Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Autophagy and Apoptosis Specific Knowledgebases-guided Systems Pharmacology Drug Research

Author(s): Peihao Fan, Nanyi Wang, Lirong Wang * and Xiang-Qun Xie *

Volume 19, Issue 9, 2019

Page: [716 - 728] Pages: 13

DOI: 10.2174/1568009619666190206122149

Price: $65

conference banner
Abstract

Background: Autophagy and apoptosis are the basic physiological processes in cells that clean up aged and mutant cellular components or even the entire cells. Both autophagy and apoptosis are disrupted in most major diseases such as cancer and neurological disorders. Recently, increasing attention has been paid to understand the crosstalk between autophagy and apoptosis due to their tightly synergetic or opposite functions in several pathological processes.

Objective: This study aims to assist autophagy and apoptosis-related drug research, clarify the intense and complicated connections between two processes, and provide a guide for novel drug development.

Methods: We established two chemical-genomic databases which are specifically designed for autophagy and apoptosis, including autophagy- and apoptosis-related proteins, pathways and compounds. We then performed network analysis on the apoptosis- and autophagy-related proteins and investigated the full protein-protein interaction (PPI) network of these two closely connected processes for the first time.

Results: The overlapping targets we discovered show a more intense connection with each other than other targets in the full network, indicating a better efficacy potential for drug modulation. We also found that Death-associated protein kinase 1 (DAPK1) is a critical point linking autophagy- and apoptosis-related pathways beyond the overlapping part, and this finding may reveal some delicate signaling mechanism of the process. Finally, we demonstrated how to utilize our integrated computational chemogenomics tools on in silico target identification for small molecules capable of modulating autophagy- and apoptosis-related pathways.

Conclusion: The knowledge-bases for apoptosis and autophagy and the integrated tools will accelerate our work in autophagy and apoptosis-related research and can be useful sources for information searching, target prediction, and new chemical discovery.

Keywords: Autophagy, apoptosis, cancer, neurological diseases, systems pharmacology, network analysis.

Graphical Abstract
[1]
Levine, B.; Kroemer, G. Autophagy in the pathogenesis of disease. Cell, 2008, 132(1), 27-42.
[2]
Kroemer, G. Autophagy: A druggable process that is deregulated in aging and human disease. J. Clin. Invest., 2015, 125(1), 1-4.
[3]
Schwarze, P.E.; Seglen, P.O. Reduced autophagic activity, improved protein balance and enhanced in vitro survival of hepatocytes isolated from carcinogen-treated rats. Exp. Cell Res., 1985, 157(1), 15-28.
[4]
Komatsu, M.; Waguri, S.; Koike, M.; Sou, Y-S.; Ueno, T.; Hara, T.; Mizushima, N.; Iwata, J-i.; Ezaki, J.; Murata, S. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell, 2007, 131(6), 1149-1163.
[5]
Komatsu, M.; Waguri, S.; Ueno, T.; Iwata, J.; Murata, S.; Tanida, I.; Ezaki, J.; Mizushima, N.; Ohsumi, Y.; Uchiyama, Y. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J. Cell Biol., 2005, 169(3), 425-434.
[6]
Mathew, R.; Karp, C.M.; Beaudoin, B.; Vuong, N.; Chen, G.; Chen, H-Y.; Bray, K.; Reddy, A.; Bhanot, G.; Gelinas, C. Autophagy suppresses tumorigenesis through elimination of p62. Cell, 2009, 137(6), 1062-1075.
[7]
Degenhardt, K.; Mathew, R.; Beaudoin, B.; Bray, K.; Anderson, D.; Chen, G.; Mukherjee, C.; Shi, Y.; Gélinas, C.; Fan, Y. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell, 2006, 10(1), 51-64.
[8]
Lum, J.J.; Bauer, D.E.; Kong, M.; Harris, M.H.; Li, C.; Lindsten, T.; Thompson, C.B. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell, 2005, 120(2), 237-248.
[9]
Kuma, A.; Hatano, M.; Matsui, M.; Yamamoto, A. The role of autophagy during the early neonatal starvation period. Nature, 2004, 432(7020), 1032.
[10]
Mohammad, R.M.; Muqbil, I.; Lowe, L.; Yedjou, C.; Hsu, H.-Y.; Lin, L.-T.; Siegelin, M.D.; Fimognari, C.; Kumar, N.B.; Dou, Q.P. In: Broad targeting of resistance to apoptosis in cancer, Seminars in cancer biology; Elsevier, 2015; pp. S78-S103.
[11]
Levine, B.; Kroemer, G. Autophagy in aging, disease and death: the true identity of a cell death impostor. Cell Death Differ., 2009, 16, 1-2.
[12]
Hara, T.; Nakamura, K.; Matsui, M.; Yamamoto, A.; Nakahara, Y.; Suzuki-Migishima, R.; Yokoyama, M.; Mishima, K.; Saito, I.; Okano, H. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature, 2006, 441(7095), 885-889.
[13]
Komatsu, M.; Waguri, S.; Chiba, T.; Murata, S.; Iwata, J-I.; Tanida, I.; Ueno, T.; Koike, M.; Uchiyama, Y.; Kominami, E. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature, 2006, 441(7095), 880-884.
[14]
Martinez-Vicente, M.; Sovak, G.; Cuervo, A.M. Protein degradation and aging. Exp. Gerontol., 2005, 40(8), 622-633.
[15]
Martin, L.J.; Gupta, J.; Jyothula, S.S.; Kovacic, M.B.; Myers, J.M.B.; Patterson, T.L.; Ericksen, M.B.; He, H.; Gibson, A.M.; Baye, T.M. Functional variant in the autophagy-related 5 gene promotor is associated with childhood asthma. PLoS One, 2012, 7(4) e33454
[16]
Poon, A.; Eidelman, D.; Laprise, C.; Hamid, Q. ATG5, autophagy and lung function in asthma. Autophagy, 2012, 8(4), 694-695.
[17]
Zhou, X-j.; Lu, X-l.; Lv, J-C.; Yang, H-Z.; Qin, L-X.; Zhao, M-H.; Su, Y.; Li, Z-G.; Zhang, H. Genetic association of PRDM1-ATG5 intergenic region and autophagy with systemic lupus erythematosus in a Chinese population. Ann. Rheum. Dis., 2011, 70(7), 1330-1337.
[18]
Pierdominici, M.; Vomero, M.; Barbati, C.; Colasanti, T.; Maselli, A.; Vacirca, D.; Giovannetti, A.; Malorni, W.; Ortona, E. Role of autophagy in immunity and autoimmunity, with a special focus on systemic lupus erythematosus. FASEB J., 2012, 26(4), 1400-1412.
[19]
Hampe, J.; Franke, A.; Rosenstiel, P.; Till, A.; Teuber, M.; Huse, K.; Albrecht, M.; Mayr, G.; De La Vega, F.M.; Briggs, J. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat. Genet., 2007, 39(2), 207.
[20]
Rioux, J.D.; Xavier, R.J.; Taylor, K.D.; Silverberg, M.S.; Goyette, P.; Huett, A.; Green, T.; Kuballa, P.; Barmada, M.M.; Datta, L.W. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat. Genet., 2007, 39(5), 596.
[21]
Barrett, J.C.; Hansoul, S.; Nicolae, D.L.; Cho, J.H.; Duerr, R.H.; Rioux, J.D.; Brant, S.R.; Silverberg, M.S.; Taylor, K.D.; Barmada, M.M. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat. Genet., 2008, 40(8), 955.
[22]
Saito, H.; Inazawa, J.; Saito, S.; Kasumi, F.; Koi, S.; Sagae, S.; Kudo, R.; Saito, J.; Noda, K.; Nakamura, Y. Detailed deletion mapping of chromosome 17q in ovarian and breast cancers: 2-cM region on 17q21.3 often and commonly deleted in tumors. Cancer Res., 1993, 53(14), 3382-3385.
[23]
Gao, X.; Zacharek, A.; Salkowski, A.; Grignon, D.J.; Sakr, W.; Porter, A.T.; Honn, K.V. Loss of heterozygosity of the BRCA1 and other loci on chromosome 17q in human prostate cancer. Cancer Res., 1995, 55(5), 1002-1005.
[24]
Aita, V.M.; Liang, X.H.; Murty, V.V.; Pincus, D.L.; Yu, W.; Cayanis, E.; Kalachikov, S.; Gilliam, T.C.; Levine, B. Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21. Genomics, 1999, 59(1), 59-65.
[25]
Liang, X.H.; Jackson, S.; Seaman, M.; Brown, K.; Kempkes, B.; Hibshoosh, H.; Levine, B. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature, 1999, 402(6762), 672-676.
[26]
Koukourakis, M.I.; Giatromanolaki, A.; Sivridis, E.; Pitiakoudis, M.; Gatter, K.C.; Harris, A.L. Beclin 1 over- and underexpression in colorectal cancer: distinct patterns relate to prognosis and tumour hypoxia. Br. J. Cancer, 2010, 103(8), 1209-1214.
[27]
Parkes, M.; Barrett, J.C.; Prescott, N.J.; Tremelling, M.; Anderson, C.A.; Fisher, S.A.; Roberts, R.G.; Nimmo, E.R.; Cummings, F.R.; Soars, D.; Drummond, H.; Lees, C.W.; Khawaja, S.A.; Bagnall, R.; Burke, D.A.; Todhunter, C.E.; Ahmad, T.; Onnie, C.M.; McArdle, W.; Strachan, D.; Bethel, G.; Bryan, C.; Lewis, C.M.; Deloukas, P.; Forbes, A.; Sanderson, J.; Jewell, D.P.; Satsangi, J.; Mansfield, J.C.; Cardon, L.; Mathew, C.G. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn’s disease susceptibility. Nat. Genet., 2007, 39(7), 830-832.
[28]
McCarroll, S.A.; Huett, A.; Kuballa, P.; Chilewski, S.D.; Landry, A.; Goyette, P.; Zody, M.C.; Hall, J.L.; Brant, S.R.; Cho, J.H.; Duerr, R.H.; Silverberg, M.S.; Taylor, K.D.; Rioux, J.D.; Altshuler, D.; Daly, M.J.; Xavier, R.J. Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn’s disease. Nat. Genet., 2008, 40(9), 1107-1112.
[29]
Brest, P.; Lapaquette, P.; Souidi, M.; Lebrigand, K.; Cesaro, A.; Vouret-Craviari, V.; Mari, B.; Barbry, P.; Mosnier, J.F.; Hebuterne, X.; Harel-Bellan, A.; Mograbi, B.; Darfeuille-Michaud, A.; Hofman, P. A synonymous variant in IRGM alters a binding site for miR-196 and causes deregulation of IRGM-dependent xenophagy in Crohn’s disease. Nat. Genet., 2011, 43(3), 242-245.
[30]
Trinh, J.; Farrer, M. Advances in the genetics of Parkinson disease. Natl. Rev., 2013, 9(8), 445-454.
[31]
Valente, E.M.; Abou-Sleiman, P.M.; Caputo, V.; Muqit, M.M.; Harvey, K.; Gispert, S.; Ali, Z.; Del Turco, D.; Bentivoglio, A.R.; Healy, D.G.; Albanese, A.; Nussbaum, R.; Gonzalez-Maldonado, R.; Deller, T.; Salvi, S.; Cortelli, P.; Gilks, W.P.; Latchman, D.S.; Harvey, R.J.; Dallapiccola, B.; Auburger, G.; Wood, N.W. Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science, 2004, 304(5674), 1158-1160.
[32]
Valente, E.M.; Bentivoglio, A.R.; Dixon, P.H.; Ferraris, A.; Ialongo, T.; Frontali, M.; Albanese, A.; Wood, N.W. Localization of a novel locus for autosomal recessive early-onset parkinsonism, PARK6, on human chromosome 1p35-p36. Am. J. Hum. Genet., 2001, 68(4), 895-900.
[33]
Laurin, N.; Brown, J.P.; Morissette, J.; Raymond, V. Recurrent mutation of the gene encoding sequestosome 1 (SQSTM1/p62) in paget disease of bone. Am. J. Hum. Genet., 2002, 70(6), 1582-1588.
[34]
Hirano, M.; Nakamura, Y.; Saigoh, K.; Sakamoto, H.; Ueno, S.; Isono, C.; Miyamoto, K.; Akamatsu, M.; Mitsui, Y.; Kusunoki, S. Mutations in the gene encoding p62 in Japanese patients with amyotrophic lateral sclerosis. Neurology, 2013, 80(5), 458-463.
[35]
Rubino, E.; Rainero, I.; Chio, A.; Rogaeva, E.; Galimberti, D.; Fenoglio, P.; Grinberg, Y.; Isaia, G.; Calvo, A.; Gentile, S.; Bruni, A.C.; St George-Hyslop, P.H.; Scarpini, E.; Gallone, S.; Pinessi, L. SQSTM1 mutations in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Neurology, 2012, 79(15), 1556-1562.
[36]
Haack, T.B.; Hogarth, P.; Kruer, M.C.; Gregory, A.; Wieland, T.; Schwarzmayr, T.; Graf, E.; Sanford, L.; Meyer, E.; Kara, E.; Cuno, S.M.; Harik, S.I.; Dandu, V.H.; Nardocci, N.; Zorzi, G.; Dunaway, T.; Tarnopolsky, M.; Skinner, S.; Frucht, S.; Hanspal, E.; Schrander-Stumpel, C.; Heron, D.; Mignot, C.; Garavaglia, B.; Bhatia, K.; Hardy, J.; Strom, T.M.; Boddaert, N.; Houlden, H.H.; Kurian, M.A.; Meitinger, T.; Prokisch, H.; Hayflick, S.J. Exome sequencing reveals de novo WDR45 mutations causing a phenotypically distinct, X-linked dominant form of NBIA. Am. J. Hum. Genet., 2012, 91(6), 1144-1149.
[37]
Saitsu, H.; Nishimura, T.; Muramatsu, K.; Kodera, H.; Kumada, S.; Sugai, K.; Kasai-Yoshida, E.; Sawaura, N.; Nishida, H.; Hoshino, A.; Ryujin, F.; Yoshioka, S.; Nishiyama, K.; Kondo, Y.; Tsurusaki, Y.; Nakashima, M.; Miyake, N.; Arakawa, H.; Kato, M.; Mizushima, N.; Matsumoto, N. De novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood. Nat. Genet., 2013, 45(4), 445-449.
[38]
Jean, Y. Nucleo-cytoplasmic communication in apoptotic response to genotoxic and inflammatory stress. Cell Res., 2005, 15(1), 43-48.
[39]
Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100(1), 57-70.
[40]
Johnstone, R.W.; Ruefli, A.A.; Lowe, S.W. Apoptosis: A link between cancer genetics and chemotherapy. Cell, 2002, 108(2), 153-164.
[41]
Igney, F.H. Death and anti-death: Tumor resistance to apoptosis. Nat. Rev. Cancer, 2002, 2, 277-288.
[42]
Ghavami, S.; Shojaei, S.; Yeganeh, B.; Ande, S.R.; Jangamreddy, J.R.; Mehrpour, M.; Christoffersson, J.; Chaabane, W.; Moghadam, A.R.; Kashani, H.H. Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog. Neurobiol., 2014, 112, 24-49.
[43]
Lustbader, J.W.; Cirilli, M.; Lin, C.; Xu, H.W.; Takuma, K.; Wang, N.; Caspersen, C.; Chen, X.; Pollak, S.; Chaney, M. ABAD directly links Aß to mitochondrial toxicity in Alzheimer’s Disease. Science, 2004, 304(5669), 448-452.
[44]
Kountouras, J.; Zavos, C.; Polyzos, S.; Deretzi, G.; Vardaka, E.; Giartza‐Taxidou, E.; Katsinelos, P.; Rapti, E.; Chatzopoulos, D.; Tzilves, D. Helicobacter pylori infection and Parkinson’s disease: apoptosis as an underlying common contributor. Eur. J. Neurol., 2012, 19(6), e56-e56.
[45]
Ashkenazi, A.; Dixit, V.M. Death Receptors: Signaling and Modulation. Science, 1998, 281(5381), 1305-1308.
[46]
Peter, M.E.; Krammer, P.H. Mechanisms of CD95 (APO-1/Fas)-mediated apoptosis. Curr. Opin. Immunol., 1998, 10(5), 545-551.
[47]
O’Connell, J.; Bennett, M.W.; O’Sullivan, G.C.; Collins, J.K.; Shanahan, F. Fas counter-attack-the best form of tumor defense? Nat. Med., 1999, 5, 267.
[48]
Pinkoski, M.J.; Green, D.R. Fas ligand, death gene. Cell Death Differ., 1999, 6, 1174.
[49]
Nagata, S. Fas Ligand-Induced Apoptosis. Annu. Rev. Genet., 1999, 33(1), 29-55.
[50]
Shin, M.S.; Park, W.S.; Kim, S.Y.; Kim, H.S.; Kang, S.J.; Song, K.Y.; Park, J.Y.; Dong, S.M.; Pi, J.H.; Oh, R.R.; Lee, J.Y.; Yoo, N.J.; Lee, S.H. Alterations of Fas (Apo-1/CD95) Gene in Cutaneous Malignant Melanoma. Am. J. Pathol., 1999, 154(6), 1785-1791.
[51]
Yamamoto, H.; Gil, J.; Schwartz, S.; Perucho, M. Frameshift mutations in Fas, Apaf-1, and Bcl-10 in gastro-intestinal cancer of the microsatellite mutator phenotype. Cell Death Differ., 2000, 7, 238.
[52]
Müllauer, L.; Gruber, P.; Sebinger, D.; Buch, J.; Wohlfart, S.; Chott, A. Mutations in apoptosis genes: A pathogenetic factor for human disease. Mutat. Res., 2001, 488(3), 211-231.
[53]
Baens, M.; Maes, B.; Steyls, A.; Geboes, K.; Marynen, P.; De Wolf-Peeters, C. The Product of the t(11;18), an API2-MLT fusion, marks nearly half of gastric MALT type lymphomas without large cell proliferation. Am. J. Pathol., 2000, 156(4), 1433-1439.
[54]
Rosenwald, A.; Ott, G.; Stilgenbauer, S.; Kalla, J.; Bredt, M.; Katzenberger, T.; Greiner, A.; Ott, M.M.; Gawin, B.; Döhner, H.; Müller-Hermelink, H.K. Exclusive detection of the t(11;18)(q21;q21) in extranodal marginal zone B cell lymphomas (MZBL) of MALT type in contrast to other MZBL and extranodal large B cell lymphomas. Am. J. Pathol., 1999, 155(6), 1817-1821.
[55]
Maiuri, M.C.; Zalckvar, E.; Kimchi, A.; Kroemer, G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat. Rev. Mol. Cell Biol., 2007, 8(9), 741.
[56]
Nikoletopoulou, V.; Markaki, M.; Palikaras, K.; Tavernarakis, N. Crosstalk between apoptosis, necrosis and autophagy. Biochim. Biophys. Acta, 2013, 1833(12), 3448-3459.
[57]
Liang, J.; Shao, S.H.; Xu, Z-X.; Hennessy, B.; Ding, Z.; Larrea, M.; Kondo, S.; Dumont, D.J.; Gutterman, J.U.; Walker, C.L.; Slingerland, J.M.; Mills, G.B. The energy sensing LKB1–AMPK pathway regulates p27kip1 phosphorylation mediating the decision to enter autophagy or apoptosis. Nat. Cell Biol., 2007, 9, 218.
[58]
Salminen, A.; Kaarniranta, K.; Kauppinen, A. Beclin 1 interactome controls the crosstalk between apoptosis, autophagy and inflammasome activation: impact on the aging process. Ageing Res. Rev., 2013, 12(2), 520-534.
[59]
Lockshin, R.A.; Zakeri, Z. Apoptosis, autophagy, and more. Int. J. Biochem. Cell Biol., 2004, 36(12), 2405-2419.
[60]
Gordy, C.; He, Y-W. The crosstalk between autophagy and apoptosis: where does this lead? Protein Cell, 2012, 3(1), 17-27.
[61]
Fan, Y-J.; Zong, W-X. The cellular decision between apoptosis and autophagy. Chin. J. Cancer, 2013, 32(3), 121-129.
[62]
Fitzwalter, B.E.; Thorburn, A. Recent insights into cell death and autophagy. FEBS J., 2015, 282(22), 4279-4288.
[63]
Liu, H.; Wang, L.; Lv, M.; Pei, R.; Li, P.; Pei, Z.; Wang, Y.; Su, W.; Xie, X-Q. AlzPlatform: An Alzheimer’s disease domain-specific chemogenomics knowledgebase for polypharmacology and target identification research. J. chem. information model, 2014, 54(4), 1050-1060.
[64]
Database Resources of the National Center for Biotechnology Information. Nucleic Acids Res., 2017, 45(D1), D12-d17.
[65]
Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; Wang, J.; Yu, B.; Zhang, J.; Bryant, S.H. PubChem Substance and Compound databases. Nucleic Acids Res., 2016, 44(Database issue), D1202-D1213.
[66]
Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; Assempour, N.; Iynkkaran, I.; Liu, Y.; Maciejewski, A.; Gale, N.; Wilson, A.; Chin, L.; Cummings, R.; Le, D.; Pon, A.; Knox, C.; Wilson, M. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res., 2018, 46(D1), D1074-d1082.
[67]
Ridley, D.D. Information Retrieval: SciFinder and SciFinder Scholar; John Wiley & Sons, 2002.
[68]
The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res., 2017, 45(D1), D158-D169.
[69]
Bento, A.P.; Gaulton, A.; Hersey, A.; Bellis, L.J.; Chambers, J.; Davies, M.; Krüger, F.A.; Light, Y.; Mak, L.; McGlinchey, S.; Nowotka, M.; Papadatos, G.; Santos, R.; Overington, J.P. The ChEMBL bioactivity database: an update. Nucleic Acids Res., 2014, 42(D1), D1083-D1090.
[70]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[71]
Kanehisa, M.; Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res., 2000, 28(1), 27-30.
[72]
Chen, S.; Rehman, S.K.; Zhang, W.; Wen, A.; Yao, L.; Zhang, J. Autophagy is a therapeutic target in anticancer drug resistance. Biochim. Biophys. Acta, 2010, 1806(2), 220-229.
[73]
Jensen, L.J.; Kuhn, M.; Stark, M.; Chaffron, S.; Creevey, C.; Muller, J.; Doerks, T.; Julien, P.; Roth, A.; Simonovic, M.; Bork, P.; von Mering, C. STRING 8--A global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res., 2009, 37(Database issue), D412-D416.
[74]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[75]
Wang, N.; Wang, L.; Xie, X-Q. ProSelection: A novel algorithm to select proper protein structure subsets for in silico target identification and drug discovery research. J. Chem. Inf. Model., 2017, 57(11), 2686-2698.
[76]
Krauthammer, M.; Kaufmann, C.A.; Gilliam, T.C.; Rzhetsky, A. Molecular triangulation: Bridging linkage and molecular-network information for identifying candidate genes in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2004, 101(42), 15148-15153.
[77]
Csermely, P.; Korcsmaros, T.; Kiss, H.J.; London, G.; Nussinov, R. Structure and dynamics of molecular networks: a novel paradigm of drug discovery: a comprehensive review. Pharmacol. Ther., 2013, 138(3), 333-408.
[78]
Huang, S.; Ernberg, I.; Kauffman, S. Cancer attractors: A systems view of tumors from a gene network dynamics and developmental perspective. Semin. Cell Dev. Biol., 2009, 20(7), 869-876.
[79]
Albert, R.; Jeong, H.; Barabási, A-L. Error and attack tolerance of complex networks. Nature, 2000, 406, 378.
[80]
Singh, P.; Ravanan, P.; Talwar, P. Death associated protein kinase 1 (DAPK1): A regulator of apoptosis and autophagy. Front. Mol. Neurosci., 2016, 9, 46.
[81]
Yoo, H.J.; Byun, H.J.; Kim, B.R.; Lee, K.H.; Park, S.Y.; Rho, S.B. DAPk1 inhibits NF-kappaB activation through TNF-alpha and INF-gamma-induced apoptosis. Cell. Signal., 2012, 24(7), 1471-1477.
[82]
Wu, B.; Yao, H.; Wang, S.; Xu, R. DAPK1 modulates a curcumin-induced G2/M arrest and apoptosis by regulating STAT3, NF-kappaB, and caspase-3 activation. Biochem. Biophys. Res. Commun., 2013, 434(1), 75-80.
[83]
Tian, X.; Xu, L.; Wang, P. MiR-191 inhibits TNF-alpha induced apoptosis of ovarian endometriosis and endometrioid carcinoma cells by targeting DAPK1. Int. J. Clin. Exp. Pathol., 2015, 8(5), 4933-4942.
[84]
Jiang, P.; Mizushima, N. Autophagy and human diseases. Cell Res., 2014, 24(1), 69-79.
[85]
Makhov, P.; Kutikov, A.; Golovine, K.; Uzzo, R.G.; Canter, D.J.; Kolenko, V.M. Docetaxel-mediated apoptosis in myeloid progenitor TF-1 cells is mitigated by zinc: Potential implication for prostate cancer therapy. Prostate, 2011, 71(13), 1413-1419.
[86]
Ergun, M.A.; Konac, E.; Erbas, D.; Ekmekci, A. Apoptosis and nitric oxide release induced by thalidomide, gossypol and dexamethasone in cultured human chronic myelogenous leukemic K-562 cells. Cell Biol. Int., 2004, 28(3), 237-242.
[87]
Abekawa, T.; Ito, K.; Nakagawa, S.; Nakato, Y.; Koyama, T. Effects of aripiprazole and haloperidol on progression to schizophrenia-like behavioural abnormalities and apoptosis in rodents. Schizophr. Res., 2011, 125(1), 77-87.
[88]
Tang, G.; Yang, C-Y.; Nikolovska-Coleska, Z.; Guo, J.; Qiu, S.; Wang, R.; Gao, W.; Wang, G.; Stuckey, J.; Krajewski, K.; Jiang, S.; Roller, P.P.; Wang, S. Pyrogallol-based molecules as potent inhibitors of the antiapoptotic Bcl-2 proteins. J. Med. Chem., 2007, 50(8), 1723-1726.
[89]
Wood, W.G.; Igbavboa, U.; Muller, W.E.; Eckert, G.P. Statins, Bcl-2 and apoptosis: Cell death or cell protection? Mol. Neurobiol., 2013, 48(2), 308-314.
[90]
Blanco-Colio, L.M.; Villa, A.; Ortego, M.; Hernandez-Presa, M.A.; Pascual, A.; Plaza, J.J.; Egido, J. 3-Hydroxy-3-methyl-glutaryl coenzyme A reductase inhibitors, atorvastatin and simvastatin, induce apoptosis of vascular smooth muscle cells by downregulation of Bcl-2 expression and Rho A prenylation. Atherosclerosis, 2002, 161(1), 17-26.
[91]
Johnson-Anuna, L.N.; Eckert, G.P.; Keller, J.H.; Igbavboa, U.; Franke, C.; Fechner, T.; Schubert-Zsilavecz, M.; Karas, M.; Muller, W.E.; Wood, W.G. Chronic administration of statins alters multiple gene expression patterns in mouse cerebral cortex. J. Pharmacol. Exp. Ther., 2005, 312(2), 786-793.
[92]
Kawamura, T.; Ono, K.; Morimoto, T.; Akao, M.; Iwai-Kanai, E.; Wada, H.; Sowa, N.; Kita, T.; Hasegawa, K. Endothelin-1-dependent nuclear factor of activated T lymphocyte signaling associates with transcriptional coactivator p300 in the activation of the B cell leukemia-2 promoter in cardiac myocytes. Circ. Res., 2004, 94(11), 1492-1499.
[93]
Ferreira, P.; Villanueva, R.; Martinez-Julvez, M.; Herguedas, B.; Marcuello, C.; Fernandez-Silva, P.; Cabon, L.; Hermoso, J.A.; Lostao, A.; Susin, S.A.; Medina, M. Structural insights into the coenzyme mediated monomer-dimer transition of the pro-apoptotic apoptosis inducing factor. Biochemistry, 2014, 53(25), 4204-4215.
[94]
Levinson, N.M.; Kuchment, O.; Shen, K.; Young, M.A.; Koldobskiy, M.; Karplus, M.; Cole, P.A.; Kuriyan, J. A Src-like inactive conformation in the abl tyrosine kinase domain. PLoS Biol., 2006, 4(5)e144
[95]
Sevrioukova, I.F. Structure/function relations in AIFM1 variants associated with neurodegenerative disorders. J. Mol. Biol., 2016, 428(18), 3650-3665.
[96]
Jin, M.S.; Kim, S.E.; Heo, J.Y.; Lee, M.E.; Kim, H.M.; Paik, S.G.; Lee, H.; Lee, J.O. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell, 2007, 130(6), 1071-1082.
[97]
Caldwell, J.J.; Welsh, E.J.; Matijssen, C.; Anderson, V.E.; Antoni, L.; Boxall, K.; Urban, F.; Hayes, A.; Raynaud, F.I.; Rigoreau, L.J.; Raynham, T.; Aherne, G.W.; Pearl, L.H.; Oliver, A.W.; Garrett, M.D.; Collins, I. Structure-based design of potent and selective 2-(quinazolin-2-yl)phenol inhibitors of checkpoint kinase 2. J. Med. Chem., 2011, 54(2), 580-590.
[98]
Wang, D.; Liang, J.; Zhang, Y.; Gui, B.; Wang, F.; Yi, X.; Sun, L.; Yao, Z.; Shang, Y. Steroid receptor coactivator-interacting protein (SIP) inhibits caspase-independent apoptosis by preventing apoptosis-inducing factor (AIF) from being released from mitochondria. J. Biol. Chem., 2012, 287(16), 12612-12621.
[99]
He, Y.; Li, B.; Zhang, H.; Luo, C.; Shen, S.; Tang, J.; Chen, J.; Gu, L. L-asparaginase induces in AML U937 cells apoptosis via an AIF-mediated mechanism. Front. Biosci., 2014, 19, 515-527.
[100]
Klener, P.; Klener, P., Jr ABL1, SRC and other non-receptor protein tyrosine kinases as new targets for specific anticancer therapy. Clin. Oncol., 2010, 23(4), 203-209.
[101]
Dasgupta, Y.; Koptyra, M.; Hoser, G.; Kantekure, K.; Roy, D.; Gornicka, B.; Nieborowska-Skorska, M.; Bolton-Gillespie, E.; Cerny-Reiterer, S.; Muschen, M.; Valent, P.; Wasik, M.A.; Richardson, C.; Hantschel, O.; van der Kuip, H.; Stoklosa, T.; Skorski, T. Normal ABL1 is a tumor suppressor and therapeutic target in human and mouse leukemias expressing oncogenic ABL1 kinases. Blood, 2016, 127(17), 2131-2143.
[102]
Kalvari, I.; Tsompanis, S.; Mulakkal, N.C.; Osgood, R.; Johansen, T.; Nezis, I.P.; Promponas, V.J. iLIR: A web resource for prediction of Atg8-family interacting proteins. Autophagy, 2014, 10(5), 913-925.
[103]
Moussay, E.; Kaoma, T.; Baginska, J.; Muller, A.; Van Moer, K.; Nicot, N.; Nazarov, P.V.; Vallar, L.; Chouaib, S.; Berchem, G. The acquisition of resistance to TNFα in breast cancer cells is associated with constitutive activation of autophagy as revealed by a transcriptome analysis using a custom microarray. Autophagy, 2011, 7(7), 760-770.
[104]
Diez, J.; Walter, D.; Munoz-Pinedo, C.; Gabaldón, T. DeathBase: a database on structure, evolution and function of proteins involved in apoptosis and other forms of cell death. Cell Death Differ., 2010, 17(5), 735-736.
[105]
Doctor, K.; Reed, J.; Godzik, A.; Bourne, P. The apoptosis database. Cell Death Differ., 2003, 10(6), 621-633.
[106]
Hutson, P.H.; Clark, J.A.; Cross, A.J. CNS Target identification and validation: Avoiding the valley of death or naive optimism? Annu. Rev. Pharmacol. Toxicol., 2017, 57, 171-187.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy