmercury exposure and adverse cardiovascular effects in Faroese whaling men. Environ Health Perspect 2009; 117(3): 367-72.
[http://dx.doi.org/10.1289/ehp.11608] [PMID: 19337510]
[43]
Dórea JG, de Souza JR, Rodrigues P, Ferrari I, Barbosa AC. Hair mercury (signature of fish consumption) and cardiovascular risk in Munduruku and Kayabi Indians of Amazonia. Environ Res 2005; 97(2): 209-19.
[http://dx.doi.org/10.1016/j.envres.2004.04.007] [PMID: 15533337]
[44]
Salonen JT, Nyyssönen K, Salonen R. Fish intake and the risk of coronary disease. N Engl J Med 1995; 333(14): 937.
[http://dx.doi.org/10.1056/NEJM199510053331412] [PMID: 7666883]
[45]
Timmis A, Townsend N, Gale CP, et al. European Society of Cardiology. European society of cardiology: Cardiovascular disease statistics 2019. Eur Heart J 2020; 41(1): 12-85.
[http://dx.doi.org/10.1093/eurheartj/ehz859] [PMID: 31820000]
[46]
Nascimento BR, Brant LCC, Oliveira GMM, et al. Cardiovascular disease epidemiology in Portuguese-speaking countries: Data from the Global Burden of Disease, 1990 to 2016. Arq Bras Cardiol 2018; 110(6): 500-11.
[http://dx.doi.org/10.5935/abc.20180098] [PMID: 30226906]
[47]
Gupta R, Xavier D. Hypertension: The most important non communicable disease risk factor in India. Indian Heart J 2018; 70(4): 565-72.
[http://dx.doi.org/10.1016/j.ihj.2018.02.003] [PMID: 30170654]
[48]
Lamprea-Montealegre JA, Zelnick LR, Hall YN, Bansal N, de Boer IH. Prevalence of hypertension and cardiovascular risk according to blood pressure thresholds used for diagnosis. Hypertension 2018; 72(3): 602-9.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.118.11609] [PMID: 30354757]
[49]
Eum KD, Lee MS, Paek D. Cadmium in blood and hypertension. Sci Total Environ 2008; 407(1): 147-53.
[http://dx.doi.org/10.1016/j.scitotenv.2008.08.037] [PMID: 18845316]
[50]
da Cunha Martins A Jr, Carneiro MFH, Grotto D, Adeyemi JA, Barbosa F Jr. Arsenic, cadmium, and mercury-induced hypertension: Mechanisms and epidemiological findings. J Toxicol Environ Health B Crit Rev 2018; 21(2): 61-82.
[http://dx.doi.org/10.1080/10937404.2018.1432025] [PMID: 29446707]
[51]
Oliveira-Paula GH, Lacchini R, Tanus-Santos JE. Endothelial nitric oxide synthase: From biochemistry and gene structure to clinical implications of NOS3 polymorphisms. Gene 2016; 575(2 Pt 3): 584-99.
[http://dx.doi.org/10.1016/j.gene.2015.09.061] [PMID: 26428312]
[52]
Schroeder HA, Vinton WH Jr. Hypertension induced in rats by small doses of cadmium. Am J Physiol 1962; 202: 515-8.
[http://dx.doi.org/10.1152/ajplegacy.1962.202.3.515] [PMID: 13909317]
[53]
Göçmen C, Kumcu EK, Seçilmiş A, Uçar P, Dikmen A, Baysal F. Restorative effects of zinc and selenium on nitrergic relaxations impaired by cadmium in the mouse corpus cavernosum. Toxicol Lett 2000; 111(3): 229-34.
[http://dx.doi.org/10.1016/S0378-4274(99)00182-4] [PMID: 10643867]
[54]
Oliveira TF, Batista PR, Leal MA, et al. Chronic cadmium exposure accelerates the development of atherosclerosis and induces vascular dysfunction in the aorta of ApoE-/- mice. Biol Trace Elem Res 2019; 187(1): 163-71.
[http://dx.doi.org/10.1007/s12011-018-1359-1] [PMID: 29707746]
[55]
Cuypers A, Plusquin M, Remans T, et al. Cadmium stress: an oxidative challenge. Biometals 2010; 23(5): 927-40.
[http://dx.doi.org/10.1007/s10534-010-9329-x] [PMID: 20361350]
[56]
Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: The good, the bad, and ugly. Am J Physiol 1996; 271(5 Pt 1): C1424-37.
[http://dx.doi.org/10.1152/ajpcell.1996.271.5.C1424] [PMID: 8944624]
[57]
Tandon SK, Singh S, Prasad S, et al. Reversal of cadmium induced oxidative stress by chelating agent, antioxidant or their combination in rat. Toxicol Lett 2003; 145(3): 211-7.
[http://dx.doi.org/10.1016/S0378-4274(03)00265-0] [PMID: 14580892]
[58]
Martynowicz H, Skoczyńska A, Wojakowska A, Turczyn B. Serum vasoactive agents in rats poisoned with cadmium. Int J Occup Med Environ Health 2004; 17(4): 479-85.
[PMID: 15852763]
[59]
Demontis MP, Varoni MV, Volpe AR, Emanueli C, Madeddu P. Role of nitric oxide synthase inhibition in the acute hypertensive response to intracerebroventricular cadmium. Br J Pharmacol 1998; 123(1): 129-35.
[http://dx.doi.org/10.1038/sj.bjp.0701573] [PMID: 9484863]
[60]
Skoczynska A, Martynowicz H. The impact of subchronic cadmium poisoning on the vascular effect of nitric oxide in rats. Hum Exp Toxicol 2005; 24(7): 353-61.
[http://dx.doi.org/10.1191/0960327105ht536oa] [PMID: 16119249]
[61]
Takahashi Y, Poteser M, Masui H, Koizumi N, Wakabayashi I. Effects of cadmium in vitro on contractile and relaxant responses of isolated rat aortas. Environ Health Prev Med 2004; 9(6): 251-6.
[http://dx.doi.org/10.1007/BF02898138] [PMID: 21432310]
[62]
Santamaria-Juarez C, Atonal-Flores F, Diaz A, et al. Aortic dysfunction by chronic cadmium exposure is linked to multiple metabolic risk factors that converge in anion superoxide production. Arch Physiol Biochem 2020; 1-9.
[http://dx.doi.org/10.1080/13813455.2020.1726403] [PMID: 32067514]
[63]
Kolluru GK, Tamilarasan KP, Geetha Priya S, Durgha NP, Chatterjee S. Cadmium induced endothelial dysfunction: Consequence of defective migratory pattern of endothelial cells in association with poor nitric oxide availability under cadmium challenge. Cell Biol Int 2006; 30(5): 427-38.
[http://dx.doi.org/10.1016/j.cellbi.2006.02.002] [PMID: 16616865]
[64]
Pérez Díaz MF, Acosta M, Mohamed FH, Ferramola ML, Oliveros LB, Gimenez MS. Protective effect of soybeans as protein source in the diet against cadmium-aorta redox and morphological alteration. Toxicol Appl Pharmacol 2013; 272(3): 806-15.
[http://dx.doi.org/10.1016/j.taap.2013.07.016] [PMID: 23916567]
[65]
Nagarajan S, Rajendran S, Saran U, et al. Nitric oxide protects endothelium from cadmium mediated leakiness. Cell Biol Int 2013; 37(5): 495-506.
[http://dx.doi.org/10.1002/cbin.10070] [PMID: 23404577]
[66]
Prozialeck WC, Edwards JR, Nebert DW, Woods JM, Barchowsky A, Atchison WD. The vascular system as a target of metal toxicity. Toxicol Sci 2008; 102(2): 207-18.
[http://dx.doi.org/10.1093/toxsci/kfm263] [PMID: 17947343]
[67]
Song NH, Koh JW. Effects of cadmium chloride on the cultured human lens epithelial cells. Mol Vis 2012; 18: 983-8.
[PMID: 22550391]
[68]
Tang L, Su J, Liang P. Modeling cadmium-induced endothelial toxicity using human pluripotent stem cell-derived endothelial cells. Sci Rep 2017; 7(1): 14811.
[http://dx.doi.org/10.1038/s41598-017-13694-5] [PMID: 29093498]
[69]
Tutkun L, Gunduzoz M, Turksoy VA, et al. Assessment of endothelial dysfunction with methylated arginines and l-arginine in cadmium-exposed people: A pilot study. Clin Lab 2019; 65(10): 1821-8.
[http://dx.doi.org/10.7754/Clin.Lab.2019.181249] [PMID: 31625365]
[70]
Lukkhananan P, Thawonrachat N, Srihirun S, et al. Endothelial dysfunction in subjects with chronic cadmium exposure. J Toxicol Sci 2015; 40(5): 605-13.
[http://dx.doi.org/10.2131/jts.40.605] [PMID: 26354377]
[71]
Dejam A, Hunter CJ, Pelletier MM, et al. Erythrocytes are the major intravascular storage sites of nitrite in human blood. Blood 2005; 106(2): 734-9.
[http://dx.doi.org/10.1182/blood-2005-02-0567] [PMID: 15774613]
[72]
Lu TM, Chung MY, Lin CC, Hsu CP, Lin SJ. Asymmetric dimethylarginine and clinical outcomes in chronic kidney disease. Clin J Am Soc Nephrol 2011; 6(7): 1566-72.
[http://dx.doi.org/10.2215/CJN.08490910] [PMID: 21642363]
[73]
Valkonen VP, Päivä H, Salonen JT, et al. Risk of acute coronary events and serum concentration of asymmetrical dimethylarginine. Lancet 2001; 358(9299): 2127-8.
[http://dx.doi.org/10.1016/S0140-6736(01)07184-7] [PMID: 11784629]
[74]
Al-Naemi HA, Das SC. Cadmium-induced endothelial dysfunction mediated by asymmetric dimethylarginine. Environ Sci Pollut Res Int 2020; 27(14): 16246-53.
[http://dx.doi.org/10.1007/s11356-020-08116-5] [PMID: 32124290]
[75]
Vallance P, Leone A, Calver A, Collier J, Moncada S. Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet 1992; 339(8793): 572-5.
[http://dx.doi.org/10.1016/0140-6736(92)90865-Z] [PMID: 1347093]
[76]
Almenara CCP, Oliveira TF, Padilha AS. The role of antioxidants in the prevention of cadmium-induced endothelial dysfunction. Curr Pharm Des 2020; 26(30): 3667-75.
[http://dx.doi.org/10.2174/1381612826666200415172338] [PMID: 32294029]
[77]
Nakmareong S, Kukongviriyapan U, Pakdeechote P, et al. Antioxidant and vascular protective effects of curcumin and tetrahydrocurcumin in rats with L-NAME-induced hypertension. Naunyn Schmiedebergs Arch Pharmacol 2011; 383(5): 519-29.
[http://dx.doi.org/10.1007/s00210-011-0624-z] [PMID: 21448566]
[78]
Nakmareong S, Kukongviriyapan U, Pakdeechote P, et al. Tetrahydrocurcumin alleviates hypertension, aortic stiffening and oxidative stress in rats with nitric oxide deficiency. Hypertens Res 2012; 35(4): 418-25.
[http://dx.doi.org/10.1038/hr.2011.180] [PMID: 22072109]
[79]
Kukongviriyapan U, Pannangpetch P, Kukongviriyapan V, Donpunha W, Sompamit K, Surawattanawan P. Curcumin protects against cadmium-induced vascular dysfunction, hypertension and tissue cadmium accumulation in mice. Nutrients 2014; 6(3): 1194-208.
[http://dx.doi.org/10.3390/nu6031194] [PMID: 24662163]
[80]
Kukongviriyapan U, Apaijit K, Kukongviriyapan V. Oxidative Stress and Cardiovascular Dysfunction Associated with Cadmium Exposure: Beneficial Effects of Curcumin and Tetrahydrocurcumin. Tohoku J Exp Med 2016; 239(1): 25-38.
[http://dx.doi.org/10.1620/tjem.239.25] [PMID: 27151191]
[81]
Samuni Y, Goldstein S, Dean OM, Berk M. The chemistry and biological activities of N-acetylcysteine. Biochim Biophys Acta 2013; 1830(8): 4117-29.
[http://dx.doi.org/10.1016/j.bbagen.2013.04.016] [PMID: 23618697]
[82]
Barajas-Espinosa A, Basye A, Jesse E, Yan H, Quan D, Chen CA. Redox activation of DUSP4 by N-acetylcysteine protects endothelial cells from Cd²-induced apoptosis. Free Radic Biol Med 2014; 74: 188-99.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.06.016] [PMID: 24973647]
[83]
Perry HM Jr, Erlanger M, Perry EF. Elevated systolic pressure following chronic low-level cadmiun feeding. Am J Physiol 1977; 232(2): H114-21.
[PMID: 842643]
[84]
Kacar Kocak M, Yazihan N, Akcil E, Bay M, Aslan O. The effect of chronic cadmium toxicity on blood pressure and plasma viscosity. Pathophysiol Haemost Thromb 2010; 37(2-4): 82-7.
[http://dx.doi.org/10.1159/000323702] [PMID: 21389675]
[85]
Ohanian EV, Iwai J. Etiological role of cadmium in hypertension in an animal model. J Environ Pathol Toxicol 1980; 4(2-3): 229-41.
[PMID: 7462901]
[86]
Fingerle H, Fischer G, Classen HG. Failure to produce hypertension in rats by chronic exposure to cadmium. Food Chem Toxicol 1982; 20(3): 301-6.
[http://dx.doi.org/10.1016/S0278-6915(82)80296-2] [PMID: 7201956]
[87]
Hudson KM, Belcher SM, Cowley M. Maternal cadmium exposure in the mouse leads to increased heart weight at birth and programs susceptibility to hypertension in adulthood. Sci Rep 2019; 9(1): 13553.
[http://dx.doi.org/10.1038/s41598-019-49807-5] [PMID: 31537853]
[88]
Refaie MMM, El-Hussieny M, Bayoumi AMA, Shehata S. Mechanisms mediating the cardioprotective effect of carvedilol in cadmium induced cardiotoxicity. Role of eNOS and HO1/Nrf2 pathway. Environ Toxicol Pharmacol 2019; 70: 103198.
[http://dx.doi.org/10.1016/j.etap.2019.103198] [PMID: 31154273]
[89]
Porter MC, Miya TS, Bousquet WF. Cadmium: Inability to induce hypertension in the rat. Toxicol Appl Pharmacol 1974; 27(3): 692-5.
[http://dx.doi.org/10.1016/0041-008X(74)90049-0] [PMID: 4850842]
[90]
Fischer GM, Thind GS. Tissue cadmium and water content of normal and cadmium hypertensive rabbits. Arch Environ Health 1971; 23(2): 107-10.
[http://dx.doi.org/10.1080/00039896.1971.10665964] [PMID: 5558141]
[91]
Tomera JF, Harakal C. Multiple linear regression analysis of blood pressure, hypertrophy, calcium and cadmium in hypertensive and non-hypertensive states. Food Chem Toxicol 1997; 35(7): 713-8.
[http://dx.doi.org/10.1016/S0278-6915(97)00042-2] [PMID: 9301656]
[92]
Puri VN. Effect of verapamil on cadmium induced hypertension in rats. Indian J Exp Biol 1996; 34(12): 1268-70.
[PMID: 9246924]
[93]
Wang SJ, Paek DM, Kim RH, Cha BS. Variation of systolic blood pressure in rats exposed to cadmium and nickel. Environ Res 2002; 88(2): 116-9.
[http://dx.doi.org/10.1006/enrs.2001.4319] [PMID: 11908936]
[94]
Perry HM, Erlanger M, Perry EF. Increase in the systolic pressure of rats chronically fed cadmium. Environ Health Perspect 1979; 28: 251-60.
[http://dx.doi.org/10.1289/ehp.7928251] [PMID: 488039]
[95]
Walker HL, Moses HA. Cadmium: Hypertension induction and lead mobilization. J Natl Med Assoc 1979; 71(12): 1187-9.
[PMID: 522184]
[96]
Mikhaleva LM, Zhavoronkov AA, Cherniaev AL, Koshelev VB. Morphofunctional characteristics of cadmium-induced arterial hypertension. Biull Eksp Biol Med 1991; 111(4): 420-3.
[PMID: 1893157]
[97]
Sompamit K, Kukongviriyapan U, Donpunha W, Nakmareong S, Kukongviriyapan V. Reversal of cadmium-induced vascular dysfunction and oxidative stress by meso-2,3-dimercaptosuccinic acid in mice. Toxicol Lett 2010; 198(1): 77-82.
[http://dx.doi.org/10.1016/j.toxlet.2010.04.007] [PMID: 20399841]
[98]
Perry HM Jr, Erlanger MW. Elevated circulating renin activity in rats following doses of cadmium known to induce hypertension. J Lab Clin Med 1973; 82(3): 399-405.
[PMID: 4353877]
[99]
Saleh RM, Awadin WF. Biochemical and histopathological changes of subacute cadmium intoxication in male rats. Environ Sci Pollut Res Int 2017; 24(32): 25475-81.
[http://dx.doi.org/10.1007/s11356-017-0348-9] [PMID: 28975487]
[100]
Lall SB, Peshin SS, Gulati K, Khattar S, Das N, Seth SD. Involvement of renin-angiotensin system in hypertensive effect of cadmium in rats. Indian J Exp Biol 1997; 35(4): 338-91.
[PMID: 9315231]
[101]
Zhang R, Witkowska K, Guerra-Assunção JA, et al. A blood pressure-associated variant of the SLC39A8 gene influences cellular cadmium accumulation and toxicity. Hum Mol Genet 2016; 25(18): 4117-26.
[http://dx.doi.org/10.1093/hmg/ddw236] [PMID: 27466201]
[102]
Zhang Q, Huang Y, Zhang K, et al. Progesterone attenuates hypertension and autoantibody levels to the angiotensin II type 1 receptor in response to elevated cadmium during pregnancy. Placenta 2018; 62: 16-24.
[http://dx.doi.org/10.1016/j.placenta.2017.12.004] [PMID: 29405962]
[103]
Boscolo P, Porcelli G, Carmignani M, Finelli VN. Urinary kallikrein and hypertension in cadmium-exposed rats. Toxicol Lett 1981; 7(3): 189-94.
[http://dx.doi.org/10.1016/0378-4274(81)90066-7] [PMID: 6908749]
[104]
Peña A, Iturri SJ. Cadmium as hypertensive agent. Effect on ion excretion in rats. Comp Biochem Physiol C Comp Pharmacol Toxicol 1993; 106(2): 315-9.
[http://dx.doi.org/10.1016/0742-8413(93)90139-C] [PMID: 7904909]
[105]
Nishiyama S, Nakamura K. Effect of cadmium on plasma aldosterone and serum corticosterone concentrations in male rats. Toxicol Appl Pharmacol 1984; 76(3): 420-5.
[http://dx.doi.org/10.1016/0041-008X(84)90346-6] [PMID: 6506070]
[106]
Eakin DJ, Schroeder LA, Whanger PD, Weswig PH. Cadmium and nickel influence on blood pressure, plasma renin, and tissue mineral concentrations. Am J Physiol 1980; 238(1): E53-61.
[PMID: 6986793]
[107]
Revis N. A possible mechanism for cadmium-induced hypertension in rats. Life Sci 1978; 22(6): 479-87.
[http://dx.doi.org/10.1016/0024-3205(78)90428-9] [PMID: 625192]
[108]
Ozdem SS, Oğütman C. Responsiveness of aortic rings of cadmium-hypertensive rats to endothelin-1. Pharmacology 1997; 54(6): 328-32.
[http://dx.doi.org/10.1159/000139503] [PMID: 9286817]
[109]
Toda N. Influence of cadmium ions on contractile response of isolated aortas to stimulatory agents. Am J Physiol 1973; 225(2): 350-5.
[http://dx.doi.org/10.1152/ajplegacy.1973.225.2.350] [PMID: 4352898]
[110]
Nasu T. Spasmolytic effect of cadmium and cadmium uptake in aorta. Br J Pharmacol 1983; 79(3): 751-4.
[http://dx.doi.org/10.1111/j.1476-5381.1983.tb10013.x] [PMID: 6652354]
[111]
Wakabayashi I, Sakamoto K, Hatake K. Inhibitory effects of cadmium ion on extracellular Ca(2+)-independent contraction of rat aorta. Eur J Pharmacol 1995; 293(2): 133-40.
[PMID: 7589227]
[112]
Tzotzes V, Tzilalis V, Giannakakis S, et al. Effects of acute and chronic cadmium administration on the vascular reactivity of rat aorta. Biometals 2007; 20(1): 83-91.
[http://dx.doi.org/10.1007/s10534-006-9017-z] [PMID: 16802071]
[113]
Sakurada K, Wakabayashi I. Cadmium accumulation augments contraction and phosphoinositide hydrolysis of vascular smooth muscles. Res Commun Mol Pathol Pharmacol 1999; 106(3): 212-20.
[PMID: 11485051]
[114]
Kaji T, Suzuki M, Yamamoto C, et al. Sensitive response of cultured vascular smooth-muscle cells to cadmium cytotoxicity: comparison with cultured vascular endothelial cells and kidney epithelial LLC-PK1 cells. Toxicol Lett 1996; 89(2): 131-7.
[http://dx.doi.org/10.1016/S0378-4274(96)03797-6] [PMID: 8960155]
[115]
Tokushige A, Higashino H, Searle BM, et al. Cadmium effect on the Na,K-ATPase system in cultured vascular smooth muscle cells. Hypertension 1984; 6(1): 20-6.
[http://dx.doi.org/10.1161/01.HYP.6.1.20] [PMID: 6141142]
[116]
Vassallo DV, Almenara CCP, Broseghini-Filho GB, et al. Preliminary studies of acute cadmium administration effects on the calcium-activated potassium (SKCa and BKCa) channels and Na+/K+-ATPase activity in isolated aortic rings of rats. Biol Trace Elem Res 2018; 183(2): 325-34.
[http://dx.doi.org/10.1007/s12011-017-1150-8] [PMID: 28905315]
[117]
Fillion M, Mergler D, Sousa Passos CJ, Larribe F, Lemire M, Guimarães JR. A preliminary study of mercury exposure and blood pressure in the Brazilian Amazon. Environ Health 2006; 5: 29.
[http://dx.doi.org/10.1186/1476-069X-5-29] [PMID: 17032453]
[118]
Grandjean P, Murata K, Budtz-Jørgensen E, Weihe P. Cardiac autonomic activity in methylmercury neurotoxicity: 14-year follow-up of a Faroese birth cohort. J Pediatr 2004; 144(2): 169-76.
[http://dx.doi.org/10.1016/j.jpeds.2003.10.058] [PMID: 14760255]
[119]
Murata K, Sakamoto M, Nakai K, et al. Subclinical effects of prenatal methylmercury exposure on cardiac autonomic function in Japanese children. Int Arch Occup Environ Health 2006; 79(5): 379-86.
[http://dx.doi.org/10.1007/s00420-005-0064-5] [PMID: 16365750]
[120]
Wakita Y. Hypertension induced by methyl mercury in rats. Toxicol Appl Pharmacol 1987; 89(1): 144-7.
[http://dx.doi.org/10.1016/0041-008X(87)90185-2] [PMID: 3590186]
[121]
Houston MC. The role of mercury and cadmium heavy metals in vascular disease, hypertension, coronary heart disease, and myocardial infarction. Altern Ther Health Med 2007; 13(2): S128-33.
[PMID: 17405690]
[122]
Genchi G, Sinicropi MS, Carocci A, Lauria G, Catalano A. Mercury exposure and heart diseases. Int J Environ Res Public Health 2017; 14(1): E74.
[http://dx.doi.org/10.3390/ijerph14010074] [PMID: 28085104]
[123]
Clarkson TW, Magos L. The toxicology of mercury and its chemical compounds. Crit Rev Toxicol 2006; 36(8): 609-62.
[http://dx.doi.org/10.1080/10408440600845619] [PMID: 16973445]
[124]
Ghizoni H, de Souza V, Straliotto MR, de Bem AF, Farina M, Hort MA. Superoxide anion generation and oxidative stress in methylmercury-induced endothelial toxicity in vitro. Toxicol In Vitro 2017; 38: 19-26.
[http://dx.doi.org/10.1016/j.tiv.2016.10.010] [PMID: 27989546]
[125]
Wiggers GA, Peçanha FM, Briones AM, et al. Low mercury concentrations cause oxidative stress and endothelial dysfunction in conductance and resistance arteries. Am J Physiol Heart Circ Physiol 2008; 295(3): H1033-43.
[http://dx.doi.org/10.1152/ajpheart.00430.2008] [PMID: 18599595]
[126]
Hort MA, Farina M. Effects of mercury in the cardiovascular system: A focus on the role of the endothelium in vascular toxicity. In: Castillo L, Ed. Heavy Metals and Health. 1st ed. Nova Science Publishers 2016; pp. 91-116.
[127]
Fardin PBA, Simoes RP, Schereider IRG, Almenara CCP, Simoes MR, Vassallo DV. Chronic mercury exposure in prehypertensive SHRs accelerates hypertension development and activates vasoprotective mechanisms by increasing NO and H2O2 production. Cardiovasc Toxicol 2019.
[PMID: 31338744]
[128]
Simoes RP, Fardin PBA, Simoes MR, Vassallo DV, Padilha AS. Long-term mercury exposure accelerates the development of hypertension in prehypertensive spontaneously hypertensive rats inducing endothelial dysfunction: The role of oxidative stress and cyclooxygenase-2. Biol Trace Elem Res 2019; 196(2): 565-78.
[http://dx.doi.org/10.1007/s12011-019-01952-8] [PMID: 31745719]
[129]
Botelho T, Marques VB, Simões MR, et al. Impaired participation of potassium channels and Na+ /K+ -ATPase in vasodilatation due to reduced nitric oxide bioavailability in rats exposed to mercury. Basic Clin Pharmacol Toxicol 2019; 124(2): 190-8.
[http://dx.doi.org/10.1111/bcpt.13113] [PMID: 30125472]
[130]
Manning BD, Toker A. AKT/PKB signaling: Navigating the network. Cell 2017; 169(3): 381-405.
[http://dx.doi.org/10.1016/j.cell.2017.04.001] [PMID: 28431241]
[131]
Das J, Ghosh J, Manna P, Sil PC. Taurine suppresses doxorubicin-triggered oxidative stress and cardiac apoptosis in rat via up-regulation of PI3-K/Akt and inhibition of p53, p38-JNK. Biochem Pharmacol 2011; 81(7): 891-909.
[http://dx.doi.org/10.1016/j.bcp.2011.01.008] [PMID: 21295553]
[132]
Ohashi H, Takagi H, Oh H, et al. Phosphatidylinositol 3-kinase/Akt regulates angiotensin II-induced inhibition of apoptosis in microvascular endothelial cells by governing survivin expression and suppression of caspase-3 activity. Circ Res 2004; 94(6): 785-93.
[http://dx.doi.org/10.1161/01.RES.0000121103.03275.EC] [PMID: 14963002]
[133]
Widenmaier SB, Ao Z, Kim SJ, Warnock G, McIntosh CH. Suppression of p38 MAPK and JNK via Akt-mediated inhibition of apoptosis signal-regulating kinase 1 constitutes a core component of the beta-cell pro-survival effects of glucose-dependent insulinotropic polypeptide. J Biol Chem 2009; 284(44): 30372-82.
[http://dx.doi.org/10.1074/jbc.M109.060178] [PMID: 19748889]
[134]
Hsu AL, Ching TT, Wang DS, Song X, Rangnekar VM, Chen CS. The cyclooxygenase-2 inhibitor celecoxib induces apoptosis by blocking Akt activation in human prostate cancer cells independently of Bcl-2. J Biol Chem 2000; 275(15): 11397-403.
[http://dx.doi.org/10.1074/jbc.275.15.11397] [PMID: 10753955]
[135]
Baiyun R, Li S, Liu B, et al. Luteolin-mediated PI3K/AKT/Nrf2 signaling pathway ameliorates inorganic mercury-induced cardiac injury. Ecotoxicol Environ Saf 2018; 161: 655-61.
[http://dx.doi.org/10.1016/j.ecoenv.2018.06.046] [PMID: 29933135]
[136]
Wu KL, Wu CA, Wu CW, Chan SH, Chang AY, Chan JY. Redox-sensitive oxidation and phosphorylation of PTEN contribute to enhanced activation of PI3K/Akt signaling in rostral ventrolateral medulla and neurogenic hypertension in spontaneously hypertensive rats. Antioxid Redox Signal 2013; 18(1): 36-50.
[http://dx.doi.org/10.1089/ars.2011.4457] [PMID: 22746319]
[137]
Northcott CA, Hayflick JS, Watts SW. PI3-kinase upregulation and involvement in spontaneous tone in arteries from DOCA-salt rats: is p110delta the culprit? Hypertension 2004; 43(4): 885-90.
[http://dx.doi.org/10.1161/01.HYP.0000118518.20331.e8] [PMID: 14993194]
[138]
Cordeiro ER, Filetti FM, Simões MR, Vassallo DV. Mercury induces nuclear estrogen receptors to act as vasoconstrictors promoting endothelial denudation via the PI3K/Akt signaling pathway. Toxicol Appl Pharmacol 2019; 381: 114710.
[http://dx.doi.org/10.1016/j.taap.2019.114710] [PMID: 31415774]
[139]
Wildemann TM, Mirhosseini N, Siciliano SD, Weber LP. Cardiovascular responses to lead are biphasic, while methylmercury, but not inorganic mercury, monotonically increases blood pressure in rats. Toxicology 2015; 328: 1-11.
[http://dx.doi.org/10.1016/j.tox.2014.11.009] [PMID: 25478804]
[140]
Rizzetti DA, Torres JG, Escobar AG, et al. The cessation of the long-term exposure to low doses of mercury ameliorates the increase in systolic blood pressure and vascular damage in rats. Environ Res 2017; 155: 182-92.
[http://dx.doi.org/10.1016/j.envres.2017.02.022] [PMID: 28222365]
[141]
Takahashi H, Nomiyama H, Nomiyama K. Mercury elevates systolic blood pressure in spontaneously hypertensive rats. J Trace Elem Exp Med 2000; 13(2): 227-37.
[http://dx.doi.org/10.1002/(SICI)1520-670X(2000)13:2<227::AID-JTRA6>3.0.CO;2-F]
[142]
Wiggers GA, Furieri LB, Briones AM, et al. Cerebrovascular endothelial dysfunction induced by mercury exposure at low concentrations. Neurotoxicology 2016; 53: 282-9.
[http://dx.doi.org/10.1016/j.neuro.2016.02.010] [PMID: 26945730]
[143]
Tinkov AA, Ajsuvakova OP, Skalnaya MG, et al. Mercury and metabolic syndrome: A review of experimental and clinical observations. Biometals 2015; 28(2): 231-54.
[http://dx.doi.org/10.1007/s10534-015-9823-2] [PMID: 25633799]
[144]
Branco V, Caito S, Farina M, Teixeira da Rocha J, Aschner M, Carvalho C. Biomarkers of mercury toxicity: Past, present, and future trends. J Toxicol Environ Health B Crit Rev 2017; 20(3): 119-54.
[http://dx.doi.org/10.1080/10937404.2017.1289834] [PMID: 28379072]
[145]
Ajsuvakova OP, Tinkov AA, Aschner M, Rocha JBT, Michalke B, Skalnaya MG, et al. Sulfhydryl groups as targets of mercury toxicity. Coordin Chem Rev 2020; 417.
[146]
Perottoni J, Lobato LP, Silveira A, Rocha JB, Emanuelli T. Effects of mercury and selenite on delta-aminolevulinate dehydratase activity and on selected oxidative stress parameters in rats. Environ Res 2004; 95(2): 166-73.
[http://dx.doi.org/10.1016/j.envres.2003.08.007] [PMID: 15147922]
[147]
Aguado A, Galán M, Zhenyukh O, et al. Mercury induces proliferation and reduces cell size in vascular smooth muscle cells through MAPK, oxidative stress and cyclooxygenase-2 pathways. Toxicol Appl Pharmacol 2013; 268(2): 188-200.
[http://dx.doi.org/10.1016/j.taap.2013.01.030] [PMID: 23415682]
[148]
Torres AD, Rai AN, Hardiek ML. Mercury intoxication and arterial hypertension: report of two patients and review of the literature. Pediatrics 2000; 105(3): E34.
[http://dx.doi.org/10.1542/peds.105.3.e34] [PMID: 10699136]
[149]
Yeter D, Deth R, Kuo HC. Mercury promotes catecholamines which potentiate mercurial autoimmunity and vasodilation: Implications for inositol 1,4,5-triphosphate 3-kinase C susceptibility in kawasaki syndrome. Korean Circ J 2013; 43(9): 581-91.
[http://dx.doi.org/10.4070/kcj.2013.43.9.581] [PMID: 24174958]
[150]
Ahmed AH, Maulood IM. The roles of potassium channels in contractile response to urotensin-II in mercury chloride induced endothelial dysfunction in rat aorta. Majallah-i Tahqiqat-i Dampizishki-i Iran 2018; 19(3): 208-16.
[PMID: 30349568]
[151]
Atlas SA. The renin-angiotensin aldosterone system: pathophysiological role and pharmacologic inhibition. J Manag Care Pharm 2007; 13(8)(Suppl. B): 9-20.
[http://dx.doi.org/10.18553/jmcp.2007.13.s8-b.9] [PMID: 17970613]
[152]
Patel S, Rauf A, Khan H, Abu-Izneid T. Renin-angiotensin-aldosterone (RAAS): The ubiquitous system for homeostasis and pathologies. Biomed Pharmacother 2017; 94: 317-25.
[http://dx.doi.org/10.1016/j.biopha.2017.07.091] [PMID: 28772209]
[153]
Vassallo DV, Simões MR, Furieri LB, et al. Toxic effects of mercury, lead and gadolinium on vascular reactivity. Braz J Med Biol Res 2011; 44(9): 939-46.
[http://dx.doi.org/10.1590/S0100-879X2011007500098] [PMID: 21845340]
[154]
Lemos NB, Angeli JK, Faria TdeO, et al. Low mercury concentration produces vasoconstriction, decreases nitric oxide bioavailability and increases oxidative stress in rat conductance artery. PLoS One 2012; 7(11): e49005.
[http://dx.doi.org/10.1371/journal.pone.0049005] [PMID: 23145049]
[155]
Wiggers GA, Stefanon I, Padilha AS, Peçanha FM, Vassallo DV, Oliveira EM. Low nanomolar concentration of mercury chloride increases vascular reactivity to phenylephrine and local angiotensin production in rats. Comp Biochem Physiol C Toxicol Pharmacol 2008; 147(2): 252-60.
[http://dx.doi.org/10.1016/j.cbpc.2007.10.003] [PMID: 18093879]
[156]
Islam MZ, Van Dao C, Shiraishi M, Miyamoto A. Methylmercury affects cerebrovascular reactivity to angiotensin II and acetylcholine via Rho-kinase and nitric oxide pathways in mice. Life Sci 2016; 147: 30-8.
[http://dx.doi.org/10.1016/j.lfs.2016.01.033] [PMID: 26804998]
[157]
Azevedo BF, Simões MR, Fiorim J, et al. Chronic mercury exposure at different concentrations produces opposed vascular responses in rat aorta. Clin Exp Pharmacol Physiol 2016; 43(7): 712-9.
[http://dx.doi.org/10.1111/1440-1681.12578] [PMID: 27061723]
[158]
Kozma L, Lenkey A, Varga E, Gomba S. Induction of renin release from isolated glomeruli by inorganic mercury(II). Toxicol Lett 1996; 85(1): 49-54.
[http://dx.doi.org/10.1016/0378-4274(96)03637-5] [PMID: 8619260]
[159]
Sherwani SI, Pabon S, Patel RB, et al. Eicosanoid signaling and vascular dysfunction: Methylmercury-induced phospholipase D activation in vascular endothelial cells. Cell Biochem Biophys 2013; 67(2): 317-29.
[http://dx.doi.org/10.1007/s12013-011-9304-3] [PMID: 22020799]
[160]
Kong HK, Gan CF, Xiong M, et al. Chronic methylmercury exposure induces production of prostaglandins: Evidence from a population study and a rat dosing experiment. Environ Sci Technol 2019; 53(13): 7782-91.
[http://dx.doi.org/10.1021/acs.est.9b00660] [PMID: 31244059]
[161]
Pecanha FM, Wiggers GA, Briones AM, et al. The role of cyclooxygenase (COX)-2 derived prostanoids on vasoconstrictor responses to phenylephrine is increased by exposure to low mercury concentration. J Physiol Pharmacol 2010; 61(1): 29-36.
[PMID: 20228412]
[162]
Park HJ, Youn HS. Mercury induces the expression of cyclooxygenase-2 and inducible nitric oxide synthase. Toxicol Ind Health 2013; 29(2): 169-74.
[http://dx.doi.org/10.1177/0748233711427048] [PMID: 22080037]
[163]
Blanco-Rivero J, Furieri LB, Vassallo DV, Salaices M, Balfagón G. Chronic HgCl(2) treatment increases vasoconstriction induced by electrical field stimulation: role of adrenergic and nitrergic innervation. Clin Sci (Lond) 2011; 121(8): 331-41.
[http://dx.doi.org/10.1042/CS20110072] [PMID: 21554244]
[164]
Solomon HS, Hollenberg NK. Catecholamine release: Mechanism of mercury-induced vascular smooth muscle contraction. Am J Physiol 1975; 229(1): 8-12.
[http://dx.doi.org/10.1152/ajplegacy.1975.229.1.8] [PMID: 238407]

Rights & Permissions Print Export Cite as
© 2024 Bentham Science Publishers | Privacy Policy