Review Article

外泌体工程:迈向绿色生产药物输送系统的步骤

卷 20, 期 15, 2019

页: [1537 - 1549] 页: 13

弟呕挨: 10.2174/1389450120666190715104100

价格: $65

摘要

将治疗剂靶向其特定的作用位点不仅增加了治疗功效,而且降低了全身毒性。 因此,已经开发出各种药物递送系统(DDS)以实现该目标。 但是,大多数这些DDS在生物相容性和环境危害方面都有几个问题。 与合成DDS相比,基于外来体的天然载体具有生物相容性,可生物降解性,并且对环境安全。 由于外来体在细胞间通讯中起作用,因此它们已被广泛用作不同治疗剂的载体。 本文旨在从工程学,隔离,表征,应用和限制方面概述作为环境友好DDS的外来体。

关键词: 靶向药物,生物DDS,绿色DDS,外来体,仿生载体,囊泡载体。

图形摘要
[1]
Jhaveri A, Torchilin V. Intracellular delivery of nanocarriers and targeting to subcellular organelles. Expert Opin Drug Deliv 2016; 13(1): 49-70.
[http://dx.doi.org/10.1517/17425247.2015.1086745] [PMID: 26358656]
[2]
Ma X, Gong N, Zhong L, Sun J, Liang X-J. Future of nanotherapeutics: Targeting the cellular sub-organelles. Biomaterials 2016; 97: 10-21.
[http://dx.doi.org/10.1016/j.biomaterials.2016.04.026] [PMID: 27155363]
[3]
Li T, Dong H, Zhang C, Mo R. Cell-based drug delivery systems for biomedical applications. Nano Res 2018; 1-18.
[http://dx.doi.org/10.1007/s12274-018-2179-5]
[4]
Wang Q, Cheng H, Peng H, Zhou H, Li PY, Langer R. Non-genetic engineering of cells for drug delivery and cell-based therapy. Adv Drug Deliv Rev 2015; 91: 125-40.
[http://dx.doi.org/10.1016/j.addr.2014.12.003] [PMID: 25543006]
[5]
Bazak R, Houri M, El Achy S, Kamel S, Refaat T. Cancer active targeting by nanoparticles: a comprehensive review of literature. J Cancer Res Clin Oncol 2015; 141(5): 769-84.
[http://dx.doi.org/10.1007/s00432-014-1767-3] [PMID: 25005786]
[6]
Smith RA, Porteous CM, Coulter CV, Murphy MP. Selective targeting of an antioxidant to mitochondria. Eur J Biochem 1999; 263(3): 709-16.
[http://dx.doi.org/10.1046/j.1432-1327.1999.00543.x] [PMID: 10469134]
[7]
Sakhrani NM, Padh H. Organelle targeting: third level of drug targeting. Drug Des Devel Ther 2013; 7: 585-99.
[PMID: 23898223]
[8]
Rizzitelli S, Giustetto P, Faletto D, Delli Aime S, Terreno E. The release of Doxorubicin from liposomes monitored by MRI and triggered by a combination of US stimuli led to a complete tumor regression in a breast cancer mouse model. J Control Release 2016; 230: 57-63.
[http://dx.doi.org/10.1016/j.jconrel.2016.03.040] [PMID: 27049069]
[9]
Chen Y, Zhang W, Huang Y, Gao F, Sha X, Fang X. Pluronic-based functional polymeric mixed micelles for co-delivery of doxorubicin and paclitaxel to multidrug resistant tumor. Int J Pharm 2015; 488(1-2): 44-58.
[http://dx.doi.org/10.1016/j.ijpharm.2015.04.048] [PMID: 25899286]
[10]
Patel SK, Gajbhiye V, Jain NK. Synthesis, characterization and brain targeting potential of paclitaxel loaded thiamine-PPI nanoconjugates. J Drug Target 2012; 20(10): 841-9.
[http://dx.doi.org/10.3109/1061186X.2012.719231] [PMID: 22994427]
[11]
Harisa GI, Badran MM, AlQahtani SA, Alanazi FK, Attia SM. Pravastatin chitosan nanogels-loaded erythrocytes as a new delivery strategy for targeting liver cancer. Saudi Pharm J 2016; 24(1): 74-81.
[http://dx.doi.org/10.1016/j.jsps.2015.03.024] [PMID: 26903771]
[12]
Kim S-K, Kim SU, Park IH, et al. Human neural stem cells target experimental intracranial medulloblastoma and deliver a therapeutic gene leading to tumor regression. Clin Cancer Res 2006; 12(18): 5550-6.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-2508] [PMID: 17000692]
[13]
Coosemans A, Vanderstraeten A, Tuyaerts S, et al. Wilms’ Tumor Gene 1 (WT1)--loaded dendritic cell immunotherapy in patients with uterine tumors: a phase I/II clinical trial. Anticancer Res 2013; 33(12): 5495-500.
[PMID: 24324087]
[14]
Youssof AME, Alanazi FK, Salem-Bekhit MM, Shakeel F, Haq N. Bacterial ghosts carrying 5-Fluorouracil: a novel biological carrier for targeting colorectal cancer. AAPS PharmSciTech 2019; 20(2): 48.
[http://dx.doi.org/10.1208/s12249-018-1249-z] [PMID: 30617674]
[15]
Paukner S, Kohl G, Lubitz W. Bacterial ghosts as novel advanced drug delivery systems: antiproliferative activity of loaded doxorubicin in human Caco-2 cells. J Control Release 2004; 94(1): 63-74.
[http://dx.doi.org/10.1016/j.jconrel.2003.09.010] [PMID: 14684272]
[16]
Della Peruta M, Badar A, Rosales C, et al. Preferential targeting of disseminated liver tumors using a recombinant adeno-associated viral vector. Hum Gene Ther 2015; 26(2): 94-103.
[http://dx.doi.org/10.1089/hum.2014.052] [PMID: 25569358]
[17]
Dowd E, Monville C, Torres EM, et al. Lentivector-mediated delivery of GDNF protects complex motor functions relevant to human Parkinsonism in a rat lesion model. Eur J Neurosci 2005; 22(10): 2587-95.
[http://dx.doi.org/10.1111/j.1460-9568.2005.04414.x] [PMID: 16307601]
[18]
AlQahtani SA, Harisa GI, Badran MM, et al. Nano-erythrocyte membrane-chaperoned 5-fluorouracil liposomes as biomimetic delivery platforms to target hepatocellular carcinoma cell lines. Artif Cells Nanomed Biotechnol 2019; 47(1): 989-96.
[http://dx.doi.org/10.1080/21691401.2019.1577887] [PMID: 30873877]
[19]
Luk BT, Fang RH, Hu C-MJ, et al. Safe and immunocompatible nanocarriers cloaked in RBC membranes for drug delivery to treat solid tumors. Theranostics 2016; 6(7): 1004-11.
[http://dx.doi.org/10.7150/thno.14471] [PMID: 27217833]
[20]
Ma J, Gallo JM. Delivery of cytotoxic drugs from carrier cells to tumour cells by apoptosis. Apoptosis 1998; 3(3): 195-202.
[http://dx.doi.org/10.1023/A:1009603023214] [PMID: 14646500]
[21]
Zhang N, Miao J, Sun P, et al. Pharmacokinetics, tissue distribution and anti-tumor effect of low density lipoprotein peptide conjugated submicron emulsions. Biomed Pharmacother 2016; 82: 614-9.
[http://dx.doi.org/10.1016/j.biopha.2016.05.047] [PMID: 27470404]
[22]
Qu M, Lin Q, Huang L, et al. Dopamine-loaded blood exosomes targeted to brain for better treatment of Parkinson’s disease. J Control Release 2018; 287: 156-66.
[http://dx.doi.org/10.1016/j.jconrel.2018.08.035] [PMID: 30165139]
[23]
Giuliano E, Paolino D, Fresta M, Cosco D. Mucosal applications of poloxamer 407-based hydrogels: An overview. Pharmaceutics 2018; 10(3): 159.
[http://dx.doi.org/10.3390/pharmaceutics10030159] [PMID: 30213143]
[24]
Di Meo C, Cilurzo F, Licciardi M, et al. Polyaspartamide-doxorubicin conjugate as potential prodrug for anticancer therapy. Pharm Res 2015; 32(5): 1557-69.
[http://dx.doi.org/10.1007/s11095-014-1557-2] [PMID: 25366547]
[25]
Telrandhe R. Nanotechnology for cancer therapy: Recent developments. Eur J Pharm Med Res 2016; 3(11): 284-94.
[26]
Park W, Na K. Advances in the synthesis and application of nanoparticles for drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2015; 7(4): 494-508.
[http://dx.doi.org/10.1002/wnan.1325] [PMID: 25583540]
[27]
De Jong WH, Borm PJ. Drug delivery and nanoparticles:applications and hazards. Int J Nanomedicine 2008; 3(2): 133-49.
[http://dx.doi.org/10.2147/IJN.S596] [PMID: 18686775]
[28]
Kanwar R, Rathee J, Salunke DB, Mehta SK. Green nanotechnology-driven drug delivery assemblies. ACS Omega 2019; 4(5): 8804-15.
[http://dx.doi.org/10.1021/acsomega.9b00304]
[29]
Di Francesco M, Celia C, Primavera R, et al. Physicochemical characterization of pH-responsive and fusogenic self-assembled non-phospholipid vesicles for a potential multiple targeting therapy. Int J Pharm 2017; 528(1-2): 18-32.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.055] [PMID: 28559215]
[30]
Sun Y, Su J, Liu G, et al. Advances of blood cell-based drug delivery systems. Eur J Pharm Sci 2017; 96: 115-28.
[http://dx.doi.org/10.1016/j.ejps.2016.07.021] [PMID: 27496050]
[31]
Vader P, Mol EA, Pasterkamp G, Schiffelers RM. Extracellular vesicles for drug delivery. Adv Drug Deliv Rev 2016; 106(Pt A): 148-56.
[http://dx.doi.org/10.1016/j.addr.2016.02.006] [PMID: 26928656]
[32]
Aboody KS, Najbauer J, Danks MK. Stem and progenitor cell-mediated tumor selective gene therapy. Gene Ther 2008; 15(10): 739-52.
[http://dx.doi.org/10.1038/gt.2008.41] [PMID: 18369324]
[33]
Menon LG, Shi VJ, Carroll RS. Mesenchymal stromal cells as a drug delivery system Stem Book Cambridge. MA: Harvard Stem Cell Institute 2009.
[34]
Breckpot K, Escors D. Dendritic cells for active anti-cancer immunotherapy: targeting activation pathways through genetic modification endocrine metabolic & immune disorders-drug targets 2009; 9(4): 328-43.
[http://dx.doi.org/10.2174/187153009789839156]
[35]
Biagiotti S, Paoletti MF, Fraternale A, Rossi L, Magnani M. Drug delivery by red blood cells. IUBMB Life 2011; 63(8): 621-31.
[http://dx.doi.org/10.1002/iub.478] [PMID: 21766411]
[36]
Villa CH, Anselmo AC, Mitragotri S, Muzykantov V. Red blood cells: Supercarriers for drugs, biologicals, and nanoparticles and inspiration for advanced delivery systems. Adv Drug Deliv Rev 2016; 106(Pt A): 88-103.
[http://dx.doi.org//10.1016/j.addr.2016.02.007] [PMID: 26941164]
[37]
Stephan MT, Stephan SB, Bak P, Chen J, Irvine DJ. Synapse-directed delivery of immunomodulators using T-cell-conjugated nanoparticles. Biomaterials 2012; 33(23): 5776-87.
[http://dx.doi.org/10.1016/j.biomaterials.2012.04.029] [PMID: 22594972]
[38]
Ullah S, Seidel K, Türkkan S, et al. Macrophage entrapped silica coated superparamagnetic iron oxide particles for controlled drug release in a 3D cancer model. J Control Release 2019; 294: 327-36.
[http://dx.doi.org/10.1016/j.jconrel.2018.12.040] [PMID: 30586597]
[39]
Fliervoet LAL, Mastrobattista E. Drug delivery with living cells. Adv Drug Deliv Rev 2016; 106(Pt A): 63.: 72.
[http://dx.doi.org/10.1016/j.addr.2016.04.021] [PMID: 27129442]
[40]
Kudela P, Koller VJ, Lubitz W. Bacterial ghosts (BGs)--advanced antigen and drug delivery system. Vaccine 2010; 28(36): 5760-7.
[http://dx.doi.org/10.1016/j.vaccine.2010.06.087] [PMID: 20619379]
[41]
Hosseinidoust Z, Mostaghaci B, Yasa O, Park B-W, Singh AV, Sitti M. Bioengineered and biohybrid bacteria-based systems for drug delivery. Adv Drug Deliv Rev 2016; 106(Pt A): 27-44.
[http://dx.doi.org/10.1016/j.addr.2016.09.007] [PMID: 27641944]
[42]
Duan D. Systemic delivery of adeno-associated viral vectors. Curr Opin Virol 2016; 21: 16-25.
[http://dx.doi.org/10.1016/j.coviro.2016.07.006] [PMID: 27459604]
[43]
Yang N. An overview of viral and nonviral delivery systems for microRNA. Int J Pharm Investig 2015; 5(4): 179-81.
[http://dx.doi.org/10.4103/2230-973X.167646] [PMID: 26682187]
[44]
Samanta S, Rajasingh S, Drosos N, Zhou Z, Dawn B, Rajasingh J. Exosomes: new molecular targets of diseases. Acta Pharmacol Sin 2018; 39(4): 501-13.
[http://dx.doi.org/10.1038/aps.2017.162] [PMID: 29219950]
[45]
Schatz D, Vardi A. Extracellular vesicles - new players in cell-cell communication in aquatic environments. Curr Opin Microbiol 2018; 43: 148-54.
[http://dx.doi.org/10.1016/j.mib.2018.01.014] [PMID: 29448174]
[46]
van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 2018; 19(4): 213-28.
[http://dx.doi.org/10.1038/nrm.2017.125] [PMID: 29339798]
[47]
Tkach M, Théry C. Communication by extracellular vesicles: where we are and where we need to go. Cell 2016; 164(6): 1226-32.
[http://dx.doi.org/10.1016/j.cell.2016.01.043] [PMID: 26967288]
[48]
Ha D, Yang N, Nadithe V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sin B 2016; 6(4): 287-96.
[http://dx.doi.org/10.1016/j.apsb.2016.02.001] [PMID: 27471669]
[49]
Kooijmans SA, Vader P, van Dommelen SM, van Solinge WW, Schiffelers RM. Exosome mimetics: a novel class of drug delivery systems. Int J Nanomedicine 2012; 7: 1525-41.
[PMID: 22619510]
[50]
Zhang J, Li S, Li L, et al. Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics 2015; 13(1): 17-24.
[http://dx.doi.org/10.1016/j.gpb.2015.02.001] [PMID: 25724326]
[51]
Villarroya-Beltri C, Baixauli F, Mittelbrunn M, et al. IS Gylation controls exosome secretion by promoting lysosomal degradation of MVB proteins. Nat Commun 2016; 7: 13588.
[http://dx.doi.org/10.1038/ncomms13588] [PMID: 27882925]
[52]
Kowal J, Tkach M, Théry C. Biogenesis and secretion of exosomes. Curr Opin Cell Biol 2014; 29: 116-25.
[http://dx.doi.org/10.1016/j.ceb.2014.05.004] [PMID: 24959705]
[53]
Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release. Cell Mol Life Sci 2018; 75(2): 193-208.
[http://dx.doi.org/10.1007/s00018-017-2595-9] [PMID: 28733901]
[54]
Kalluri R. The biology and function of exosomes in cancer. J Clin Invest 2016; 126(4): 1208-15.
[http://dx.doi.org/10.1172/JCI81135] [PMID: 27035812]
[55]
Shyong Y-J, Chang K-C, Lin F-H. Calcium phosphate particles stimulate exosome secretion from phagocytes for the enhancement of drug delivery. Colloids Surf B Biointerfaces 2018; 171: 391-7.
[http://dx.doi.org/10.1016/j.colsurfb.2018.07.037] [PMID: 30064087]
[56]
McKelvey KJ, Powell KL, Ashton AW, Morris JM, McCracken SA. Exosomes: Mechanisms of uptake. J Circ Biomark 2015; 4: 7.
[http://dx.doi.org/10.5772/61186] [PMID: 28936243]
[57]
He C, Zheng S, Luo Y, Wang B. Exosome theranostics: biology and translational medicine. Theranostics 2018; 8(1): 237-55.
[http://dx.doi.org/10.7150/thno.21945] [PMID: 29290805]
[58]
Agrawal AK, Aqil F, Jeyabalan J, et al. Milk-derived exosomes for oral delivery of paclitaxel. Nanomedicine (Lond) 2017; 13(5): 1627-36.
[http://dx.doi.org/10.1016/j.nano.2017.03.001] [PMID: 28300659]
[59]
Haney MJ, Klyachko NL, Zhao Y, et al. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Control Release 2015; 207: 18-30.
[http://dx.doi.org/10.1016/j.jconrel.2015.03.033] [PMID: 25836593]
[60]
Yuan D, Zhao Y, Banks WA, et al. Macrophage exosomes as natural nanocarriers for protein delivery to inflamed brain. Biomaterials 2017; 142: 1-12.
[http://dx.doi.org/10.1016/j.biomaterials.2017.07.011] [PMID: 28715655]
[61]
Tian Y, Li S, Song J, et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 2014; 35(7): 2383-90.
[http://dx.doi.org/10.1016/j.biomaterials.2013.11.083] [PMID: 24345736]
[62]
Greco KA, Franzen CA, Foreman KE, Flanigan RC, Kuo PC, Gupta GN. PLK-1 silencing in bladder cancer by siRNA delivered with exosomes Urology 2016; 91(241): e1-7.
[63]
Kim SM, Yang Y, Oh SJ, Hong Y, Seo M, Jang M. Cancer-derived exosomes as a delivery platform of CRISPR/Cas9 confer cancer cell tropism-dependent targeting. J Control Release 2017; 266: 8-16.
[http://dx.doi.org/10.1016/j.jconrel.2017.09.013] [PMID: 28916446]
[64]
Jang SC, Kim OY, Yoon CM, et al. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano 2013; 7(9): 7698-710.
[http://dx.doi.org/10.1021/nn402232g] [PMID: 24004438]
[65]
Yang Z, Xie J, Zhu J, et al. Functional exosome-mimic for delivery of siRNA to cancer: in vitro and in vivo evaluation. J Control Release 2016; 243: 160-71.
[http://dx.doi.org/10.1016/j.jconrel.2016.10.008] [PMID: 27742443]
[66]
Parimon T, Garrett NE III, Chen P, Antes TJ. Isolation of extracellular vesicles from murine bronchoalveolar lavage fluid using an ultrafiltration centrifugation Technique JoVE 2018; (141): e58310
[http://dx.doi.org/10.3791/58310]
[67]
Yakimchuk K. Exosomes: isolation and characterization methods and specific markers. Mater Methods 2015; 5: 1450-3.
[http://dx.doi.org/10.13070/mm.en.5.1450]
[68]
Nath Neerukonda S, Egan NA, Patria J, et al. Comparison of exosomes purified via ultracentrifugation (UC) and Total Exosome Isolation (TEI) reagent from the serum of Marek’s disease virus (MDV)-vaccinated and tumor-bearing chickens. J Virol Methods 2019; 263: 1-9.
[http://dx.doi.org/10.1016/j.jviromet.2018.10.004] [PMID: 30316797]
[69]
Abramowicz A, Widlak P, Pietrowska M. Proteomic analysis of exosomal cargo: the challenge of high purity vesicle isolation. Mol Biosyst 2016; 12(5): 1407-19.
[http://dx.doi.org/10.1039/C6MB00082G] [PMID: 27030573]
[70]
Sharma S, Scholz-Romero K, Rice GE, Salomon C. Methods to enrich exosomes from conditioned media and biological fluids Preeclampsia. Springer 2018; pp. 103-15.
[71]
Yang F, Liao X, Tian Y, Li G. Exosome separation using microfluidic systems: size-based, immunoaffinity-based and dynamic methodologies. Biotechnol J 2017; 12(4)1600699
[http://dx.doi.org/10.1002/biot.201600699] [PMID: 28166394]
[72]
An M, Wu J, Zhu J, Lubman DM. Comparison of an optimized ultracentrifugation method versus size-exclusion chromatography for isolation of exosomes from human serum. J Proteome Res 2018; 17(10): 3599-605.
[http://dx.doi.org/10.1021/acs.jproteome.8b00479] [PMID: 30192545]
[73]
Nordin JZ, Lee Y, Vader P, et al. Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties. Nanomedicine (Lond) 2015; 11(4): 879-83.
[http://dx.doi.org/10.1016/j.nano.2015.01.003] [PMID: 25659648]
[74]
Taylor DD, Shah S. Methods of isolating extracellular vesicles impact down-stream analyses of their cargoes. Methods 2015; 87: 3-10.
[http://dx.doi.org/10.1016/j.ymeth.2015.02.019] [PMID: 25766927]
[75]
Contreras-Naranjo JC, Wu H-J, Ugaz VM. Microfluidics for exosome isolation and analysis: enabling liquid biopsy for personalized medicine. Lab Chip 2017; 17(21): 3558-77.
[http://dx.doi.org/10.1039/C7LC00592J] [PMID: 28832692]
[76]
Lobb RJ, Becker M, Wen SW, et al. Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracell Vesicles 2015; 4(1): 27031.
[http://dx.doi.org/10.3402/jev.v4.27031] [PMID: 26194179]
[77]
Benedikter BJ, Bouwman FG, Vajen T, et al. Ultrafiltration combined with size exclusion chromatography efficiently isolates extracellular vesicles from cell culture media for compositional and functional studies. Sci Rep 2017; 7(1): 15297.
[http://dx.doi.org/10.1038/s41598-017-15717-7] [PMID: 29127410]
[78]
Haraszti RA, Miller R, Stoppato M, et al. Exosomes produced from 3D cultures of MSCs by tangential flow filtration show higher yield and improved activity. Mol Ther 2018; 26(12): 2838-47.
[http://dx.doi.org/10.1016/j.ymthe.2018.09.015] [PMID: 30341012]
[79]
Stranska R, Gysbrechts L, Wouters J, et al. Comparison of membrane affinity-based method with size-exclusion chromatography for isolation of exosome-like vesicles from human plasma. J Transl Med 2018; 16(1): 1.
[http://dx.doi.org/10.1186/s12967-017-1374-6] [PMID: 29316942]
[80]
Baranyai T, Herczeg K, Onódi Z, et al. Isolation of exosomes from blood plasma: qualitative and quantitative comparison of ultracentrifugation and size exclusion chromatography methods. PLoS One 2015; 10(12)e0145686
[http://dx.doi.org/10.1371/journal.pone.0145686] [PMID: 26690353]
[81]
Nordin JZ, Lee Y, Vader P, et al. Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties. Nanomedicine (Lond) 2015; 11(4): 879-83.
[http://dx.doi.org/10.1016/j.nano.2015.01.003] [PMID: 25659648]
[82]
Bunggulawa EJ, Wang W, Yin T, et al. Recent advancements in the use of exosomes as drug delivery systems. J Nanobiotechnology 2018; 16(1): 81.
[http://dx.doi.org/10.1186/s12951-018-0403-9] [PMID: 30326899]
[83]
Helwa I, Cai J, Drewry MD, et al. A comparative study of serum exosome isolation using differential ultracentrifugation and three commercial reagents. PLoS One 2017; 12(1)e0170628
[http://dx.doi.org/10.1371/journal.pone.0170628] [PMID: 28114422]
[84]
Sáenz-Cuesta M, Arbelaiz A, Oregi A, et al. Methods for extracellular vesicles isolation in a hospital setting. Front Immunol 2015; 6: 50.
[http://dx.doi.org/10.3389/fimmu.2015.00050] [PMID: 25762995]
[85]
Deregibus MC, Figliolini F, D’Antico S, et al. Charge-based precipitation of extracellular vesicles. Int J Mol Med 2016; 38(5): 1359-66.
[http://dx.doi.org/10.3892/ijmm.2016.2759] [PMID: 28025988]
[86]
Gámez-Valero A, Monguió-Tortajada M, Carreras-Planella L. Franquesa Ml, Beyer K, Borràs FE. Size-Exclusion Chromatography-based isolation minimally alters Extracellular Vesicles’ characteristics compared to precipitating agents. Sci Rep 2016; 6: 33641.
[http://dx.doi.org/10.1038/srep33641] [PMID: 27640641]
[87]
Yoo YK, Lee J, Kim H, Hwang KS, Yoon DS, Lee JH. Toward exosome-based neuronal diagnostic devices. Micromachines (Basel) 2018; 9(12): 634.
[http://dx.doi.org/10.3390/mi9120634] [PMID: 30501125]
[88]
Tauro BJ, Greening DW, Mathias RA, et al. Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods 2012; 56(2): 293-304.
[http://dx.doi.org/10.1016/j.ymeth.2012.01.002] [PMID: 22285593]
[89]
Sun D, Zhuang X, Xiang X, et al. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther 2010; 18(9): 1606-14.
[http://dx.doi.org/10.1038/mt.2010.105] [PMID: 20571541]
[90]
Li Y, Gao Y, Gong C, et al. A33 antibody-functionalized exosomes for targeted delivery of doxorubicin against colorectal cancer. Nanomedicine (Lond) 2018; 14(7): 1973-85.
[http://dx.doi.org/10.1016/j.nano.2018.05.020] [PMID: 29935333]
[91]
Kim MS, Haney MJ, Zhao Y, et al. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine (Lond) 2016; 12(3): 655-64.
[http://dx.doi.org/10.1016/j.nano.2015.10.012] [PMID: 26586551]
[92]
Pascucci L, Coccè V, Bonomi A, et al. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: a new approach for drug delivery. J Control Release 2014; 192: 262-70.
[http://dx.doi.org/10.1016/j.jconrel.2014.07.042] [PMID: 25084218]
[93]
Hood JL, Scott MJ, Wickline SA. Maximizing exosome colloidal stability following electroporation. Anal Biochem 2014; 448: 41-9.
[http://dx.doi.org/10.1016/j.ab.2013.12.001] [PMID: 24333249]
[94]
Aqil F, Munagala R, Jeyabalan J, et al. Milk exosomes - Natural nanoparticles for siRNA delivery. Cancer Lett 2019; 449: 186-95.
[http://dx.doi.org/10.1016/j.canlet.2019.02.011] [PMID: 30771430]
[95]
Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 2011; 29(4): 341-5.
[http://dx.doi.org/10.1038/nbt.1807] [PMID: 21423189]
[96]
Faruqu FN, Xu L, Al-Jamal KT. Preparation of exosomes for siRNA delivery to cancer cells JoVE 2018; (142): e58814
[http://dx.doi.org/10.3791/58814]
[97]
Ohno S, Takanashi M, Sudo K, et al. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol Ther 2013; 21(1): 185-91.
[http://dx.doi.org/10.1038/mt.2012.180] [PMID: 23032975]
[98]
Kyuno D, Zhao K, Bauer N, Ryschich E, Zöller M. Therapeutic targeting cancer-initiating cell markers by exosome miRNA: efficacy and functional consequences exemplified for claudin7 and EpCAM. Transl Oncol 2019; 12(2): 191-9.
[http://dx.doi.org/10.1016/j.tranon.2018.08.021] [PMID: 30393102]
[99]
Johnsen KB, Gudbergsson JM, Skov MN, Pilgaard L, Moos T, Duroux M. A comprehensive overview of exosomes as drug delivery vehicles - endogenous nanocarriers for targeted cancer therapy. Biochim Biophys Acta 2014; 1846(1): 75-87.
[PMID: 24747178]
[100]
Wahlgren J, Karlson TDL, Brisslert M, et al. Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Res 2012; 40(17)e130
[http://dx.doi.org/10.1093/nar/gks463]
[101]
Kooijmans SAA, Stremersch S, Braeckmans K, et al. Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles. J Control Release 2013; 172(1): 229-38.
[http://dx.doi.org/10.1016/j.jconrel.2013.08.014] [PMID: 23994516]
[102]
Johnsen KB, Gudbergsson JM, Skov MN, et al. Evaluation of electroporation-induced adverse effects on adipose-derived stem cell exosomes. Cytotechnology 2016; 68(5): 2125-38.
[http://dx.doi.org/10.1007/s10616-016-9952-7] [PMID: 26856590]
[103]
Darband SG, Mirza-Aghazadeh-Attari M, Kaviani M, et al. Exosomes: natural nanoparticles as bio shuttles for RNAi delivery. J Control Release 2018; 289: 158-70.
[http://dx.doi.org/10.1016/j.jconrel.2018.10.001] [PMID: 30290245]
[104]
Fuhrmann G, Serio A, Mazo M, Nair R, Stevens MM. Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins. J Control Release 2015; 205: 35-44.
[http://dx.doi.org/10.1016/j.jconrel.2014.11.029] [PMID: 25483424]
[105]
Podolak I, Galanty A, Sobolewska D. Saponins as cytotoxic agents: a review. Phytochem Rev 2010; 9(3): 425-74.
[http://dx.doi.org/10.1007/s11101-010-9183-z] [PMID: 20835386]
[106]
Ren J, He W, Zheng L, Duan H. From structures to functions: insights into exosomes as promising drug delivery vehicles. Biomater Sci 2016; 4(6): 910-21.
[http://dx.doi.org/10.1039/C5BM00583C] [PMID: 26977477]
[107]
Sarko DK, McKinney CE. Exosomes: origins and therapeutic potential for neurodegenerative disease. Front Neurosci 2017; 11: 82.
[http://dx.doi.org/10.3389/fnins.2017.00082] [PMID: 28289371]
[108]
Kojima R, Bojar D, Rizzi G, et al. Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson’s disease treatment. Nat Commun 2018; 9(1): 1305.
[http://dx.doi.org/10.1038/s41467-018-03733-8] [PMID: 29610454]
[109]
Najlah M, Jain M, Wan K-W, et al. Ethanol-based proliposome delivery systems of paclitaxel for in vitro application against brain cancer cells. J Liposome Res 2018; 28(1): 74-85.
[http://dx.doi.org/10.1080/08982104.2016.1259628] [PMID: 27834116]
[110]
Hadla M, Palazzolo S, Corona G, et al. Exosomes increase the therapeutic index of doxorubicin in breast and ovarian cancer mouse models. Nanomedicine (Lond) 2016; 11(18): 2431-41.
[http://dx.doi.org/10.2217/nnm-2016-0154] [PMID: 27558906]
[111]
Toffoli G, Hadla M, Corona G, et al. Exosomal doxorubicin reduces the cardiac toxicity of doxorubicin. Nanomedicine (Lond) 2015; 10(19): 2963-71.
[http://dx.doi.org/10.2217/nnm.15.118] [PMID: 26420143]
[112]
Luan X, Sansanaphongpricha K, Myers I, Chen H, Yuan H, Sun D. Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol Sin 2017; 38(6): 754-63.
[http://dx.doi.org/10.1038/aps.2017.12] [PMID: 28392567]
[113]
Aqil F, Munagala R, Jeyabalan J, et al. Milk exosomes - Natural nanoparticles for siRNA delivery. Cancer Lett 2019; 449: 186-95.
[http://dx.doi.org/10.1016/j.canlet.2019.02.011] [PMID: 30771430]
[114]
Ding Y, Cao F, Sun H, et al. Exosomes derived from human umbilical cord mesenchymal stromal cells deliver exogenous miR-145-5p to inhibit pancreatic ductal adenocarcinoma progression. Cancer Lett 2019; 442: 351-61.
[http://dx.doi.org/10.1016/j.canlet.2018.10.039] [PMID: 30419348]
[115]
Chen X, Zhou J, Li X, Wang X, Lin Y, Wang X. Exosomes derived from hypoxic epithelial ovarian cancer cells deliver microRNAs to macrophages and elicit a tumor-promoted phenotype. Cancer Lett 2018; 435: 80-91.
[http://dx.doi.org/10.1016/j.canlet.2018.08.001] [PMID: 30098399]
[116]
Li P, Kaslan M, Lee SH, Yao J, Gao Z. Progress in exosome isolation techniques. Theranostics 2017; 7(3): 789-804.
[http://dx.doi.org/10.7150/thno.18133] [PMID: 28255367]
[117]
Escudier B, Dorval T, Chaput N, et al. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical trial. J Transl Med 2005; 3(1): 10.
[http://dx.doi.org/10.1186/1479-5876-3-10] [PMID: 15740633]
[118]
Morse MA, Garst J, Osada T, et al. A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J Transl Med 2005; 3(1): 9.
[http://dx.doi.org/10.1186/1479-5876-3-9] [PMID: 15723705]
[119]
Dai S, Wei D, Wu Z, et al. Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer. Mol Ther 2008; 16(4): 782-90.
[http://dx.doi.org/10.1038/mt.2008.1] [PMID: 18362931]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy